skip to content

Institute of Astronomy

 

Stellar distributions around supermassive black holes in gas-rich nuclear star clusters

Thu, 05/06/2025 - 10:09
arXiv:2506.04229v1 Announce Type: new Abstract: We study the stellar distribution around supermassive black holes (SMBHs) in gas-rich nuclear star clusters (NSCs). NSCs could contain vast amounts of gas, which contribute significantly to shaping the stellar distribution, typically altering the stellar density cusp from the usual Bahcall \& Wolf 1976 solution and consequently affecting the dynamics in the NSC. The dense gaseous environment in NSCs gives rise to dynamical phenomena that are otherwise rare in other gas-free environments. Here we extend the derivation introduced in Bahcall \& Wolf 1976 to include an additional energy dissipation term associated with gas drag. We examine the effect of different forms of gas drag on the stellar density distribution. Finally, we discuss implications on the rates of tidal disruption events and other transients triggered by stellar interactions in gas-rich galactic nuclei.

Large Cold Dust Reservoir Revealed in Transitional SN Ib 2014C by James Webb Space Telescope Mid-Infrared Spectroscopy

Thu, 05/06/2025 - 09:57
arXiv:2504.14009v2 Announce Type: replace Abstract: Supernova (SN) 2014C is a rare transitional event that exploded as a hydrogen-poor, helium-rich Type Ib SN and subsequently interacted with a hydrogen-rich circumstellar medium (CSM) a few months post-explosion. This unique interacting object provides an opportunity to probe the mass-loss history of a stripped-envelope SN progenitor. Using the James Webb Space Telescope (JWST), we observed SN 2014C with the Mid-Infrared Instrument Medium Resolution Spectrometer at 3477 days post-explosion (rest frame), and the Near-Infrared Spectrograph Integral Field Unit at 3568 days post-explosion, covering 1.7 to 25 $\mu$m. The bolometric luminosity indicates that the SN is still interacting with the same CSM that was observed with the Spitzer Space Telescope 40--1920 days post-explosion. JWST spectra and near-contemporaneous optical and near-infrared spectra show strong [Ne II] 12.831 $\mu$m, He 1.083 $\mu$m, H$\alpha$, and forbidden oxygen ([O I] $\lambda$$\lambda$6300, 6364, [O II] $\lambda$$\lambda$7319, 7330, and [O III] $\lambda$$\lambda$4959, 5007) emission lines with asymmetric profiles, suggesting a highly asymmetric CSM. The mid-IR continuum can be explained by ~$0.036 \ M_\odot$ of carbonaceous dust at ~300 K and ~0.043 $M_\odot$ of silicate dust at ~200 K. The observed dust mass has increased tenfold since the last Spitzer observation 4 yr ago, with evidence suggesting that new grains have condensed in the cold dense shell between the forward and reverse shocks. This dust mass places SN 2014C among the dustiest SNe in the mid-IR and supports the emerging observational trend that SN explosions produce enough dust to explain the observed dust mass at high redshifts.

Gas meets Kozai: the influence of a gas-rich accretion disc on hierarchical triples undergoing von Zeipel-Lidov-Kozai oscillations

Mon, 02/06/2025 - 10:26
arXiv:2505.23889v1 Announce Type: new Abstract: Active galactic nuclei (AGNs) consist of a central supermassive black hole (SMBH) embedded in a region with both high gas and stellar densities: the gas is present as a thin accretion disc that fuels the central SMBH, while the stars form a dense, roughly isotropic nuclear star cluster. The binaries present in such a cluster could be considered naturally as triples, with the SMBH as a third object, and their dynamics also depend on the interaction with the gas-rich disc. In this paper, we study the evolution of such a binary on an inclined orbit with respect to the disc. The binary experiences both eccentricity excitation via the von Zeipel-Lidov-Kozai (ZLK) effect and drag forces from each time it penetrates the disc. We find that, as the outer orbital inclination decreases, the evolution of inner orbital separation can transition from a regime of gradual hardening to a regime of rapid softening. As such binaries grow wider, their minimum pericentre distances (during ZLK oscillations) decrease. We show that a simple geometric condition, modulated by the complex ZLK evolution, dictates whether a binary expands or contracts due to the interactions with the AGN disc. Our results suggest that the interaction with gas-rich accretion disc could enhance the rate of stellar mergers and formation of gravitational wave sources, as well as other transients. The treatment introduced here is general and could apply, with the proper modifications, to hierarchical triples in other gas-rich systems.

