The TESS-Keck Survey XXIV: Outer Giants may be More Prevalent in the Presence of Inner Small Planets
arXiv:2501.06342v1 Announce Type: new
Abstract: We present the results of the Distant Giants Survey, a three-year radial velocity (RV) campaign to search for wide-separation giant planets orbiting Sun-like stars known to host an inner transiting planet. We defined a distant giant to have $a$ = 1--10 AU and $M_{p} \sin i = 70-4000$ \mearth~ = 0.2-12.5 \mj, and required transiting planets to have $a<1$ AU and $R_{p} = 1-4$ \rearth. We assembled our sample of 47 stars using a single selection function, and observed each star at monthly intervals to obtain $\approx$30 RV observations per target. The final catalog includes a total of twelve distant companions: four giant planets detected during our survey, two previously known giant planets, and six objects of uncertain disposition identified through RV/astrometric accelerations. Statistically, half of the uncertain objects are planets and the remainder are stars/brown dwarfs. We calculated target-by-target completeness maps to account for missed planets. We found evidence for a moderate enhancement of distant giants (DG) in the presence of close-in small planets (CS), P(DG|CS) = $30^{+14}_{-12}\%$, over the field rate of P(DG) = $16^{+2}_{-2}\%$. No enhancement is disfavored ($p \sim$ 8%). In contrast to a previous study, we found no evidence that stellar metallicity enhances P(DG|CS). We found evidence that distant giant companions are preferentially found in systems with multiple transiting planets and have lower eccentricities than randomly selected giant planets. This points toward dynamically cool formation pathways for the giants that do not disturb the inner systems.
JWST Imaging of Edge-on Protoplanetary Disks. IV. Mid-infrared Dust Scattering in the HH 30 disk
arXiv:2412.07523v2 Announce Type: replace
Abstract: We present near- and mid-infrared (IR) broadband imaging observations of the edge-on protoplanetary disk around HH 30 with the James Webb Space Telescope/Near Infrared Camera (NIRCam) and the Mid-Infrared Instrument (MIRI). We combine these observations with archival optical/near-IR scattered light images obtained with the Hubble Space Telescope (HST) and a millimeter-wavelength dust continuum image obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) with the highest spatial resolution ever obtained for this target. Our multiwavelength images clearly reveal the vertical and radial segregation of micron-sized and sub-mm-sized grains in the disk. In the near- and mid-IR, the images capture not only bi-reflection nebulae separated by a dark lane but also diverse dynamical processes occurring in the HH 30 disk, such as spiral- and tail-like structures, a conical outflow, and a collimated jet. In contrast, the ALMA image reveals a flat dust disk in the disk midplane. By performing radiative transfer simulations, we show that grains of about 3 $\mu$m in radius or larger are fully vertically mixed to explain the observed mid-IR scattered light flux and its morphology, whereas millimeter-sized grains are settled into a layer with a scale height of $\gtrsim1$ au at $100$ au from the central star. We also find a tension in the disk inclination angle inferred from optical/near-IR and mm observations with the latter being closer to an exactly edge-on. Finally, we report the first detection of the proper motion of an emission knot associated with the mid-IR collimated jet detected by combining two epochs of our MIRI 12.8-$\mu$m observations.
The 2D pressure structure of the HD 163296 protoplanetary disk as probed by multi-molecular kinematics
arXiv:2501.05517v1 Announce Type: new
Abstract: [Abridged] Gas kinematics is a new, unique way to study planet-forming environments by an accurate characterization of disk velocity fields. High angular resolution ALMA observations allow deep kinematical analysis of disks, by observing molecular line emission at high spectral resolution. In particular, rotation curves are key tools to study the disk pressure structure and estimate fundamental disk parameters, as mass and radius. In this work, we explore the potential of a multi-molecular approach to gas kinematics to provide a 2D characterization of the HD 163296 disk. From the high quality data of the MAPS Large Program we extract the rotation curves of rotational lines from seven distinct molecular species, spanning a wide range in the disk radial and vertical extents. To obtain reliable rotation curves for hyperfine lines, we extend standard methodologies to fit multiple-component line profiles. We then sample the likelihood of a thermally stratified model that reproduces all the rotation curves simultaneously, taking into account the molecular emitting layers and disk thermal structure. We obtain dynamical estimates of the stellar mass $M_\star=1.89$ M$_\odot$, the disk mass $M_\text{d}=0.12$ M$_\odot$ and scale radius $ R_\text{c}=143$ au. We also explore how rotation curves and the parameter estimates depend on the adopted emitting layers: the disk mass proves to be the most affected by these systematics, yet the main trends we find do not depend on the adopted parametrization. Finally, we investigate the impact of thermal structure on gas kinematics, showing that the thermal stratification can efficiently explain the measured rotation velocity discrepancies between tracers at different heights. Our results show that such a multi-molecular approach, tracing a large range of emission layers, can provide unique constraints on the ($R,z$) pressure structure of protoplanetary disks.
