Early and Extensive Ultraviolet Through Near Infrared Observations of the Intermediate-Luminosity Type Iax Supernovae 2024pxl
Early and Extensive Ultraviolet Through Near Infrared Observations of the Intermediate-Luminosity Type Iax Supernovae 2024pxl
Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment.
This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde“This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra TshiteyaMeanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
“The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight CenterTo virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Soviet-era spacecraft likely to crash back to Earth
Mon 12 May 14:00: On the role of magnetic fluctuations in low magnetic Prandtl number plasmas
Magnetic fields on small scales are ubiquitous in the universe. For example, the fluctuating magnetic fields in star-forming regions of galaxies are more than twice the strength of the magnetic fields coherent over large scales. On the solar surface, magnetic fields are mostly concentrated in medium and small-scale structures, while the proportion comprising the mean field strength is even lower than in galaxies. The generation mechanisms of the fluctuating magnetic fields are not fully understood. One possibility is the so-called small-scale dynamo (SSD), the other is tangling of the large-scale field structures through turbulence acting on them. In the interstellar medium of galaxies, the resistivity $\eta$ is much lower than the viscosity $\nu$, such that magnetic instabilities are easier to excite relative to the turbulence. SSD in such high magnetic Prandtl number (Pm=$\nu/\eta$) conditions has therefore been predicted to be easily excited. In the Sun and cool stars, Pm is much lower, namely in the range of $10>6;">$$10{-3}$. Both theoretically and especially numerically, SSD is more difficult to excite at such very low magnetic Prandtl numbers. Indeed, some recent numerical studies had indicated that the threshold for SSD excitation should systematically increase with decreasing Pm, concluding that SSD would be impossible in the Sun and cool stars.
Accelerating the magnetohydrodynamics solvers with graphics processing units has recently opened an avenue to numerically study low-Pm flows. With these tools we have been able to perform simulations that approach the solar Pm-values, studying both kinematic and non-linear regimes. Contrary to earlier findings, the SSD turns out not only to be possible for Pms down to 0.0031, but even to become increasingly easy to excite for Pm below $\simeq 0.05$. We relate this behaviour to the known hydrodynamic phenomenon, referred to as the bottleneck effect. Extrapolating our results to solar values of Pm indicates that an SSD would be possible under such conditions. The saturation strength of the SSD is of the order of the turbulent kinetic energy independent of the Pm, when the magnetic Reynolds number (Rm) is moderate (up to a few thousands). For higher Rm the saturation strength rapidly diminishes and reaches levels of order of magnitude lower than turbulent kinetic energy, casting a new doubt of the SSD being important in the Sun and stars. Even higher resolution studies, however, would be required to verify this robustly. For such calculations, however, extraordinary resources/quantum computers are required.
- Speaker: Maarit Korpi-Lagg [Helsinki/Espoo]
- Monday 12 May 2025, 14:00-15:00
- Venue: MR14 DAMTP and online.
- Series: DAMTP Astrophysics Seminars; organiser: Mattias Brynjell-Rahkola.
Thu 15 May 16:00: The different merger and evolutionary histories of the Milky Way and Andromeda (M31)e to be confirmed
The Milky Way experienced a major satellite merger 10 Gyr ago which altered, but did not destroy, the early high-alpha disk and created both an accreted and an in situ inner halo. The low-alpha disk that formed subsequently became bar-unstable 8 Gyr ago, creating the b/p bulge that also contains the inner high-alpha disk stars. M31 experienced a similar major satellite merger 3 Gyr ago which greatly heated and mixed the pre-existing high-metallicity disk, and also caused a massive inflow of gas and the formation of a dynamically hot secondary inner disk. Such a merger is consistent with the wide-spread star formation event 2-4 Gyr ago seen in disk colour-magnitude diagrams, and with the major substructures and metal-rich stars in the inner halo of M31 , when comparing photometric and recent spectroscopic data with available models. The merged satellite must have had a broad metallicity distribution and would have been the third most massive galaxy in the Local Group before the merger.
- Speaker: Ortwin Gerhard, MPE (Garching)
- Thursday 15 May 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, Institute of Astronomy.
- Series: Institute of Astronomy Colloquia; organiser: .
