Infall-driven gravitational instability in accretion discs
arXiv:2506.13701v1 Announce Type: new
Abstract: Gravitational instability (GI) is typically studied in cooling-dominated discs, often modelled using simplified prescriptions such as $\beta$-cooling. In this paper, we investigate the onset and evolution of GI in accretion discs subject to continuous mass injection, combining 1D and 3D numerical simulations. We explore an alternative self-regulation mechanism in which mass replenishment drives the system toward marginal stability $Q\sim 1$. In this regime, the disc establishes a steady-state disc-to-star mass ratio, balancing the mass transported to the central object with that added to the disc. Our 3D simulations reveal that the general scaling predicted from the linear theory are respected, however there are important difference compared to the cooling case in terms of morphology and pattern speed. Unlike the flocculent spirals seen in cooling-driven instability, the power is concentrated towards the dominant modes in infall-driven spirals. Additionally, spiral waves generate at the mass injection location, and propagate at constant pattern speed, unlike in the cooling case. This suggests a fundamental difference in how mass-regulated and cooling-regulated discs behave and transport angular momentum.
Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Evidence of planet-disk interaction in the 2MASSJ16120668-3010270 system
arXiv:2506.05892v1 Announce Type: new
Abstract: The architectures of exoplanet systems are likely set during the initial planet-formation phase in the circumstellar disk. To understand this process, we have to study the earliest phases of planet formation. Complex sub-structures, believed to be driven by embedded planets, have been detected in a significant portion of disks observed at high angular resolution. We aim to extend the sample of such disks to low stellar masses and to connect the disk morphology to the expected proto-planet properties.
We resolve the disk in the 2MASSJ16120668-3010270 system for the first time in scattered near-infrared light on scales of 10 au using VLT/SPHERE and reveal an exceptionally structured disk. We find an inner disk (inside 40 au) with two spiral arms, separated by a gap from an outer ring. By comparison with hydrodynamic models, we find that these structures are consistent with the presence of an embedded gas giant with a mass range between 0.1 and 5 MJup depending on the employed model. Our SPHERE observations find a tentative candidate point source within the disk gap, which may be consistent with this mass range if it indeed traces thermal emission by an embedded planet. This interpretation is somewhat strengthened by the proximity of this signal to compact mm continuum emission in the disk gap, which may trace circumplanetary material. It is, however, unclear if this tentative companion candidate could be responsible for the observed disk gap size, given its close proximity to the inner disk.
The 2MASSJ16120668-3010270 system is one of only a few systems that shows this exceptional morphology of spiral arms located inside a scattered light gap and ring. We speculate that this may have to do with a higher disk viscosity compared with other systems such as PDS 70.
Tracing the formation and migration history: molecular signatures in the atmosphere of misaligned hot Jupiter WASP-94Ab using JWST NIRSpec/G395H
arXiv:2505.11224v2 Announce Type: replace
Abstract: The discovery of hot Jupiters that orbit very close to their host stars has long challenged traditional models of planetary formation and migration. Characterising their atmospheric composition - mainly in the form of the carbon-to-oxygen (C/O) ratio and metallicity - can provide insights into their formation locations and evolution pathways. With JWST we can characterise the atmospheres of these types of planets more precisely than previously possible, primarily because it allows us to determine both their atmospheric oxygen and carbon composition. Here, we present a JWST NIRSpec/G395H transmission spectrum from 2.8-5.1$\mu m$ of WASP-94Ab, an inflated hot Jupiter with a retrograde misaligned orbit around its F-type host star. We find a relatively cloud-free atmosphere, with absorption features of H$_2$O and CO$_2$ at detection significances of $\sim 4\sigma$ and $\sim 11\sigma$, respectively. In addition, we detect tentative evidence of CO absorption at $\sim3\sigma$, as well as hints of sulphur with the detection of H$_2$S at a $\sim 2.5\sigma$ confidence level. Our favoured equilibrium chemistry model determines a C/O ratio of $0.49^{+0.08}_{-0.13}$ for WASP-94Ab's atmosphere, which is substellar compared to the star's C/O ratio of $0.68 \pm 0.10$. The retrieved atmospheric metallicity is similar to the star's metallicity as both are $\sim 2\times$ solar. We find that this sub-stellar C/O ratio and stellar metallicity can be best explained by pebble accretion or planetesimal accretion in combination with large-distance migration of the planet.
Dark skies of the slightly eccentric WASP-18 b from its optical-to-infrared dayside emission
arXiv:2505.01544v2 Announce Type: replace
Abstract: We performed a joint analysis of phase-curve observations of the ultra-hot Jupiter WASP-18 b from the visible to the mid-infrared, using data from CHEOPS, TESS and Spitzer. We aim to characterise the planetary atmosphere with a consistent view over the large wavelength range covered using GCMs and retrieval analyses, and including JWST data. We obtained new ephemerides with unprecedented precisions of 1 second and 1.4 millisecond on the time of inferior conjunction and orbital period, respectively. We computed a planetary radius of $R_p = 1.1926 \pm 0.0077 R_J$ with a precision of 0.65% (or 550 km). Based on a timing inconsistency with JWST, we discuss and confirm orbital eccentricity ($e = 0.00852 \pm 0.00091$). We also constrain the argument of periastron to $\omega = 261.9^{+1.3}_{-1.4}$ deg. We show that the large dayside emission implies the presence of magnetic drag and super-solar metallicity. We find a steep thermally inverted gradient in the planetary atmosphere, which is common for UHJs. We detected the presence of strong CO emission lines at 4.5 $\mu$m from an excess of dayside brightness in the Spitzer/IRAC/Ch2 passband. Using these models to constrain the reflected contribution in the CHEOPS passband, we derived an extremely low geometric albedo of $A_g^\text{CHEOPS} = 0.027 \pm 0.011$.
Abiotic Ozone in the Observable Atmospheres of Venus and Venus-like Exoplanets
arXiv:2505.16543v1 Announce Type: new
Abstract: Ozone is a potential biosignature and disambuguator between Earth-like and Venus-like exoplanets due to its association on Earth with photosynthetically produced oxygen (O$_2$). However, the existence of ozone in Venus's observable atmosphere, a planet with no known life, raises the possibility of ozone biosignature false-positives on Venus-like exoplanets. We use a photochemical model of Venus's atmosphere to investigate the origin of its mesospheric ozone layer, and to predict how similar ozone layers would manifest for Venus-like exoplanets. For Venus, our model shows that the previously proposed fluxes of O atoms produced on the dayside and transported to the nightside cannot generate enough ozone to match the observed nightside ozone concentrations without also producing O$_2$ in excess of the observed upper limit. Nor can sufficient ozone be produced by varying the lower-atmosphere chemistry, atmospheric thermal structure, or received stellar flux in our model of Venus's atmosphere. These results imply that a presently unknown chemical pathway is responsible for the ozone production in Venus's nightside mesosphere. Ozone production rates from this pathway of 10$^5$--10$^7$ cm$^{-3}$s$^{-1}$ above the cloud layer on the nightside can re-produce the observed O$_3$ concentrations. Generalised to Venus-like exoplanets, known chemistry similarly fails to produce ozone in the abundance seen in the Venusian mesosphere. However, until the origin of Venus's ozone is understood, we cannot rule out that ozone production at concentrations observable with JWST will be common on abiotic Venus-like worlds, a possibility that limits the usefulness of ozone as a habsignature and as a biosignature.