Variability of Central Stars of Planetary Nebulae with the Zwicky Transient Facility. I. Methods, Short-Timescale Variables, Binary Candidates, and the Unusual Nucleus of WeSb 1
arXiv:2410.03589v2 Announce Type: replace
Abstract: Over the past several decades, time-series photometry of CSPNe has yielded significant results including, but not limited to, discoveries of nearly 100 binary systems, insights into pulsations and winds in young white dwarfs, and studies of stars undergoing very late thermal pulses. We have undertaken a systematic study of optical photometric variability of cataloged CSPNe, using the light curves from the Zwicky Transient Facility (ZTF). By applying appropriate variability metrics, we arrive at a list of 94 highly variable CSPN candidates. Based on the timescales of the light-curve activity, we classify the variables broadly into short- and long-timescale variables. In this first paper in this series, we focus on the former, which is the majority class comprising 83 objects. We report periods for six sources for the first time, and recover several known periodic variables. Among the aperiodic sources, most exhibit a jitter around a median flux with a stable amplitude, and a few show outbursts. We draw attention to WeSb 1, which shows a different kind of variability: prominent deep and aperiodic dips, resembling transits from a dust/debris disk. We find strong evidence for a binary nature of WeSb 1 (possibly an F-type subgiant companion). The compactness of the emission lines and inferred high electron densities make WeSb 1 a candidate for either an EGB 6-type planetary nucleus, or a symbiotic system inside an evolved planetary nebula, both of which are rare objects. To demonstrate further promise with ZTF, we report three additional newly identified periodic sources that do not appear in the list of highly variable sources. Finally, we also introduce a two-dimensional metric space defined by the von Neumann statistics and Pearson Skew and demonstrate its effectiveness in identifying unique variables of astrophysical interest, like WeSb 1.
A possible misaligned orbit for the young planet AU Mic c
arXiv:2411.16958v2 Announce Type: replace
Abstract: The AU Microscopii planetary system is only 24 Myr old, and its geometry may provide clues about the early dynamical history of planetary systems. Here, we present the first measurement of the Rossiter-McLaughlin effect for the warm sub-Neptune AU Mic c, using two transits observed simultaneously with the European Southern Observatory's (ESO's) Very Large Telescope (VLT)/Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO), CHaracterising ExOPlanet Satellite (CHEOPS), and Next-Generation Transit Survey (NGTS). After correcting for flares and for the magnetic activity of the host star, and accounting for transit-timing variations, we find the sky-projected spin-orbit angle of planet c to be in the range $\lambda_c=67.8_{-49.0}^{+31.7}$\,degrees (1-$\sigma$). We examine the possibility that planet c is misaligned with respect to the orbit of the inner planet b ($\lambda_b=-2.96_{-10.30}^{+10.44}$\,degrees), and the equatorial plane of the host star, and discuss scenarios that could explain both this and the planet's high density, including secular interactions with other bodies in the system or a giant impact. We note that a significantly misaligned orbit for planet c is in some degree of tension with the dynamical stability of the system, and with the fact that we see both planets in transit, though these arguments alone do not preclude such an orbit. Further observations would be highly desirable to constrain the spin-orbit angle of planet c more precisely.