Thu 15 May 16:00: The different merger and evolutionary histories of the Milky Way and Andromeda (M31)e to be confirmed
The Milky Way experienced a major satellite merger 10 Gyr ago which altered, but did not destroy, the early high-alpha disk and created both an accreted and an in situ inner halo. The low-alpha disk that formed subsequently became bar-unstable 8 Gyr ago, creating the b/p bulge that also contains the inner high-alpha disk stars. M31 experienced a similar major satellite merger 3 Gyr ago which greatly heated and mixed the pre-existing high-metallicity disk, and also caused a massive inflow of gas and the formation of a dynamically hot secondary inner disk. Such a merger is consistent with the wide-spread star formation event 2-4 Gyr ago seen in disk colour-magnitude diagrams, and with the major substructures and metal-rich stars in the inner halo of M31 , when comparing photometric and recent spectroscopic data with available models. The merged satellite must have had a broad metallicity distribution and would have been the third most massive galaxy in the Local Group before the merger.
- Speaker: Ortwin Gerhard, MPE (Garching)
- Thursday 15 May 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, Institute of Astronomy.
- Series: Institute of Astronomy Colloquia; organiser: .
Mon 12 May 13:00: DESI DR2: Survey overview and cosmological constraints from DR2 Baryon Acoustic Oscillation measurements Zoom link: https://cam-ac-uk.zoom.us/j/86165819179?pwd=uITeMzHyCpzVlUmVufdGEJXudF0dsy.1
The Dark Energy Spectroscopic Instrument (DESI) is undertaking a five-year survey spanning 14,000 square degrees of the sky, with the goal of mapping 40 million extragalactic redshifts. These observations aim to refine our understanding of the universe’s expansion history through Baryon Acoustic Oscillations (BAO) and the growth of cosmic structure via Full Shape analyses. In 2025, the DESI collaboration released BAO cosmology results from the Data Release 2 (DR2) sample, assembled from the first three years of data taking (2021 – 2024). This presentation will introduce the instrument and the survey and review the BAO measurements derived from DR2 . I will discuss the consistency of BAO constraints with other probes—-CMB (including the latest ACT DR6 CMB data) and supernovae—-and present cosmological constraints on dark energy and neutrino masses. I will conclude by providing an outlook on upcoming DESI analyses.
Zoom link: https://cam-ac-uk.zoom.us/j/86165819179?pwd=uITeMzHyCpzVlUmVufdGEJXudF0dsy.1
- Speaker: Arnaud de Mattia (IRFU, CEA, Université Paris-Saclay)
- Monday 12 May 2025, 13:00-14:00
- Venue: SPECIAL LOCATION - CMS, MR5, Pav A basement.
- Series: Cosmology Lunch; organiser: Louis Legrand.
NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)The blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and jets oriented toward Earth, provided scientists with a unique opportunity to answer a longstanding question: How are X-rays generated in extreme environments like this?
NASA’s IXPE (Imaging X-ray Polarimetry Explorer) collaborated with radio and optical telescopes to find answers. The results (preprint available here), to be published in the journal Astrophysical Journal Letters, show that interactions between fast-moving electrons and particles of light, called photons, must lead to this X-ray emission.
This artist’s concept depicts the central region of the blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and a jet oriented toward Earth. The galaxy’s central black hole is surrounded by swirls of orange in various shades representing the accretion disk of material falling toward the black hole. While black holes are known for pulling in material, this accretion process can result in the ejection of jets of electrons at nearly the speed of light. The jet of matter is represented by the cone of light that starts at the center of the black hole and widens out as it reaches the bottom of the image. It is streaked with lines of white, pink and purple which represent helix-shaped magnetic fields. We can observe these jets in many wavelengths of light including radio, optical, and X-ray. NASA’s Imaging X-ray Polarimetry Explorer (IXPE) recently collaborated with radio and optical telescopes to observe this jet and determine how the X-rays are generated in these types of celestial environments.NASA/Pablo GarciaScientists had two competing possible explanations for the X-rays, one involving protons and one involving electrons. Each of these mechanisms would have a different signature in the polarization of X-ray light. Polarization is a property of light that describes the average direction of the electromagnetic waves that make up light.
If the X-rays in a black hole’s jets are highly polarized, that would mean that the X-rays are produced by protons gyrating in the magnetic field of the jet or protons interacting with jet’s photons. If the X-rays have a lower polarization degree, it would suggest that electron-photons interactions lead to X-ray production.
IXPE, which launched Dec. 9, 2021, is the only satellite flying today that can make such a polarization measurement.
“This was one of the biggest mysteries about supermassive black hole jets” said Iván Agudo, lead author of the study and astronomer at the Instituto de Astrofísica de Andalucía – CSIC in Spain. “And IXPE, with the help of a number of supporting ground-based telescopes, finally provided us with the tools to solve it.”
