NASA’s Webb Digs into Structural Origins of Disk Galaxies
- Webb
- News
- Overview
- Science
- Observatory
- Multimedia
- Team
- More
NASA, ESA, CSA, T. Tsukui (Australian National University).
Present-day disk galaxies often contain a thick, star-filled outer disk and an embedded thin disk of stars. For instance, our own Milky Way galaxy’s thick disk is approximately 3,000 light-years in height, and its thin disk is roughly 1,000 light-years thick.
How and why does this dual disk structure form? By analyzing archival data from multiple observational programs by NASA’s James Webb Space Telescope, a team of astronomers is closer to answers, as well as understanding the origins of disk galaxies in general.
The team carefully identified, visually verified, and analyzed a statistical sample of 111 edge-on disk galaxies at various periods — up to 11 billion years ago (or approximately 2.8 billion years after the big bang). This is the first time scientists have investigated thick- and thin-disk structures spanning such vast distances, bridging the gap between observers probing the early universe and galactic archaeologists seeking to understand our own galaxy’s history.
“This unique measurement of the thickness of the disks at high redshift, or at times in the early universe, is a benchmark for theoretical study that was only possible with Webb,” said Takafumi Tsukui, lead author of the paper and a researcher at the Australian National University in Canberra. “Usually, the older, thick disk stars are faint, and the young, thin disk stars outshine the entire galaxy. But with Webb’s resolution and unique ability to see through dust and highlight faint old stars, we can identify the two-disk structure of galaxies and measure their thickness separately.”
Image: A Sample of Galaxy Disks (NIRCam) Astronomers pulled from NASA’s James Webb Space Telescope’s data to analyze a sample of 111 edge-on galaxies. The team’s analysis suggests that thick disk formation occurs first, and thin disk formation follows. When this process occurs depends on the galaxy’s mass. NASA, ESA, CSA, T. Tsukui (Australian National University). Data Through Thick and ThinBy analyzing these 111 targets over cosmological time, the team was able to study single-disk galaxies and double-disk galaxies. Their results indicate that galaxies form a thick disk first, followed by a thin disk. The timing of when this takes place is dependent on the galaxy’s mass: high-mass, single-disk galaxies transitioned to two-disk structures around 8 billion years ago. In contrast, low-mass, single-disk galaxies formed their embedded thin disks later on, about 4 billion years ago.
“This is the first time it has been possible to resolve thin stellar disks at higher redshift. What’s really novel is uncovering when thin stellar disks start to emerge,” said Emily Wisnioski, a co-author of the paper at the Australian National University in Canberra. “To see thin stellar disks already in place 8 billion years ago, or even earlier, was surprising.”
A Turbulent Time for GalaxiesTo explain this transition from a single, thick disk to a thick and thin disk, and the difference in timing for high- and low-mass galaxies, the team looked beyond their initial edge-on galaxy sample and examined data showing gas in motion from the Atacama Large Millimeter/submillimeter Array (ALMA) and ground-based surveys.
By taking into consideration the motion of the galaxies’ gas disks, the team finds their results align with the “turbulent gas disk” scenario, one of three major hypotheses that has been proposed to explain the process of thick- and thin-disk formation. In this scenario, a turbulent gas disk in the early universe sparks intense star formation, forming a thick stellar disk. As stars form, they stabilize the gas disk, which becomes less turbulent and, as a result, thinner.
Since massive galaxies can more efficiently convert gas into stars, they settle sooner than their low-mass counterparts, resulting in the earlier formation of thin disks. The team notes that thick- and thin-disk formation are not siloed events: The thick disk continues to grow as the galaxy develops, though it’s slower than the thin disk’s rate of growth.
How This Applies to HomeWebb’s sensitivity is enabling astronomers to observe smaller and fainter galaxies, analogous to our own, at early times and with unprecedented clarity for the first time. In this study, the team noted that the transition period from thick disk to a thick and thin disk roughly coincides with the formation of the Milky Way galaxy’s thin disk. With Webb, astronomers will be able to further investigate Milky Way-like progenitors — galaxies that would have preceded the Milky Way — which could help explain our galaxy’s formation history.
In the future, the team intends to incorporate other data points into their edge-on galaxy sample.
“While this study structurally distinguishes thin and thick disks, there is still much more we would like to explore,” said Tsukui. “We want to add the type of information people usually get for nearby galaxies, like stellar motion, age, and metallicity. By doing so, we can bridge the insights from galaxies near and far, and refine our understanding of disk formation.”
These results were published in the Monthly Notices of the Royal Astronomical Society.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
DownloadsClick any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
Media ContactsLaura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Abigail Major – amajor@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Article: Types of Galaxies
Video: Celestial Tour: Different types of galaxies
Article: Learn more about Webb’s views of nearby spiral galaxies
Visualization Video: Galaxy Traverse
Related For Kids En Español Keep Exploring Related Topics James Webb Space TelescopeShare Details Last Updated Jun 26, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Sparkling Andromeda
The Andromeda galaxy, also known as Messier 31 (M31), is a glittering beacon in this image released on June 25, 2025, in tribute to the groundbreaking legacy of astronomer Dr. Vera Rubin, whose observations transformed our understanding of the universe. In the 1960s, Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.”
M31 is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
Learn more about this image and experience in sound, too.
Image credit: X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major
‘I didn’t know someone could pursue astronomy as a career’
Nature, Published online: 26 June 2025; doi:10.1038/d41586-025-01816-3
Astronomer Willice Obonyo describes how scholarship programmes seeded a fresh crop of radioastronomers in Africa.Mystery fireball spotted plummeting to Earth over the US
Evidence for a sub-Jovian planet in the young TWA 7 disk
Nature, Published online: 25 June 2025; doi:10.1038/s41586-025-09150-4
Using the James Webb Space Telescope's Mid-Infrared Instrument, a study reports evidence for a direct detection of a cold, sub-Jupiter-mass planet in the disk of the star TWA 7.NASA’s Chandra Shares a New View of Our Galactic Neighbor
The Andromeda galaxy, also known as Messier 31 (M31), is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
The galaxy M31 has played an important role in many aspects of astrophysics, but particularly in the discovery of dark matter. In the 1960s, astronomer Vera Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.” Its nature remains one of the biggest open questions in astrophysics today, one which NASA’s upcoming Nancy Grace Roman Space Telescope is designed to help answer.
X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.MajorThis new composite image contains data of M31 taken by some of the world’s most powerful telescopes in different kinds of light. This image includes X-rays from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton (represented in red, green, and blue); ultraviolet data from NASA’s retired GALEX (blue); optical data from astrophotographers using ground based telescopes (Jakob Sahner and Tarun Kottary); infrared data from NASA’s retired Spitzer Space Telescope, the Infrared Astronomy Satellite, COBE, Planck, and Herschel (red, orange, and purple); and radio data from the Westerbork Synthesis Radio Telescope (red-orange).
The Andromeda Galaxy (M31) in Different Types of Light.X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.MajorEach type of light reveals new information about this close galactic relative to the Milky Way. For example, Chandra’s X-rays reveal the high-energy radiation around the supermassive black hole at the center of M31 as well as many other smaller compact and dense objects strewn across the galaxy. A recent paper about Chandra observations of M31 discusses the amount of X-rays produced by the supermassive black hole in the center of the galaxy over the last 15 years. One flare was observed in 2013, which appears to represent an amplification of the typical X-rays seen from the black hole.
These multi-wavelength datasets are also being released as a sonification, which includes the same wavelengths of data in the new composite. In the sonification, the layer from each telescope has been separated out and rotated so that they stack on top of each other horizontally, beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes, from lower-energy radio waves up through the high energy of X-rays. Meanwhile, the brightness of each source controls volume, and the vertical location dictates the pitch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
In this sonification of M31, the layers from each telescope has been separated out and rotated so that they stack on top of each other horizontally beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes ranging from lower-energy radio waves up through the high-energy of X-rays. Meanwhile, the brightness of each source controls volume and the vertical location dictates the pitch.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. SantaguidaThis new image of M31 is released in tribute to the groundbreaking legacy of Dr. Vera Rubin, whose observations transformed our understanding of the universe. Rubin’s meticulous measurements of Andromeda’s rotation curve provided some of the earliest and most convincing evidence that galaxies are embedded in massive halos of invisible material — what we now call dark matter. Her work challenged long-held assumptions and catalyzed a new era of research into the composition and dynamics of the cosmos. In recognition of her profound scientific contributions, the United States Mint has recently released a quarter in 2025 featuring Rubin as part of its American Women Quarters Program — making her the first astronomer honored in the series.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray ObservatoryLearn more about the Chandra X-ray Observatory and its mission here:
Visual DescriptionThis release features several images and a sonification video examining the Andromeda galaxy, our closest spiral galaxy neighbor. This collection helps astronomers understand the evolution of the Milky Way, our own spiral galaxy, and provides a fascinating insight into astronomical data gathering and presentation.
Like all spiral galaxies viewed at this distance and angle, Andromeda appears relatively flat. Its spiraling arms circle around a bright core, creating a disk shape, like a large dinner plate. In most of the images in this collection, Andromeda’s flat surface is tilted to face our upper left.
This collection features data from some of the world’s most powerful telescopes, each capturing light in a different spectrum. In each single-spectrum image, Andromeda has a similar shape and orientation, but the colors and details are dramatically different.
In radio waves, the spiraling arms appear red and orange, like a burning, loosely coiled rope. The center appears black, with no core discernible. In infrared light, the outer arms are similarly fiery. Here, a white spiraling ring encircles a blue center with a small golden core. The optical image is hazy and grey, with spiraling arms like faded smoke rings. Here, the blackness of space is dotted with specks of light, and a small bright dot glows at the core of the galaxy. In ultraviolet light the spiraling arms are icy blue and white, with a hazy white ball at the core. No spiral arms are present in the X-ray image, making the bright golden core and nearby stars clear and easy to study.
In this release, the single-spectrum images are presented side by side for easy comparison. They are also combined into a composite image. In the composite, Andromeda’s spiraling arms are the color of red wine near the outer edges, and lavender near the center. The core is large and bright, surrounded by a cluster of bright blue and green specks. Other small flecks in a variety of colors dot the galaxy, and the blackness of space surrounding it.
This release also features a thirty second video, which sonifies the collected data. In the video, the single-spectrum images are stacked vertically, one atop the other. As the video plays, an activation line sweeps across the stacked images from left to right. Musical notes ring out when the line encounters light. The lower the wavelength energy, the lower the pitches of the notes. The brighter the source, the louder the volume.
News Media ContactMegan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
- Andromeda Galaxy
- Chandra X-Ray Observatory
- Galaxies
- Marshall Astrophysics
- Marshall Space Flight Center
- The Universe
This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in…
Article 6 days ago 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic FieldFor 540 million years, the ebb and flow in the strength of Earth’s magnetic field…
Article 1 week agoFirst celestial image unveiled from revolutionary telescope
Weird line of galaxies may have been created by a cosmic bullet
Earth is more sensitive to greenhouse gases than we thought
Enigmatic lizards somehow survived near Chicxulub asteroid impact
A Martian Volcano in the Mist
Arsia Mons, one of the Red Planet’s largest volcanoes, peeks through a blanket of water ice clouds in this image captured by NASA’s 2001 Mars Odyssey orbiter on May 2, 2025. Odyssey used a camera called the Thermal Emission Imaging System (THEMIS) to capture this view while studying the Martian atmosphere, which appears here as a greenish haze above the scene. A large crater known as a caldera, produced by massive volcanic explosions and collapse, is located at the summit. At 72 miles (120 kilometers) wide, the Arsia Mons summit caldera is larger than many volcanoes on Earth.
Learn more about Arsia Mons and Mars Odyssey.
