
Cambridge Astrophysics Joint Colloquia
Thu 20 Mar 16:00: Exoplanet Clouds and Chemistry: A WASP-17b case study
In the short time since the start of JWST ’s science operations, it has caused a paradigm shift in the information and understanding of giant planet atmospheres. The spectroscopic IR capabilities have revealed absorption from H2O , CO2, and CO with exquisite precision, provided the first look at elusive methane absorption, and shown a diversity of photochemistry and disequilibrium processes at play in giant planet atmospheres. Previously obscuring aerosols that plagued UV-optical spectra are revealing themselves via distinct absorption and emission in the mid-IR confirming for the first time in irradiated exoplanets theoretical predictions of cloud formation. I will present a case study of one such planet which is revealing the roles of clouds and chemistry in exoplanet atmospheres and the feedback imparted between composition, dynamics, and detectability.
- Speaker: Hannah Wakeford
- Thursday 20 March 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, Institute of Astronomy.
- Series: Institute of Astronomy Colloquia; organiser: Matthew Grayling.
Thu 06 Mar 16:00: The Death Throes of Massive Stars
Core collapse supernovae play many important roles in astronomy and astrophysics. They trigger and regulate star formation through the energy they inject into the interstellar medium and they forge and disperse elements that seed the next generation of stars. On much more compact scales, which is the focus area of this talk, core collapsing stars are the birth sites of neutron stars and black holes, and therefore they are the gateway to the compact Universe. Numerical simulations of the core collapse have rapidly progressed in the last decade. Explosions are now readily obtained, the key ingredient being multidimensionality. This colloquium will review recent progress in understanding the central engines at the heart of core-collapse supernovae. I’ll touch upon how we can still use 1D simulations to understand the population as a whole, 2D simulations to systematically study theoretical uncertainties and explore the multimessenger signals, and 3D simulations to push our understanding of these extreme events.
- Speaker: Evan O'Connor
- Thursday 06 March 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, Institute of Astronomy.
- Series: Institute of Astronomy Colloquia; organiser: Matthew Grayling.
Thu 20 Mar 16:00: Exoplanet Clouds and Chemistry: A WASP-17b case study
In the short time since the start of JWST ’s science operations, it has caused a paradigm shift in the information and understanding of giant planet atmospheres. The spectroscopic IR capabilities have revealed absorption from H2O , CO2, and CO with exquisite precision, provided the first look at elusive methane absorption, and shown a diversity of photochemistry and disequilibrium processes at play in giant planet atmospheres. Previously obscuring aerosols that plagued UV-optical spectra are revealing themselves via distinct absorption and emission in the mid-IR confirming for the first time in irradiated exoplanets theoretical predictions of cloud formation. I will present a case study of one such planet which is revealing the roles of clouds and chemistry in exoplanet atmospheres and the feedback imparted between composition, dynamics, and detectability.
- Speaker: Dr Hannah Wakeford
- Thursday 20 March 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, Institute of Astronomy.
- Series: Institute of Astronomy Colloquia; organiser: Matthew Grayling.
Thu 13 Mar 16:00: Reconstructing the History of the Milky Way Galaxy Using Stars
Astronomy of the Milky Way Galaxy has entered a transformative era. The Gaia mission and an ensemble of ground-based spectroscopic surveys are delivering element abundances and velocities for millions of stars. These data provide both an opportunity to deepen our understanding of galaxy formation and to test the “limits of knowledge.” There have been several surprises that have come out of the large stellar surveys and data-driven methodologies built to analyse them. We have learned that up to 1 in 100 stars in the disk are “abundance doppelgangers” – chemically identical but unrelated – limiting the prospect of reconstructing the disk’s star cluster building blocks. Furthermore, for stars in the disk, most of the element abundances measured for most of the stars can be predicted to a precision of better than 10 percent given only two key abundances. However, this is not the case for stars in the stellar halo. These findings frame how we can most effectively work with the data to turn photons into a quantified description of Galactic history and provide strong constraints on the star formation and mixing processes that have set the Galactic environment.
- Speaker: Melissa Ness, Research School of Astronomy and Astrophysics (RSAA), Australian National University, Canberra, Australia
- Thursday 13 March 2025, 16:00-17:00
- Venue: Hoyle Lecture Theatre, IoA (tea at 3:30 pm).
- Series: The Eddington Lectures ; organiser: .