Euclid: Early Release Observations of ram-pressure stripping in the Perseus cluster. Detection of parsec scale star formation with in the low surface brightness stripped tails of UGC 2665 and MCG +07-07-070

Fri, 30/05/2025 - 10:32
arXiv:2505.23342v1 Announce Type: new Abstract: Euclid is delivering optical and near-infrared imaging data over 14,000 deg$^2$ on the sky at spatial resolution and surface brightness levels that can be used to understand the morphological transformation of galaxies within groups and clusters. Using the Early Release Observations (ERO) of the Perseus cluster, we demonstrate the capability offered by Euclid in studying the nature of perturbations for galaxies in clusters. Filamentary structures are observed along the discs of two spiral galaxies with no extended diffuse emission expected from tidal interactions at surface brightness levels of $\sim$ $30\,{\rm mag}\,{\rm arcsec}^{-2}$. The detected features exhibit a good correspondence in morphology between optical and near-infrared wavelengths, with a surface brightness of $\sim$ $25\,{\rm mag}\,{\rm arcsec}^{-2}$, and the knots within the features have sizes of $\sim$ 100 pc, as observed through $I_E$ imaging. Using the Euclid, CFHT, UVIT, and LOFAR $144\,{\rm MHz}$ radio continuum observations, we conduct a detailed analysis to understand the origin of the detected features. We constructed the \textit{Euclid} $I_E-Y_E$, $Y_E-H_E$, and CFHT $u - r$, $g - i$ colour-colour plane and showed that these features contain recent star formation events, which are also indicated by their H$\alpha$ and NUV emissions. Euclid colours alone are insufficient for studying stellar population ages in unresolved star-forming regions, which require multi-wavelength optical imaging data. The morphological shape, orientation, and mean age of the stellar population, combined with the presence of extended radio continuum cometary tails can be consistently explained if these features have been formed during a recent ram-pressure stripping event. This result further confirms the exceptional qualities of Euclid in the study of galaxy evolution in dense environments.

How probable is the Lyman-$\alpha$ damping wing in the spectrum of the redshift z = 5.9896 quasar ULAS J0148+0600?

Thu, 29/05/2025 - 10:19
arXiv:2502.03085v2 Announce Type: replace Abstract: The shape of the Ly-$\alpha$ transmission in the near zone of the redshift $z=5.9896$ quasar ULAS J0148$+$0600 (hereafter J0148) is consistent with a damping wing arising from an extended neutral hydrogen island in the diffuse intergalactic medium (IGM). Here we use simulations of late-ending reionisation from Sherwood-Relics to assess the expected incidence of quasars with Ly-$\alpha$ and Ly-$\beta$ absorption similar to the observed J0148 spectrum. We find a late end to reionisation at $z=5.3$ is a necessary requirement for reproducing a Ly-$\alpha$ damping wing consistent with J0148. This occurs in $\sim3$ per cent of our simulated spectra for an IGM neutral fraction $\langle x_{\rm HI}\rangle=0.14$ at $z=6$. However, using standard assumptions for the ionising photon output of J0148, the a priori probability of drawing a simulated quasar spectrum with a Ly-$\alpha$ damping wing profile and Ly-$\alpha$ near zone size that simultaneously match J0148 is very low, $p<10^{-3}$. We speculate this is because the ionising emission from J0148 is variable on timescales $t<10^{5}\rm\,yr$, or alternatively that the Ly-$\alpha$ transmission in the J0148 near zone is impacted by the transverse proximity effect from nearby star-forming galaxies or undetected quasars. We also predict the IGM temperature should be $T\sim 4\times 10^{4}\rm\,K$ within a few proper Mpc of the Ly-$\alpha$ near zone edge due to recent HI and HeII photo-heating. Evidence for enhanced thermal broadening in the Ly-$\alpha$ absorption near the damping wing edge would provide further evidence that the final stages of reionisation are occurring at $z<6$.