Astronomers found that electrons must be the culprits through a process called Compton Scattering. Compton scattering (or the Compton effect) happens when a photon loses or gains energy after interacting with a charged particle, usually an electron. Within jets from supermassive black holes, electrons move near the speed of light. IXPE helped scientists learn that, in the case of a blazar jet, the electrons have enough energy to scatter photons of infrared light up to X-ray wavelengths.
BL Lacertae (BL Lac for short) is one of the first blazars ever discovered, originally thought to be a variable star in the Lacerta constellation. IXPE observed BL Lac at the end of November 2023 for seven days along with several ground-based telescopes measuring optical and radio polarization at the same time. While IXPE observed BL Lac in the past, this observation was special. Coincidentally, during the X-ray polarization observations, the optical polarization of BL Lac reached a high number: 47.5%.
“This was not only the most polarized BL Lac has been in the past 30 years, this is the most polarized any blazar has ever been observed!” said Ioannis Liodakis, one of the primary authors of the study and astrophysicist at the Institute of Astrophysics – FORTH in Greece.
IXPE found the X-rays were far less polarized than the optical light. The team was not able to measure a strong polarization signal and determined that the X-rays cannot be more polarized than 7.6%. This proved that electrons interacting with photons, via the Compton effect, must explain the X-rays.
The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering.Steven Ehlert
Project Scientist for IXPE at Marshall Space Flight Center
“The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering”, said Steven Ehlert, project scientist for IXPE and astronomer at the Marshall Space Flight Center.
“IXPE has managed to solve another black hole mystery” said Enrico Costa, astrophysicist in Rome at the Istituto di Astrofísica e Planetologia Spaziali of the Istituto Nazionale di Astrofísica. Costa is one of the scientists who conceived this experiment and proposed it to NASA 10 years ago, under the leadership of Martin Weisskopf, IXPE’s first principal investigator. “IXPE’s polarized X-ray vision has solved several long lasting mysteries, and this is one of the most important. In some other cases, IXPE results have challenged consolidated opinions and opened new enigmas, but this is how science works and, for sure, IXPE is doing very good science.”
What’s next for the blazar research?
“One thing we’ll want to do is try to find as many of these as possible,” Ehlert said. “Blazars change quite a bit with time and are full of surprises.”
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
Elizabeth Landau
NASA Headquarters
elizabeth.r.landau@nasa.gov
202-358-0845
Lane Figueroa
Marshall Space Flight Center, Huntsville, Ala.
lane.e.figueroa@nasa.gov
256.544.0034
Tue 13 May 13:00: Deciphering giant planet formation
The multitude of detected exoplanets and their diversity never cease to fascinate us, while the statistical trends emerging from these detections present promising opportunities to delve into the past of planetary systems, all the way back to their formation. In this talk, I will give an overview of my group’s recent observational and theoretical results on the formation of gas giants. Owing to their large gravitational influence these planets cannot be overlooked in the evolution of planetary systems towards a life-harbouring system such as our own. Results of RV and direct imaging surveys in recent years revealed that gas giants are not a common outcome of planet formation, and that their most frequent hosts – the intermediate-mass stars (IMSs) seem to hold the answers to their formation.
We investigate the formation of giant planets using the pebble-accretion driven planet formation simulations, exploring a range of different formation conditions. In this work, and in contrast to common approaches in the literature, we implement stellar-mass dependent time evolution of luminosity on the pre-main sequence, and find that this makes a significant difference to giant planet formation outcomes. We successfully reproduce the giant planet occurrence rates as a function of stellar mass, found by RV surveys. This work revealed that mass accretion rate is the key parameter in determining whether a star will likely host a giant planet in its future planetary system.
Our large surveys of pre-main sequence star candidates led to the first unbiased sample of such IMSs, and the result that their protoplanetary discs are dispersed faster than discs around low mass stars, a devastating prospect for giant planet formation unless it happens very fast (e.g., via GI). This is in stark contrast with the observational examples of massive discs actively forming planets at 5-6Myr of age. Our work shows that late gas accretion, as seen in some of those sources, must be the dominant mechanism that sustains the mass reservoir of these older protoplanetary discs. Our surveys, and follow-up with ALMA also allowed a unique insight in the elusive transition state from protoplanetary to debris discs and origin of gas in debris discs.