Image Credit: NASA/JPL-Caltech/ASU
First images from world’s largest digital camera leave astronomers in awe
Nature, Published online: 23 June 2025; doi:10.1038/d41586-025-01973-5
The new observatory in Chile will map the entire southern sky every 3–4 nights.Stellar flares may hamper search for life in promising star system
Why are the physical constants of the universe so perfect for life?
Vera Rubin Observatory has already found thousands of new asteroids
Rubin Observatory reveals first images
The Rubin Observatory, jointly funded by the US National Science Foundation and the US Department of Energy’s Office of Science, has released its first imagery, showing cosmic phenomena at an unprecedented scale.
In just over 10 hours of test observations, the NSF-DOE Rubin Observatory has already captured millions of galaxies and Milky Way stars and thousands of asteroids. The imagery is a small preview of the Rubin Observatory’s upcoming 10-year scientific mission to explore and understand some of the universe's biggest mysteries.
Located on a mountaintop in Chile, the Rubin Observatory will repeatedly scan the sky for 10 years and create an ultra-wide, ultra-high-definition time-lapse record of our universe. The region in central Chile is favoured for astronomical observations because of its dry air and dark skies, and allows for an ideal view of the Milky Way’s centre.
The facility is set to achieve ‘first light,’ or make the first scientific observations of the Southern Hemisphere’s sky using its 8.4-meter Simonyi Survey Telescope, on 4 July.
UK astronomers, including from the University of Cambridge, are celebrating their role in the most ambitious sky survey to date.
“We will be looking at the universe in a way that we have never done before, and this exploration is bound to throw up surprises that we never imagined,” said Professor Hiranya Peiris from Cambridge’s Institute of Astronomy, and a builder of the Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration.
Enabled by an investment of £23 million from the Science and Technology Facilities Council (STFC), UK astronomers and software developers have been preparing the hardware and software needed to analyse the petabytes of data that the survey will produce to enable groundbreaking science that will enhance our understanding of the universe.
The UK is the second largest international contributor to the multinational project, putting UK astronomers at the forefront when it comes to exploiting this unique window on the Universe.
The UK is also playing a significant role in the management and processing of the unprecedented amounts of data. The UK will host one of three international data facilities and process around 1.5 million images, capturing around 10 billion stars and galaxies. When complete, the full 10-year survey is expected to rack up 500 petabytes of date – the same storage as half-a-million 4K Hollywood movies.
The UK’s science portal for the international community is capable of connecting around 1,500 astronomers with UK Digital Research Infrastructure to support the exploitation of this uniquely rich and detailed view of the Universe.
More than two decades in the making, Rubin is the first of its kind: its mirror design, camera size and sensitivity, telescope speed, and computing infrastructure are each in an entirely new category. Over the next 10 years, Rubin will perform the Legacy Survey of Space and Time (LSST) using the LSST Camera and the Simonyi Survey Telescope.
By repeatedly scanning the sky for 10 years, the observatory will deliver a treasure trove of discoveries: asteroids and comets, pulsating stars, and supernova explosions. Science operations are expected to start towards the end of 2025.
"I can’t wait to explore the first LSST catalogues - revealing the faintest dwarf galaxies and stellar streams swarming through the Milky Way’s halo," said Professor Vasily Belokurov from Cambridge's Institute of Astronomy, member of LSST:UK. "A new era of galactic archaeology is beginning!”
“UK researchers have been contributing to the scientific and technical preparation for the Rubin LSST for more than ten years,” said Professor Bob Mann from the University of Edinburgh, LSST:UK Project Leader. “These exciting First Look images show that everything is working well and reassure us that we have a decade’s worth of wonderful data coming our way, with which UK astronomers will do great science.”
Hiranya Peiris is a Fellow of Murray Edwards College, Cambridge.
The Vera C. Rubin Observatory, a new scientific facility that will bring the night sky to life like never before using the largest camera ever built, has revealed its ‘first look’ images at the start of its 10-year survey of the cosmos.
NSF-DOE Vera C. Rubin ObservatoryTrifid nebula (top right) and the Lagoon nebula
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.