Most Super-Earths Have Less Than 3% Water
arXiv:2409.17394v2 Announce Type: replace
Abstract: Super-Earths are highly irradiated, small planets with bulk densities approximately consistent with Earth. We construct combined interior-atmosphere models of super-Earths that trace the partitioning of water throughout a planet, including an iron-rich core, silicate-rich mantle, and steam atmosphere. We compare these models with exoplanet observations to infer a $1\sigma$ upper limit on total water mass fraction of $\lesssim 3\%$ at the population level. We consider end-member scenarios that may change this value, including the efficiency of mantle outgassing, escape of high mean-molecular weight atmospheres, and increased iron core mass fractions. Although our constraints are agnostic as to the origin of water, we show that our upper limits are consistent with its production via chemical reactions of primordial hydrogen-dominated atmospheres with magma oceans. This mechanism has also been hypothesised to explain Earth's water content, possibly pointing to a unified channel for the origins of water on small terrestrial planets.
JWST captures a sudden stellar outburst and inner disk wall destruction
arXiv:2410.00136v3 Announce Type: replace
Abstract: We present JWST/MIRI observations of T~Cha, a highly variable ($\Delta V \sim$3-5\,mag) accreting Sun-like star surrounded by a disk with a large ($\sim 15$\,au) dust gap. We find that the JWST mid-infrared spectrum is signiticantly different from the {\it Spitzer} spectrum obtained 17 years before, where the emission at short wavelengths ($5-10 \mu m$) has decreased by $\sim 2/3$ while at longer wavelengths ($15-25 \mu m$) it increased by up to a factor of $\sim 3$. This 'seesaw' behavior is contemporary with a fairly constant higher optical emission captured by the All Sky Automated Survey. By analyzing and modelling both SEDs, we propose that JWST caught the star during an outburst that destructed the asymmetric inner disk wall responsible for the high optical variability and lower $15-25$\,micron\ emission during the {\it Spitzer} time. The dust mass lost during this outburst is estimated to be comparable ($\sim 1/5$) to the upper limit of the total micron-sized dust mass in the inner disk of T~Cha now. Monitoring this system during possible future outbursts and more observations of its quiescent state will reveal if the inner disk can be replenished or will continue to be depleted and vanish.
CHEOPS observations confirm nodal precession in the WASP-33 system
arXiv:2412.08557v1 Announce Type: new
Abstract: Aims: We aim to observe the transits and occultations of WASP-33b, which orbits a rapidly-rotating $\delta$ Scuti pulsator, with the goal of measuring the orbital obliquity via the gravity-darkening effect, and constraining the geometric albedo via the occultation depth. Methods: We observed four transits and four occultations with CHEOPS, and employ a variety of techniques to remove the effects of the stellar pulsations from the light curves, as well as the usual CHEOPS systematic effects. We also performed a comprehensive analysis of low-resolution spectral and Gaia data to re-determine the stellar properties of WASP-33. Results: We measure an orbital obliquity 111.3 +0.2 -0.7 degrees, which is consistent with previous measurements made via Doppler tomography. We also measure the planetary impact parameter, and confirm that this parameter is undergoing rapid secular evolution as a result of nodal precession of the planetary orbit. This precession allows us to determine the second-order fluid Love number of the star, which we find agrees well with the predictions of theoretical stellar models. We are unable to robustly measure a unique value of the occultation depth, and emphasise the need for long-baseline observations to better measure the pulsation periods.