- Speaker: Olja Panic (Leeds)
- Tuesday 13 May 2025, 13:00-14:00
- Venue: Ryle seminar room + ONLINE - Details to be sent by email.
- Series: Exoplanet Seminars; organiser: Dr Dolev Bashi.
Mon 12 May 13:00: DESI DR2: Survey overview and cosmological constraints from DR2 Baryon Acoustic Oscillation measurements
The Dark Energy Spectroscopic Instrument (DESI) is undertaking a five-year survey spanning 14,000 square degrees of the sky, with the goal of mapping 40 million extragalactic redshifts. These observations aim to refine our understanding of the universe’s expansion history through Baryon Acoustic Oscillations (BAO) and the growth of cosmic structure via Full Shape analyses. In 2025, the DESI collaboration released BAO cosmology results from the Data Release 2 (DR2) sample, assembled from the first three years of data taking (2021 – 2024). This presentation will introduce the instrument and the survey and review the BAO measurements derived from DR2 . I will discuss the consistency of BAO constraints with other probes—-CMB (including the latest ACT DR6 CMB data) and supernovae—-and present cosmological constraints on dark energy and neutrino masses. I will conclude by providing an outlook on upcoming DESI analyses.
- Speaker: Arnaud de Mattia (IRFU, CEA, Université Paris-Saclay)
- Monday 12 May 2025, 13:00-14:00
- Venue: SPECIAL LOCATION - CMS, MR5, Pav A basement.
- Series: Cosmology Lunch; organiser: Louis Legrand.
Fri 09 May 13:00: Dynamical Formation of Regular Black Holes
I will discuss recent work where it was demonstrated that regular black holes emerge as the unique spherically symmetric solutions to certain gravitational actions that incorporate infinite towers of higher-derivative corrections. I will then illustrate what happens when one considers the collapse of spherical thin shells and dust in these theories, showing that the collapse is generically non-singular. This is based on work with Pablo Bueno, Pablo Cano and Ángel Murcia.
- Speaker: Robbie Hennigar, Durham University
- Friday 09 May 2025, 13:00-14:00
- Venue: MR9/Zoom: https://cam-ac-uk.zoom.us/j/87869493842?pwd=vGeCJJgQZa8PwZOhk1kpE0nbj6DgpJ.1.
- Series: DAMTP Friday GR Seminar; organiser: Xi Tong.
Tue 13 May 11:15: Testing the HARPS3 Data Reduction Pipeline with Synthetic Spectra to achieve Earth-Twin RV Precision
The High Accuracy Radial velocity Planet Searcher-3 (HARPS3) is being developed for the Terra Hunting Experiment, a 10-year observing campaign to conduct nightly observations of a carefully selected group of solar-like stars to detect long-period, low-mass exoplanets. The goal is to achieve extremely-precise radial velocity (EPRV) measurements at the level of 10 cm/s to enable the detection of an Earth-twin. Attaining this precision requires a deep understanding of all error sources: instrumental systematics, astrophysical noise, and data reduction algorithms.
To address the latter, I have developed a novel method to test the data reduction pipeline (DRP) using synthetic data. Rather than attempting to replicate the instrument’s response exactly, the method is designed to systematically probe the DRP ’s performance, identify potential biases, and validate the reduction algorithms. By injecting known inputs into the DRP and tracing their propagation, I can control all aspects of the data, test specific algorithms, and verify the accuracy of the reduction products. The aim is to use simulated data to identify systematic biases and inaccuracies that could impact EPRV measurements.
In this talk I will present my work, currently in preparation for publication, describing how I simulate the data and discussing the first results of passing the synthetic echellogram through the DRP . This approach provides a framework to assess the performance of HARPS3 during commissioning and early operations – when it comes on-sky in late 2025 – enabling us to identify issues and refine data processing techniques.
- Speaker: Alicia Anderson (Cavendish Astrophysics)
- Tuesday 13 May 2025, 11:15-12:00
- Venue: Martin Ryle Seminar Room, Kavli Institute.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Prospects for disentangling dark matter with weak lensing
Prospects for disentangling dark matter with weak lensing
A XRISM Observation of the Archetypal Radio-Mode Feedback System Hydra-A: Measurements of Atmospheric Motion and Constraints on Turbulent Dissipation
A XRISM Observation of the Archetypal Radio-Mode Feedback System Hydra-A: Measurements of Atmospheric Motion and Constraints on Turbulent Dissipation
Comparative Biosignatures
Comparative Biosignatures
Hubble Images a Peculiar Spiral
A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
Image credit: ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick