skip to content

Institute of Astronomy

 

Astronomers find a giant hiding in the ‘fog’ around a young star

Tue, 15/07/2025 - 10:04

Earlier observations of this star, called MP Mus, suggested that it was all alone without any planets in orbit around it, surrounded by a featureless cloud of gas and dust.

However, a second look at MP Mus, using a combination of results from the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Space Agency’s Gaia mission, suggests that the star is not alone after all.

The international team of astronomers, led by the University of Cambridge, detected a large gas giant in the star’s protoplanetary disc: the pancake-like cloud of gases, dust and ice where the process of planet formation begins. This is the first time that Gaia has detected an exoplanet within a protoplanetary disc. The results, reported in the journal Nature Astronomy, suggest that similar methods could be useful in the hunt for young planets around other stars.

By studying how planets form in the protoplanetary discs around young stars, researchers can learn more about how our own Solar System evolved. Through a process known as core accretion, gravity causes particles in the disc to stick to each other, eventually forming larger solid bodies like asteroids or planets. As young planets form, they start to carve gaps in the disc, like grooves on a vinyl record.

However, observing these young planets is extremely challenging, due to the interference from the gas and dust in the disc. To date, only three robust detections of young planets in a protoplanetary disc have been made.

Dr Álvaro Ribas from Cambridge’s Institute of Astronomy, who led the research, specialises in studying protoplanetary discs. “We first observed this star at the time when we learned that most discs have rings and gaps, and I was hoping to find features around MP Mus that could hint at the presence of a planet or planets,” he said.

Using ALMA, Ribas observed the protoplanetary disc around MP Mus (PDS 66) in 2023. The results showed a young star seemingly all alone in the universe. Its surrounding disc showed none of the gaps where planets might be forming, and was completely flat and featureless.

“Our earlier observations showed a boring, flat disc,” said Ribas. “But this seemed odd to us, since the disc is between seven and ten million years old. In a disc of that age, we would expect to see some evidence of planet formation.”

Now, Ribas and his colleagues from Germany, Chile, and France have given MP Mus another chance. Once again using ALMA, they observed the star at the 3mm range, a longer wavelength than the earlier observations, allowing them to probe deeper into the disc.

The new observations turned up a cavity close to the star and two gaps further out, which were obscured in the earlier observations, suggesting that MP Mus may not be alone after all.

At the same time, Miguel Vioque, a researcher at the European Southern Observatory, was uncovering another piece of the puzzle. Using data from Gaia, he found MP Mus was ‘wobbling’.

“My first reaction was that I must have made a mistake in my calculations, because MP Mus was known to have a featureless disc,” said Vioque. “I was revising my calculations when I saw Álvaro give a talk presenting preliminary results of a newly-discovered inner cavity in the disc, which meant the wobbling I was detecting was real and had a good chance of being caused by a forming planet.”

Using a combination of the Gaia and ALMA observations, along with some computer modelling, the researchers say the wobbling is likely caused by a gas giant – less than ten times the mass of Jupiter – orbiting the star at a distance between one and three times the distance of the Earth to the Sun.

“Our modelling work showed that if you put a giant planet inside the new-found cavity, you can also explain the Gaia signal,” said Ribas. “And using the longer ALMA wavelengths allowed us to see structures we couldn’t see before.”

This is the first time an exoplanet embedded in a protoplanetary disc has been indirectly discovered in this way – by combining precise star movement data from the Gaia with deep observations of the disc. It also means that many more hidden planets might exist in other discs, just waiting to be found.

“We think this might be one of the reasons why it’s hard to detect young planets in protoplanetary discs, because in this case, we needed the ALMA and Gaia data together,” said Ribas. “The longer ALMA wavelength is incredibly useful, but to observe at this wavelength requires more time on the telescope.”

Ribas says that upcoming upgrades to ALMA, as well as future telescopes such as the next generation Very Large Array (ngVLA), may be used to look deeper into more discs and better understand the hidden population of young planets, which could in turn help us learn how our own planet may have formed.

The research was supported in part by the European Union’s Horizon Programme, the European Research Council, and the UK Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

Reference:
Álvaro Ribas et al. ‘A young gas giant and hidden substructures in a protoplanetary disc.’ Nature Astronomy (2025). DOI: 10.1038/s41550-025-02576-w 

Astronomers have detected a giant exoplanet – between three and ten times the size of Jupiter – hiding in the swirling disc of gas and dust surrounding a young star.

ALMA(ESO/NAOJ/NRAO)/A. Ribas et al.Protoplanetary disc around MP Mus


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

Observatory marks 230 years of recording weather

Mon, 14/07/2025 - 10:03

The building holds the longest sequence of continuous weather data anywhere in the UK and Ireland.

LIGO has spotted the most massive black hole collision ever detected

Mon, 14/07/2025 - 10:03

A puzzling gravitational wave was detected, and astronomers have determined that it comes from a record-breaking black hole merger

Hubble Snaps Galaxy Cluster’s Portrait

Sat, 12/07/2025 - 10:38
Explore Hubble

2 min read

Hubble Snaps Galaxy Cluster’s Portrait This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209. ESA/Hubble & NASA, M. Postman, P. Kelly

A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).