A joint effort to discover and characterize two resonant mini Neptunes around TOI-1803 with TESS, HARPS-N and CHEOPS
arXiv:2412.05423v1 Announce Type: new
Abstract: We present the discovery of two mini Neptunes near a 2:1 orbital resonance configuration orbiting the K0 star TOI-1803. We describe their orbital architecture in detail and suggest some possible formation and evolution scenarios. Using CHEOPS, TESS, and HARPS-N datasets we can estimate the radius and the mass of both planets. We used a multidimensional Gaussian Process with a quasi-periodic kernel to disentangle the planetary components from the stellar activity in the HARPS-N dataset. We performed dynamical modeling to explain the orbital configuration and performed planetary formation and evolution simulations. For the least dense planet, we define possible atmospheric characterization scenarios with simulated JWST observations. TOI-1803 b and TOI-1803 c have orbital periods of $\sim$6.3 and $\sim$12.9 days, respectively, residing in close proximity to a 2:1 orbital resonance. Ground-based photometric follow-up observations revealed significant transit timing variations (TTV) with an amplitude of $\sim$10 min and $\sim$40 min, respectively, for planet -b and -c. With the masses computed from the radial velocities data set, we obtained a density of (0.39$\pm$0.10) $\rho_{earth}$ and (0.076$\pm$0.038) $\rho_{earth}$ for planet -b and -c, respectively. TOI-1803 c is among the least dense mini Neptunes currently known, and due to its inflated atmosphere, it is a suitable target for transmission spectroscopy with JWST. We report the discovery of two mini Neptunes close to a 2:1 orbital resonance. The detection of significant TTVs from ground-based photometry opens scenarios for a more precise mass determination. TOI-1803 c is one of the least dense mini Neptune known so far, and it is of great interest among the scientific community since it could constrain our formation scenarios.
A dry Venusian interior constrained by atmospheric chemistry
arXiv:2412.01879v1 Announce Type: new
Abstract: Venus's climatic history provides powerful constraint on the location of the inner-edge of the liquid-water habitable zone. However, two very different histories of water on Venus have been proposed: one where Venus had a temperate climate for billions of years, with surface liquid water, and the other where a hot early Venus was never able to condense surface liquid water. Here we offer a novel constraint on Venus's climate history by inferring the water content of its interior. By calculating the present rate of atmospheric destruction of H$_2$O, CO$_2$ and OCS, which must be restored by volcanism to maintain atmospheric stability, we show Venus's interior is dry. Venusian volcanic gases have at most a 6% water mole fraction, substantially drier than terrestrial magmas degassed at similar conditions. The dry interior is consistent with Venus ending its magma ocean epoch desiccated and thereafter having had a long-lived dry surface. Volcanic resupply to Venus's atmosphere therefore indicates that the planet has never been `liquid-water' habitable.
A possible misaligned orbit for the young planet AU Mic c
arXiv:2411.16958v1 Announce Type: new
Abstract: The AU Microscopii planetary system is only 24 Myr old, and its geometry may provide clues about the early dynamical history of planetary systems. Here, we present the first measurement of the Rossiter-McLaughlin effect for the warm sub-Neptune AU\,Mic\,c, using two transits observed simultaneously with VLT/ESPRESSO, CHEOPS, and NGTS. After correcting for flares and for the magnetic activity of the host star, and accounting for transit-timing variations, we find the sky-projected spin-orbit angle of planet c to be in the range $\lambda_c=67.8_{-49.0}^{+31.7}$ degrees (1-$\sigma$). We examine the possibility that planet c is misaligned with respect to the orbit of the inner planet b ($\lambda_b=-2.96_{-10.30}^{+10.44}$ degrees), and the equatorial plane of the host star, and discuss scenarios that could explain both this and the planet's high density, including secular interactions with other bodies in the system or a giant impact. We note that a significantly misaligned orbit for planet c is in some degree of tension with the dynamical stability of the system, and with the fact that we see both planets in transit, though these arguments alone do not preclude such an orbit. Further observations would be highly desirable to constrain the spin-orbit angle of planet c more precisely.
Collisional damping in debris discs: Only significant if collision velocities are low
arXiv:2411.13991v1 Announce Type: new
Abstract: Context. Dusty debris discs around main sequence stars are observed to vary widely in terms of their vertical thickness. Their vertical structure may be affected by damping in inelastic collisions. Although kinetic models have often been used to study the collisional evolution of debris discs, these models have not yet been used to study the evolution of their vertical structure. Aims. We extend an existing implementation of a kinetic model of collisional evolution to include the evolution of orbital inclinations and we use this model to study the effects of collisional damping in pre-stirred discs. Methods. We evolved the number of particles of different masses, eccentricities, and inclinations using the kinetic model and used Monte Carlo simulations to calculate collision rates between particles in the disc. We considered all relevant collisional outcomes including fragmentation, cratering, and growth. Results. Collisional damping is inefficient if particles can be destroyed by projectiles that are of much lower mass. If that is the case, catastrophic disruptions shape the distributions of eccentricities and inclinations, and their average values evolve slowly and at the same rate for all particle sizes. Conclusions. The critical projectile-to-target mass ratio (Yc) and the collisional timescale jointly determine the level of collisional damping in debris discs. If Yc is much smaller than unity, a debris disc retains the inclination distribution that it is born with for much longer than the collisional timescale of the largest bodies in the disc. Such a disc should exhibit a vertical thickness that is independent of wavelength even in the absence of other physical processes. Collisional damping is efficient if Yc is of order unity or larger. For millimetre-sized dust grains and common material strength assumptions, this requires collision velocities of lower than ~40 m/s. Abridged
A close outer companion to the ultra-hot Jupiter TOI-2109 b?
arXiv:2411.07797v1 Announce Type: new
Abstract: Hot Jupiters with close-by planetary companions are rare, with only a handful of them having been discovered so far. This could be due to their suggested dynamical histories, leading to the possible ejection of other planets. TOI-2109 b is special in this regard because it is the hot Jupiter with the closest relative separation from its host star, being separated by less than 2.3 stellar radii. Unexpectedly, transit timing measurements from recently obtained CHEOPS observations show low amplitude transit-timing variations (TTVs). We aim to search for signs of orbital decay and to characterise the apparent TTVs, trying to gain information about a possible companion. We fit the newly obtained CHEOPS light curves using TLCM and extract the resulting mid-transit timings. Successively, we use these measurements in combination with TESS and archival photometric data and radial velocity data to estimate the rate of tidal orbital decay of TOI-2109 b, as well as characterise the TTVs using the N-body code TRADES and the photodynamical approach of PyTTV. We find tentative evidence at $3\sigma$ for orbital decay in the TOI-2109 system, when we correct the mid-transit timings using the best-fitting sinusoidal model of the TTVs. We do not detect additional transits in the available photometric data, but find evidence towards the authenticity of the apparent TTVs, indicating a close-by, outer companion with $P_\mathrm{c} > 1.125\,$d. Due to the fast rotation of the star, the new planetary candidate cannot be detected in the available radial velocity (RV) measurements, and its parameters can only be loosely constrained by our joint TTV and RV modelling. TOI-2109 could join a small group of rare hot Jupiter systems that host close-by planetary companions, only one of which (WASP-47 b) has an outer companion. More high-precision photometric measurements are necessary to confirm the planetary companion.
VLTI/GRAVITY Observations of AF Lep b: Preference for Circular Orbits, Cloudy Atmospheres, and a Moderately Enhanced Metallicity
arXiv:2411.05917v1 Announce Type: new
Abstract: Direct imaging observations are biased towards wide-separation, massive companions that have degenerate formation histories. Although the majority of exoplanets are expected to form via core accretion, most directly imaged exoplanets have not been convincingly demonstrated to follow this formation pathway. We obtained new interferometric observations of the directly imaged giant planet AF Lep b with the VLTI/GRAVITY instrument. We present three epochs of 50$\mu$as relative astrometry and the K-band spectrum of the planet for the first time at a resolution of R=500. Using only these measurements, spanning less than two months, and the Hipparcos-Gaia Catalogue of Accelerations, we are able to significantly constrain the planet's orbit; this bodes well for interferometric observations of planets discovered by Gaia DR4. Including all available measurements of the planet, we infer an effectively circular orbit ($e<0.02, 0.07, 0.13$ at $1, 2, 3 \sigma$) in spin-orbit alignment with the host, and a measure a dynamical mass of $M_\mathrm{p}=3.75\pm0.5\,M_\mathrm{Jup}$. Models of the spectrum of the planet show that it is metal rich ([M/H]$=0.75\pm0.25$), with a C/O ratio encompassing the solar value. This ensemble of results show that the planet is consistent with core accretion formation.
Host-star and exoplanet composition: Polluted white dwarf reveals depletion of moderately refractory elements in planetary material
arXiv:2411.03454v1 Announce Type: new
Abstract: Planets form from the same cloud of molecular gas and dust as their host stars. Confirming if planetary bodies acquire the same refractory element composition as their natal disc during formation, and how efficiently volatile elements are incorporated into growing planets, is key to linking the poorly constrained interior composition of rocky exoplanets to the observationally-constrained composition of their host star. Such comparisons also afford insight into the planet formation process. This work compares planetary composition with host-star composition using observations of a white dwarf that has accreted planetary material and its F-type star wide binary companion as a reference for the composition of the natal molecular gas and dust. Spectroscopic analysis reveals abundances of Fe, Mg, Si, Ca, and Ti in both stars. We use the white dwarf measurements to estimate the composition of the exoplanetary material and the F-type companion to constrain the composition of the material the planet formed from. Comparing planetary material to the composition of its natal cloud, our results reveal that the planetary material is depleted in moderate refractories (Mg, Si, Fe) relative to the refractory material (Ca, Ti). Grouping elements based on their condensation temperatures is key to linking stellar and planetary compositions. Fractionation during formation or subsequent planetary evolution leads to the depletion of moderate refractories from the planetary material accreted by the white dwarf. This signature, as seen for bulk Earth, will likely be present in the composition of many exoplanets relative to their host-stars.
Database of Candidate Targets for the LIFE Mission
arXiv:2410.23892v1 Announce Type: new
Abstract: We present the database of potential targets for the Large Interferometer For Exoplanets (LIFE), a space-based mid-infrared nulling interferometer mission proposed for the Voyage 2050 science program of the European Space Agency (ESA). The database features stars, their planets and disks, main astrophysical parameters, and ancillary observations. It allows users to create target lists based on various criteria to predict, for instance, exoplanet detection yields for the LIFE mission. As such, it enables mission design trade-offs, provides context for the analysis of data obtained by LIFE, and flags critical missing data. Work on the database is in progress, but given its relevance to LIFE and other space missions, including the Habitable Worlds Observatory (HWO), we present its main features here. A preliminary version of the LIFE database is publicly available on the German Astrophysical Virtual Observatory (GAVO).
Large Interferometer For Exoplanets (LIFE). XIV. Finding terrestrial protoplanets in the galactic neighborhood
arXiv:2410.13457v1 Announce Type: new
Abstract: The increased brightness temperature of young rocky protoplanets during their magma ocean epoch makes them potentially amenable to atmospheric characterization to distances from the solar system far greater than thermally equilibrated terrestrial exoplanets, offering observational opportunities for unique insights into the origin of secondary atmospheres and the near surface conditions of prebiotic environments. The Large Interferometer For Exoplanets (LIFE) mission will employ a space-based mid-infrared nulling interferometer to directly measure the thermal emission of terrestrial exoplanets. Here, we seek to assess the capabilities of various instrumental design choices of the LIFE mission concept for the detection of cooling protoplanets with transient high-temperature magma ocean atmospheres, in young stellar associations in particular. Using the LIFE mission instrument simulator (LIFEsim) we assess how specific instrumental parameters and design choices, such as wavelength coverage, aperture diameter, and photon throughput, facilitate or disadvantage the detection of protoplanets. We focus on the observational sensitivities of distance to the observed planetary system, protoplanet brightness temperature using a blackbody assumption, and orbital distance of the potential protoplanets around both G- and M-dwarf stars. Our simulations suggest that LIFE will be able to detect (S/N $\geq$ 7) hot protoplanets in young stellar associations up to distances of $\approx$100 pc from the solar system for reasonable integration times (up to $\sim$hours). Detection of an Earth-sized protoplanet orbiting a solar-sized host star at 1 AU requires less than 30 minutes of integration time. M-dwarfs generally need shorter integration times. The contribution from wavelength regions $<$6 $\mu$m is important for decreasing the detection threshold and discriminating emission temperatures.
Considerations for Photochemical Modeling of Possible Hycean Worlds
arXiv:2410.07313v1 Announce Type: new
Abstract: JWST is revolutionising the study of temperate sub-Neptunes, starting with the first detection of carbon-bearing molecules in the habitable-zone sub-Neptune K2-18 b. The retrieved abundances of CH$_4$ and CO$_2$ and non-detection of NH$_3$ and CO in K2-18 b are consistent with prior predictions of photochemical models for a Hycean world with a habitable ocean. However, recent photochemical modeling raised the prospect that the observed abundances may be explained by a mini-Neptune scenario instead. In this study, we explore these scenarios using independent photochemical modeling with K2-18 b as a case study. We find the previous results to be sensitive to a range of model assumptions, such as the photochemical cross sections, incident stellar spectrum, surface pressure, UV albedo, and metallicity, significantly affecting the resulting abundances. We explore a wide model space to investigate scenarios that are compatible with the retrieved molecular abundances for K2-18 b. Our analysis shows that the previously favoured mini-Neptune scenario is not compatible with most of the retrieved abundances, while the Hycean scenarios, both inhabited and uninhabited, provide better agreement. An uninhabited Hycean scenario explains most of the abundance constraints, except CH$_4$ which is generally underabundant but dependent on the model assumptions. The inhabited Hycean scenario is compatible with all the abundances if the observed CH$_4$ is assumed to be predominantly biogenic. Our results underscore the importance of systematic photochemical modeling and accurate interpretation of chemical abundance constraints for candidate Hycean worlds.
Ejected from home: C/1980 E1 (Bowell) and C/2024 L5 (ATLAS)
arXiv:2410.01975v1 Announce Type: new
Abstract: Context. Natural interstellar objects do not form isolated in deep space, but escape their natal planetary systems. Early removal from their home star systems via close flybys with still-forming planets could be the dominant ejection mechanism. However, dynamically evolved planetary systems such as the Solar System may also be a significant source of natural interstellar objects.
Aims. We studied the dynamical evolution of two unusual Solar System hyperbolic comets, C/1980 E1 (Bowell) and C/2024 L5 (ATLAS), to investigate the circumstances that led them to reach moderate Solar System excess hyperbolic speeds.
Methods. We used N-body simulations and statistical analyses to explore the planetary encounters that led to the ejection of C/1980 E1 and C/2024 L5, and studied their pre- and post-encounter trajectories.
Results. We confirm that C/1980 E1 reached its present path into interstellar space after an encounter with Jupiter at 0.23 au on December 9, 1980. C/2024 L5 was scattered out of the Solar System following a flyby to Saturn at 0.003 au on January 24, 2022. Integrations backward in time show that C/1980 E1 came from the inner Oort cloud but C/2024 L5 could be a former retrograde, inactive Centaur. The receding velocities of C/1980 E1 and C/2024 L5 when entering interstellar space will be 3.8 and 2.8 km/s, moving towards Aries and Triangulum, respectively.
Conclusions. Our results for two comets ejected from the Solar System indicate that dynamically evolved planetary systems can be effective sources of interstellar objects and provide constraints on their velocity distribution.
JWST captures a sudden stellar outburst and inner disk wall destruction
arXiv:2410.00136v2 Announce Type: replace
Abstract: We present JWST/MIRI observations of T~Cha, a highly variable ($\Delta V \sim$3-5\,mag) accreting Sun-like star surrounded by a disk with a large ($\sim 15$\,au) dust gap. We find that the JWST mid-infrared spectrum is signiticantly different from the {\it Spitzer} spectrum obtained 17 years before, where the emission at short wavelengths ($5-10 \mu m$) has decreased by $\sim 2/3$ while at longer wavelengths ($15-25 \mu m$) it increased by up to a factor of $\sim 3$. This 'seesaw' behavior is contemporary with a fairly constant higher optical emission captured by the All Sky Automated Survey. By analyzing and modelling both SEDs, we propose that JWST caught the star during an outburst that destructed the asymmetric inner disk wall responsible for the high optical variability and lower $15-25$\,micron\ emission during the {\it Spitzer} time. The dust mass lost during this outburst is estimated to be comparable ($\sim 1/5$) to the upper limit of the total micron-sized dust mass in the inner disk of T~Cha now. Monitoring this system during possible future outbursts and more observations of its quiescent state will reveal if the inner disk can be replenished or will continue to be depleted and vanish.