DESI Data Release 1: Stellar Catalogue

Fri, 23/05/2025 - 11:34
arXiv:2505.14787v2 Announce Type: replace Abstract: In this paper we present the stellar Value-Added Catalogue (VAC) based on the DESI Data Release 1. This VAC contains stellar parameter, abundance and radial velocity measurements for more than 4 million stars. It also contains, for the first time, measurements from individual epochs for more than a million stars with at least two observations. The main contribution to the catalogue comes from the bright program of the main survey, which includes $\sim $2.5 million stars, and the backup program, which includes $\sim $ 1 million stars. The combined magnitude range for the stars in the catalogue extends from Gaia G $\sim 12$ to G $\sim 21$. For the magnitude range $17.5

DESI Data Release 1: Stellar Catalogue

Thu, 22/05/2025 - 11:37
arXiv:2505.14787v1 Announce Type: new Abstract: In this paper we present the stellar Value-Added Catalogue (VAC) based on the DESI Data Release 1. This VAC contains stellar parameter, abundance and radial velocity measurements for more than 4 million stars. It also contains, for the first time, measurements from individual epochs for more than a million stars with at least two observations. The main contribution to the catalogue comes from the bright program of the main survey, which includes $\sim $2.5 million stars, and the backup program, which includes $\sim $ 1 million stars. The combined magnitude range for the stars in the catalogue extends from Gaia G $\sim 12$ to G $\sim 21$. For the magnitude range $17.5

Nearby stellar substructures in the Galactic halo from DESI Milky Way Survey Year 1 Data Release

Tue, 20/05/2025 - 10:36
arXiv:2504.20327v2 Announce Type: replace Abstract: We report five nearby ($d_{\mathrm{helio}} < 5$ kpc) stellar substructures in the Galactic halo from a subset of 138,661 stars in the Dark Energy Spectroscopic Instrument (DESI) Milky Way Survey Year 1 Data Release. With an unsupervised clustering algorithm, HDBSCAN*, these substructures are independently identified in Integrals of Motion ($E_{\mathrm{tot}}$, $L_{\mathrm z}$, $\log{J_r}$, $\log{J_z}$) space and Galactocentric cylindrical velocity space ($V_{R}$, $V_{\phi}$, $V_{z}$). We associate all identified clusters with known nearby substructures (Helmi streams, M18-Cand10/MMH-1, Sequoia, Antaeus, and ED-2) previously reported in various studies. With metallicities precisely measured by DESI, we confirm that the Helmi streams, M18-Cand10, and ED-2 are chemically distinct from local halo stars. We have characterised the chemodynamic properties of each dynamic group, including their metallicity dispersions, to associate them with their progenitor types (globular cluster or dwarf galaxy). Our approach for searching substructures with HDBSCAN* reliably detects real substructures in the Galactic halo, suggesting that applying the same method can lead to the discovery of new substructures in future DESI data. With more stars from future DESI data releases and improved astrometry from the upcoming Gaia Data Release 4, we will have a more detailed blueprint of the Galactic halo, offering a significant improvement in our understanding of the formation and evolutionary history of the Milky Way Galaxy.

The DBL Survey I: discovery of 34 double-lined double white dwarf binaries

Mon, 19/05/2025 - 10:05
arXiv:2407.02594v3 Announce Type: replace Abstract: We present the first discoveries of the double-lined double white dwarf (DBL) survey that targets over-luminous sources with respect to the canonical white dwarf cooling sequence according to a set of well-defined criteria. The primary goal of the DBL survey is to identify compact double white dwarf binary star systems from a unique spectral detection of both stars, which then enables a precise quantification of the atmospheric parameters and radial velocity variability of a system. Our search of 117 candidates that were randomly selected from a magnitude limited sample of 399 yielded a 29% detection efficiency with 34 systems exhibiting a double-lined signature. A further 38 systems show strong evidence of being single-lined or potentially-double-lined double white dwarf binaries and 7 single-lined sources from the full observed sample are radial velocity variable. The 45 remaining candidates appear as a single WD with no companion or a non-DA white dwarf, bringing the efficiency of detecting binaries to 62%. Atmospheric fitting of all double-lined systems reveals a large fraction that have two similar mass components that combine to a total mass of 1.0-1.3 solar masses - a class of double white dwarf binaries that may undergo a sub-Chandrasekhar mass type Ia detonation or merge to form a massive O/Ne WD, although orbital periods are required to infer on which timescales. One double-lined system located 49pc away, WDJ181058.67+311940.94, is super-Chandrasekhar mass, making it the second such double white dwarf binary to be discovered.