This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.

Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.

While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.

Text Credit: ESA/Hubble

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share Details Last Updated Jul 11, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble Gravitational Lenses


Focusing in on Gravitational Lenses


Shining a Light on Dark Matter

Lonely spacecraft can navigate the stars

Sat, 12/07/2025 - 10:35

Nature, Published online: 11 July 2025; doi:10.1038/d41586-025-02108-6

NASA’s New Horizons probe, which hurtled past Pluto in 2015, demonstrates that it can sail through interstellar space using its onboard camera.

We may have finally solved an ultra-high-energy cosmic ray puzzle

Sat, 12/07/2025 - 10:33

The IceCube neutrino detector has allowed researchers to resolve a debate about what types of particles make up ultra-high-energy cosmic rays – but much remains unknown about these rare events

Mystery interstellar object could be oldest known comet

Fri, 11/07/2025 - 11:00

Scientists have been racing to discover the origins of 3I/Atlas since it was spotted last week.

NASA’s James Webb Space Telescope Inspects Cat’s Paw

Fri, 11/07/2025 - 09:42
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI

NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.

Take a tour through this section of the Cat’s Paw Nebula.

Image credit: NASA, ESA, CSA, STScI

The cosmos is vast, so how do we measure it?

Fri, 11/07/2025 - 09:41

The awe-inspiring distances of the cosmos are hard to visualise, so how can we be certain we are measuring them correctly? Chanda Prescod-Weinstein explains

Interstellar visitor 3I/ATLAS might be the oldest comet ever seen

Fri, 11/07/2025 - 09:41

Astronomers tracking an interstellar object flying through the solar system think it comes from a star at least 8 billion years old, almost twice the age of our sun

Astronomers found a completely new type of plasma wave near Jupiter

Fri, 11/07/2025 - 09:41

Observations from NASA’s Juno spacecraft reveal that Jupiter’s strong magnetic field and the unique properties of its plasma can produce a truly novel kind of extraterrestrial wave near its poles

Giant radar satellite set to probe Earth’s shifts and shudders

Fri, 11/07/2025 - 09:40
Science, Volume 389, Issue 6756, Page 118-119, July 2025.

First returned rock samples shine a light on the Moon’s ‘dark side’

Wed, 09/07/2025 - 17:10

Nature, Published online: 09 July 2025; doi:10.1038/d41586-025-02050-7

Soil samples from the far side of the Moon provide clues about the origin of lunar asymmetry and the effects of ‘mega-basin’ impacts on the evolution of rocky planets

How to chart a moral future for space exploration

Wed, 09/07/2025 - 10:27

Nature, Published online: 08 July 2025; doi:10.1038/d41586-025-02070-3

Expanding human influence in outer space will require an ethical compass that is more expansive than the one conventionally used.

Stellar Duo

Wed, 09/07/2025 - 10:26
ESA/Hubble & NASA, J. Bally, M. Robberto

NASA’s Hubble Space Telescope captured a bright variable star, V 372 Orionis, and its companion in this festive image in this image released on Jan. 27, 2023. The pair lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth.

V 372 Orionis is a particular type of variable star known as an Orion Variable. These young stars experience some tempestuous moods and growing pains, which are visible to astronomers as irregular variations in luminosity. Orion Variables are often associated with diffuse nebulae, and V 372 Orionis is no exception; the patchy gas and dust of the Orion Nebula pervade this scene.

Text credit: European Space Agency (ESA)

Image credit: ESA/Hubble & NASA, J. Bally, M. Robberto

Did something just hit Saturn? Astronomers are racing to find out

Tue, 08/07/2025 - 09:10

Around seven asteroids or comets are thought to hit Saturn ever year, but we have never spotted one in the act. Now, it seems one astronomer may have caught the moment of impact and the hunt is on for other images to verify the discovery

NASA’s Hubble and Webb Telescopes Reveal Two Faces of a Star Cluster Duo

Tue, 08/07/2025 - 09:09
Explore Hubble

3 min read

NASA’s Hubble and Webb Telescopes Reveal Two Faces of a Star Cluster Duo A vast network of stars, gas, and dust is strung among a duo of star clusters in this combined image from NASA’s Hubble and Webb space telescopes. Open clusters NGC 460 and NGC 456 reside in the Small Magellanic Cloud, a dwarf galaxy orbiting the Milky Way. This highly detailed 527 megapixel mosaic consists of 12 overlapping observations and includes both visible and infrared wavelengths. To view some of its incredible detail, download the 40.1 MB file and zoom in. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)
Download this image

A riotous expanse of gas, dust, and stars stake out the dazzling territory of a duo of star clusters in this combined image from NASA’s Hubble and Webb space telescopes.

Open clusters NGC 460 and NGC 456 reside in the Small Magellanic Cloud, a dwarf galaxy orbiting the Milky Way. Open clusters consist of anywhere from a few dozen to a few thousand young stars loosely bound together by gravity. These particular clusters are part of an extensive complex of star clusters and nebulae that are likely linked to one another. As clouds of gas collapse, stars are born. These young, hot stars expel intense stellar winds that shape the nebulae around them, carving out the clouds and triggering other collapses, which in turn give rise to more stars.

In these images, Hubble’s view captures the glowing, ionized gas as stellar radiation blows “bubbles” in the clouds of gas and dust (blue), while Webb’s infrared vision highlights the clumps and delicate filamentary structures of dust (red). In Hubble images, dust is often seen silhouetted against and blocking light, but in Webb’s view, the dust – warmed by starlight – shines with its own infrared glow. This mixture of gas and dust between the universe’s stars is known as the interstellar medium.




Hubble (ACS) Webb (NIRCAM)

This Hubble image shows a duo of open clusters, NGC 460 and NGC 456. The nebulae’s glowing gas, ionized by the radiation of nearby stars, is distinct in Hubble’s view. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)

In Webb’s infrared view of open clusters NGC 460 and NGC 456, dusty areas are visible as bright structures glowing red. Many background galaxies are visible, their infrared light passing through the region’s obscuring clouds of gas and dust. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America) Hubble (ACS)Webb (NIRCAM)

This Hubble image shows a duo of open clusters, NGC 460 and NGC 456. The nebulae’s glowing gas, ionized by the radiation of nearby stars, is distinct in Hubble’s view. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America) In Webb’s infrared view of open clusters NGC 460 and NGC 456, dusty areas are visible as bright structures glowing red. Many background galaxies are visible, their infrared light passing through the region’s obscuring clouds of gas and dust. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)
Hubble (ACS)
Webb (NIRCAM)

Hubble and Webb view a duo of open star clusters
CurtainToggle2-Up

Image Details

Slide to switch between Hubble and Web images. Hubble’s view captures visible light and some infrared wavelengths, while Webb’s view is exclusively infrared. The nebulae’s glowing gas, ionized by the radiation of nearby stars, is distinct in Hubble’s view. Dusty areas that appear dark in the Hubble image are visible as bright structures in the Webb image, and more background galaxies are visible since infrared light from fainter and farther galaxies can pass through the obscuring clouds of gas and dust.

Downloads

Hubble

JPEG

(47 MB)


Webb

JPEG

(35 MB)


The nodules visible in these images are scenes of active star formation, with stars ranging from just one to 10 million years old. In contrast, our Sun is 4.5 billion years old. The region that holds these clusters, known as the N83-84-85 complex, is home to multiple, rare O-type stars, hot and extremely massive stars that burn hydrogen like our Sun. Astronomers estimate there are only around 20,000 O-type stars among the approximately 400 billion stars in the Milky Way.

Clouds of ionized gas dominate open cluster NGC 460 in the Hubble image (left), while tendrils of dust are on display in the Webb image (right). Together, the two images provide a more comprehensive look at the region. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America) The Hubble image of NGC 456 (left) shows a puffy, bluish cloud of ionized gas, while the Webb image (right) displays the same cluster’s cavern-like outline of dust. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)

The Small Magellanic Cloud is of great interest to researchers because it is less enriched in metals than the Milky Way. Astronomers call all elements heavier than hydrogen and helium – that is, with more than two protons in the atom’s nucleus – “metals.”  This state mimics conditions in the early universe, so the Small Magellanic Cloud provides a relatively nearby laboratory to explore theories about star formation and the interstellar medium at early stages of cosmic history. With these observations of NGC 460 and NGC 456, researchers intend to study how gas flows in the region converge or divide; refine the collision history between the Small Magellanic Cloud and its fellow dwarf galaxy, the Large Magellanic Cloud; examine how bursts of star formation occur in such gravitational interactions between galaxies; and better understand the interstellar medium.

Explore More
Hubble’s Star Clusters


Exploring the Birth of Stars


Hubble’s Nebulae

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share Details Last Updated Jul 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble’s Cosmic Adventure


Hubble’s Night Sky Challenge


Hubble’s 35th Anniversary

Meteorite causes rethink of how and when our solar system formed

Sat, 05/07/2025 - 11:28

Rocky bodies called protoplanets were thought to have formed slightly earlier in the inner solar system than those beyond the asteroid belt, but now a meteorite from the outer solar system is rewriting that view

Rare find: interstellar visitor seen blazing through our Solar System

Fri, 04/07/2025 - 10:59

Nature, Published online: 03 July 2025; doi:10.1038/d41586-025-02141-5

The comet-like body called either C/2025 N1 or 3I/ATLAS is now zipping past Jupiter.

Hubble Observations Give “Missing” Globular Cluster Time to Shine

Fri, 04/07/2025 - 10:58
Explore Hubble

2 min read

Hubble Observations Give “Missing” Globular Cluster Time to Shine This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12. NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
Download this image

A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.

Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.

The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.

Explore More
Hubble’s Star Clusters


Exploring the Birth of Stars

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share Details Last Updated Jul 03, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble’s Cosmic Adventure


Hubble’s Night Sky Challenge


Hubble’s 35th Anniversary