The vertical structure of debris discs and the role of disc gravity

Thu, 15/05/2025 - 10:56
arXiv:2505.09578v1 Announce Type: new Abstract: Debris discs provide valuable insights into the formation and evolution of exoplanetary systems. Their structures are commonly attributed to planetary perturbations, serving as probes of as-yet-undetected planets. However, most studies of planet-debris disc interactions ignore the disc's gravity, treating it as a collection of massless planetesimals. Here, using an analytical model, we investigate how the vertical structure of a back-reacting debris disc responds to secular perturbations from an inner, inclined planet. Considering the disc's axisymmetric potential, we identify two dynamical regimes: planet-dominated and disc-dominated, which may coexist, separated by a secular-inclination resonance. In the planet-dominated regime ($M_d/m_p\ll1$), we recover the classical result: a transient warp propagates outward until the disc settles into a box-like structure centered around the planetary orbit's initial inclination $I_p(0)$, with a distance-independent aspect ratio $\mathcal{H}(R)\approx I_p(0)$. In contrast, in the disc-dominated regime ($M_d/m_p\gtrsim1$), the disc exhibits dynamical rigidity, remaining thin and misaligned, with significantly suppressed inclinations and a sharply declining aspect ratio, $\mathcal{H}(R)\propto I_p(0)R^{-7/2}$. In the intermediate regime ($M_d/m_p\lesssim1$), the system exhibits a secular-inclination resonance, leading to long-lived, warp-like structures and a bimodal inclination distribution, containing both dynamically hot and cold populations. We provide analytic formulae describing these effects as a function of system parameters. We also find that the vertical density profile is intrinsically non-Gaussian and recommend fitting observations with non-zero slopes of $\mathcal{H}(R)$. Our results may be used to infer planetary parameters and debris disc masses based on observed warps and scale heights, as demonstrated for HD110058 and $\beta$ Pic.

A 70 pc-Diameter Nova Super-remnant Surrounding the Recurrent Nova RS Ophiuchi

Thu, 15/05/2025 - 10:55
arXiv:2505.09510v1 Announce Type: new Abstract: Recurrent novae undergo thermonuclear-powered eruptions separated by less than 100 years, enabled by subgiant or red giant donors transferring hydrogen-rich matter at very high rates onto their massive white dwarf companions. The most-rapidly moving parts of envelopes ejected in successive recurrent nova events are predicted to overtake and collide with the slowest ejecta of the previous eruption, leading to the buildup of vast (~ 10 - 100 parsec) super-remnants surrounding all recurrent novae; but only three examples are currently known. We report deep narrowband imaging and spectroscopy which has revealed a ~ 70-parsec-diameter shell surrounding the frequently recurring nova RS Ophiuchi. We estimate the super-remnant mass to be ~ 20 - 200 solar masses, expanding at a few tens of km/s, with an age of order 50-100 kyr. Its extremely low surface brightness and large angular size help explain the hitherto surprising absence of nova super-remnants. Our results support the prediction that ALL recurrent novae are surrounded by similar extended structures.

Neutron-Capture Element Signatures in Globular Clusters: Insights from the Gaia-ESO Survey

Wed, 14/05/2025 - 12:03
arXiv:2505.08399v1 Announce Type: new Abstract: Globular clusters (GCs) are key to understanding the formation and evolution of our Galaxy. While the abundances of light and Fe-peak elements in GCs have been widely studied, investigations into heavier, neutron-capture elements -- and their connection to multiple stellar populations and GC origins -- remain limited. In this work, we analysed the chemical abundances of neutron-capture elements in GCs to trace the Galactic halo and to explore possible links to the MP phenomenon. Our goal is to better constrain the nature of the polluters responsible for intracluster enrichment and to distinguish the origin of GCs through the chemical signature of neutron-capture elements. We examined 14 GCs from the Gaia-ESO Survey, spanning a wide metallicity range, [Fe/H] from -0.40 to -2.32, using a homogeneous methodology. We focused on the abundances of Y, Zr, Ba, La, Ce, Nd, Pr, and Eu, derived from FLAMES-UVES spectra. These were compared with predictions from a stochastic Galactic chemical evolution model. With the exception of Zr, the model broadly reproduces the observed trends in neutron-capture elements. In some GCs, we found strong correlations between hot H-burning products (Na, Al) and s-process elements, pointing to a shared nucleosynthesis site, e.g., asymptotic giant branch stars of different masses and/or fast-rotating massive stars. We also detect a distinct difference in [Eu/Mg] ratio between in-situ ($\langle$[Eu/Mg]$\rangle$ = 0.14 dex) and ex-situ ($\langle$[Eu/Mg]$\langle$ = 0.32 dex) GCs, highlighting their different enrichment histories. Finally, on average, Type II GCs (NGC 362, NGC 1261, and NGC 1851) showed a s-process element spread ratio between second- and first-generations about twice as large as those seen in Type I clusters.

Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint

Wed, 14/05/2025 - 11:51
arXiv:2505.08107v1 Announce Type: new Abstract: We present high-resolution ALMA observations at 0.89 mm of the Class II brown dwarf 2MASS J04442713+2512164 (2M0444), achieving a spatial resolution of 0$.\!\!^{\prime\prime}$046 ($\sim$6.4 au at the distance to the source). These observations targeted continuum emission together with $^{12}$CO (3-2) molecular line. The line emission traces a Keplerian disk, allowing us to derive a dynamical mass between 0.043-0.092 M${_{\odot}}$ for the central object. We constrain the gas-to-dust disk size ratio to be $\sim$7, consistent with efficient radial drift. However, the observed dust emission suggest that a dust trap is present, enough to retain some dust particles. We perform visibility fitting of the continuum emission, and under the assumption of annular substructure, our best fit shows a gap and a ring at 98.1$^{+4.2}_{-8.4}$ mas ($\sim$14 au) and 116.0$^{+4.2}_{-4.8}$ mas ($\sim$16 au), respectively, with a gap width of 20 mas ($\sim$3 au). To ensure robustness, the data were analyzed through a variety of methods in both the image and uv plane, employing multiple codes and approaches. This tentative disk structure could be linked to a possible planetary companion in the process of formation. These results provide the first dynamical mass of the lowest mass object to date, together with the possible direct detection of a substructure, offering new insights into disk dynamics and planet formation in the very low-mass regime. Future higher spatial resolution ALMA observations will be essential to confirm these findings and further investigate the link between substructures and planet formation in brown dwarf disks.

Detection of a Type-C QPO during the soft-to-hard transition in Swift J1727.8-1613

Wed, 14/05/2025 - 11:42
arXiv:2505.07938v1 Announce Type: new Abstract: Timing analysis of accreting systems is key to probe the structure and dynamics around compact objects. In Black-Hole Low-Mass X-ray Binaries (BH LMXBs), the compact object accretes matter from a low-mass companion star via Roche Lobe overflow, forming an accretion disk, and occasionally exhibiting bright eruptions. The BH LMXB Swift J1727.8-1613 (hereafter J1727), recently underwent one of the brightest outbursts ever recorded in X-rays, in August 2023. This analysis aims to study the timing properties of J1727, in the decaying phase of its outburst, using high-time resolution XMM-Newton data. We analyzed J1727's power spectrum (PS) and cross spectrum (CS), which we modeled with Lorentzians. The PS reveals how the source's power is distributed across frequencies, and the Real and Imaginary parts of the CS compare the displacement of the light curves in different energy bands across the observations. Finally, we simultaneously derived the phase lags and the coherence, using a constant phase lag model. While the first (soft-state) observation does not show any strong variability, the two harder observations exhibit quasi-periodic oscillations (QPOs). Because the QPO is more significantly detected in the Imaginary part of the CS than in the PS, we refer to it as the 'Imaginary QPO'. The QPO is more prominent in the soft 0.3-2 keV band than in the hard 2-12 keV band. As the source evolves towards the hard state, the Imaginary QPO shifts to lower frequencies, the broadband fractional rms amplitude in the 0.3-2 keV energy band increases, while the rms covariance of the Imaginary QPO decreases. Simultaneously, the phase lags increase and the coherence function drops at the Imaginary QPO frequency. In the elusive soft-to-hard transition of J1727, the first XMM-Newton observations of the source reveal an Imaginary QPO also detected in the PS, exhibiting the properties of a type-C QPO.

A Machine-Learning Compositional Study of Exoplanetary Material Accreted Onto Five Helium-Atmosphere White Dwarfs with $\texttt{cecilia}$

Mon, 12/05/2025 - 10:58
arXiv:2505.06228v1 Announce Type: new Abstract: We present the first application of the Machine Learning (ML) pipeline $\texttt{cecilia}$ to determine the physical parameters and photospheric composition of five metal-polluted He-atmosphere white dwarfs without well-characterised elemental abundances. To achieve this, we perform a joint and iterative Bayesian fit to their $\textit{SDSS}$ (R=2,000) and $\textit{Keck/ESI}$ (R=4,500) optical spectra, covering the wavelength range from about 3,800\r{A} to 9,000\r{A}. Our analysis measures the abundances of at least two $-$and up to six$-$ chemical elements in their atmospheres with a predictive accuracy similar to that of conventional WD analysis techniques ($\approx$0.20 dex). The white dwarfs with the largest number of detected heavy elements are SDSS J0859$+$5732 and SDSS J2311$-$0041, which simultaneously exhibit O, Mg, Si, Ca, and Fe in their $\textit{Keck/ESI}$ spectra. For all systems, we find that the bulk composition of their pollutants is largely consistent with those of primitive CI chondrites to within 1-2$\sigma$. We also find evidence of statistically significant ($>2\sigma$) oxygen excesses for SDSS J0859$+$5732 and SDSS J2311$-$0041, which could point to the accretion of oxygen-rich exoplanetary material. In the future, as wide-field astronomical surveys deliver millions of public WD spectra to the scientific community, $\texttt{cecilia}$ aspires to unlock population-wide studies of polluted WDs, therefore helping to improve our statistical knowledge of extrasolar compositions.

GOTO065054+593624: a 8.5 mag amplitude dwarf nova identified in real time via Kilonova Seekers

Fri, 09/05/2025 - 11:37
arXiv:2501.11524v2 Announce Type: replace Abstract: Dwarf novae are astrophysical laboratories for probing the nature of accretion, binary mass transfer, and binary evolution -- yet their diverse observational characteristics continue to challenge our theoretical understanding. We here present the discovery of, and subsequent observing campaign on GOTO065054+593624 (hereafter GOTO0650), a dwarf nova of the WZ Sge type, discovered in real-time by citizen scientists via the Kilonova Seekers citizen science project, which has an outburst amplitude of 8.5 mag. An extensive dataset charts the photometric and spectroscopic evolution of this object, covering the 2024 superoutburst. GOTO0650 shows an absence of visible emission lines during the high state, strong H and barely-detected HeII emission, and high-amplitude echo outbursts with a rapidly decreasing timescale. The comprehensive dataset presented here marks GOTO0650 as a candidate period bouncer, and highlights the important contribution that citizen scientists can make to the study of Galactic transients.

A data-driven approach for star formation parameterization using symbolic regression

Fri, 09/05/2025 - 11:30
arXiv:2505.04681v1 Announce Type: new Abstract: Star formation (SF) in the interstellar medium (ISM) is fundamental to understanding galaxy evolution and planet formation. However, efforts to develop closed-form analytic expressions that link SF with key influencing physical variables, such as gas density and turbulence, remain challenging. In this work, we leverage recent advancements in machine learning (ML) and use symbolic regression (SR) techniques to produce the first data-driven, ML-discovered analytic expressions for SF using the publicly available FIRE-2 simulation suites. Employing a pipeline based on training the genetic algorithm of SR from an open software package called PySR, in tandem with a custom loss function and a model selection technique which compares candidate equations to analytic approaches to describing SF, we produce symbolic representations of a predictive model for the star formation rate surface density ($\Sigma_\mathrm{SFR}$) averaged over both 10 Myr and 100 Myr based on eight extracted variables from FIRE-2 galaxies. The resulting model that PySR finds best describes SF, on both averaging timescales, features equations that incorporates the surface density of gas, $\Sigma_\mathrm{gas}$, the velocity dispersion of gas $\sigma_{\mathrm{gas,~z}}$ and the surface density of stars $\Sigma_\mathrm{*}$. Furthermore, we find that the equations found for the longer SFR timescale all converge to a scaling-relation-like equation, all of which also closely capture the intrinsic physical scatter of the data within the Kennicutt-Schmidt (KS) plane. This observed convergence to physically interpretable scaling relations at longer SFR timescales demonstrates that our method successfully identifies robust physical relationships rather than fitting to stochastic fluctuations.

Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra

Fri, 09/05/2025 - 10:58
arXiv:2505.04699v1 Announce Type: new Abstract: Accretion rates from protoplanetary disks onto forming stars are a key ingredient in star formation and protoplanetary disk evolution. Extensive efforts surveying individual star forming regions with spectroscopy and narrow-band photometry have been performed to derive accretion rates on large populations of young stellar objects (YSOs). We use Gaia DR3 XP spectra to perform the first all-sky homogeneous analysis of YSO accretion within 500 pc. We characterise the H$\alpha$ line emission of YSOs by using the H$\alpha$ pseudo-equivalent widths and XP spectra from Gaia DR3. We derive accretion luminosities, mass accretion rates and stellar parameters for 145 975 candidate YSO H$\alpha$ emitters all-sky. We describe filtering strategies to select specific sub-samples of YSOs from this catalogue. We identify a large population of low-accreting YSO candidates untraced by previous surveys. The population of low accreting YSOs is mostly spatially dispersed, away from star forming regions or more clustered environments of star formation. Many YSOs appear disconnected from young populations, reminiscent of 'Peter Pan' YSOs. We find $L_{acc}\propto L_\star^{1.41\pm0.02}$ and $\dot M_{acc}\propto M_\star^{2.4\pm0.1}$ for the purest all-sky sample of YSO candidates. By fitting an exponential to the fraction of accreting stars in clusters of different ages in the Sco-Cen complex, we obtain an accretion timescale of 2.7$\pm$0.4 Myr. The percentage of accretors found by fitting a power-law is 70% at 2 Myr and 2.8% at 10 Myr. With this new catalogue of H$\alpha$ emitters we significantly increase the number of YSO candidates with accretion rate estimations in the local neighbourhood. This allows us to study accretion timescales and the spatial and physical properties of YSO accretion from a large, all-sky, and homogeneous sample for the first time. [abridged]

DAmodel: Hierarchical Bayesian Modelling of DA White Dwarfs for Spectrophotometric Calibration

Thu, 08/05/2025 - 12:14
arXiv:2412.08809v2 Announce Type: replace Abstract: We use hierarchical Bayesian modelling to calibrate a network of 32 all-sky faint DA white dwarf (DA WD) spectrophotometric standards ($16.5 < V < 19.5$) alongside three CALSPEC standards, from 912 \r{A} to 32 $\mu$m. The framework is the first of its kind to jointly infer photometric zeropoints and WD parameters (surface gravity $\log g$, effective temperature $T_{\text{eff}}$, extinction $A_V$, dust relation parameter $R_V$) by simultaneously modelling both photometric and spectroscopic data. We model panchromatic Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS and IR photometry, HST/STIS UV spectroscopy and ground-based optical spectroscopy to sub-percent precision. Photometric residuals for the sample are the lowest yet yielding $<0.004$ mag RMS on average from the UV to the NIR, achieved by jointly inferring time-dependent changes in system sensitivity and WFC3/IR count-rate nonlinearity. Our GPU-accelerated implementation enables efficient sampling via Hamiltonian Monte Carlo, critical for exploring the high-dimensional posterior space. The hierarchical nature of the model enables population analysis of intrinsic WD and dust parameters. Inferred spectral energy distributions from this model will be essential for calibrating the James Webb Space Telescope as well as next-generation surveys, including Vera Rubin Observatory's Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope.

Early and Extensive Ultraviolet Through Near Infrared Observations of the Intermediate-Luminosity Type Iax Supernovae 2024pxl

Thu, 08/05/2025 - 11:53
arXiv:2505.04610v1 Announce Type: new Abstract: We present ultraviolet (UV) through near-infrared (NIR) photometric and spectroscopic observations of the nearby SN 2024pxl, the third Type Ia supernova (SN Ia) in NGC 6384. SN 2024pxl is a Type Iax supernova (SN Iax) with an intermediate luminosity ($M_r = -16.99\pm0.32$ mag) and an average SN Iax light curve decline rate. SN 2024pxl was discovered $\sim$3 days after first light, and the rising light curve follows a single power law that is inconsistent with significant interaction with a companion star or circumstellar material. Our extensive NIR photometric coverage is comparable to that of the well-observed SNe Iax 2005hk and 2012Z, and we demonstrate that the $J-H$ colors of SNe Iax differ from normal SNe Ia and appear to be more homogeneous as a class. Spectroscopically, we report the earliest-ever NIR spectrum of a SN Iax as measured from maximum light ($t\approx-9$ days): a featureless continuum with similarities to a $\sim$9,000 K blackbody, and the line velocities are consistent with a mixed-ejecta structure, with C, Si, and Fe having similar velocities and velocity evolutions. We find a tentative correlation between the $H$-band break Co II velocity $\sim$20 days post-peak and absolute magnitude, with more luminous SNe Iax showing faster Co II velocities. Our observations suggest that SN 2024pxl resulted from the thermonuclear disruption of a CO white dwarf star that undergoes deflagration burning.