Tracing the formation and migration history: molecular signatures in the atmosphere of misaligned hot Jupiter WASP-94Ab using JWST NIRSpec/G395H
arXiv:2505.11224v1 Announce Type: new
Abstract: The discovery of hot Jupiters that orbit very close to their host stars has long challenged traditional models of planetary formation and migration. Characterising their atmospheric composition - mainly in the form of the carbon-to-oxygen (C/O) ratio and metallicity - can provide insights into their formation locations and evolution pathways. With JWST we can characterise the atmospheres of these types of planets more precisely than previously possible, primarily because it allows us to determine both their atmospheric oxygen and carbon composition. Here, we present a JWST NIRSpec/G395H transmission spectrum from 2.8-5.1$\mu m$ of WASP-94Ab, an inflated hot Jupiter with a retrograde misaligned orbit around its F-type host star. We find a relatively cloud-free atmosphere, with absorption features of H$_2$O and CO$_2$ at detection significances of $\sim 4\sigma$ and $\sim 11\sigma$, respectively. In addition, we detect tentative evidence of CO absorption at $\sim3\sigma$, as well as hints of sulphur with the detection of H$_2$S at a $\sim 2.5\sigma$ confidence level. Our favoured equilibrium chemistry model determines a C/O ratio of $0.49^{+0.08}_{-0.13}$ for WASP-94Ab's atmosphere, which is substellar compared to the star's C/O ratio of $0.68 \pm 0.10$. The retrieved atmospheric metallicity is similar to the star's metallicity as both are $\sim 2\times$ solar. We find that this sub-stellar C/O ratio and stellar metallicity can be best explained by pebble accretion or planetesimal accretion in combination with large-distance migration of the planet.
Eccentricity evolution during planet-disc interaction
arXiv:1712.00026v2 Announce Type: replace
Abstract: During the process of planet formation, the planet-discs interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long ($t\sim 3\times 10^5$ orbits) numerical simulations: (a) one (with a relatively light disc, $M_{\rm d}/M_{\rm p}=0.2$) where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, $M_{\rm d}/M_{\rm p}=0.65$) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.
A Systematic Search for Trace Molecules in Exoplanet K2-18 b
arXiv:2505.10539v1 Announce Type: new
Abstract: The first transmission spectrum of the habitable-zone sub-Neptune K2-18 b with JWST has opened a new avenue for atmospheric characterisation of temperate low-mass exoplanets. The observations led to inferences of methane and carbon dioxide, as well as of dimethyl sulfide (DMS) and/or dimethyl disulfide (DMDS), both potential biosignatures. However, robust identification of DMS and/or DMDS requires further observations to increase the detection significances. More theoretical studies are also needed to identify potential false positives and possible abiotic sources for these molecules. In the present work we demonstrate the next step in this direction with a comprehensive and agnostic search for other chemical species in the atmosphere of K2-18 b. Our exploration includes 650 molecules, spanning a wide range of trace gases, including biotic, abiotic, and anthropogenic gases on Earth. We investigate possible evidence for any of these gases using three metrics: (a) evidence in the JWST mid-infrared spectrum, (b) evidence in the JWST near-infrared spectrum, and (c) plausible sources of production. We find three molecules, including DMS, which appear promising across the datasets considered. The two molecules besides DMS are diethyl sulfide and methyl acrylonitrile, which are more complex than DMS, biogenic on Earth, and have no significant sources known beyond Earth. A few other gases also provide comparable fits to a subset of the data considered but again with limited known plausible sources. Our study highlights the need for further observations to distinguish between possible trace gases in K2-18 b and theoretical work to establish their plausible sources if confirmed on this planet.
The vertical structure of debris discs and the role of disc gravity
arXiv:2505.09578v1 Announce Type: new
Abstract: Debris discs provide valuable insights into the formation and evolution of exoplanetary systems. Their structures are commonly attributed to planetary perturbations, serving as probes of as-yet-undetected planets. However, most studies of planet-debris disc interactions ignore the disc's gravity, treating it as a collection of massless planetesimals. Here, using an analytical model, we investigate how the vertical structure of a back-reacting debris disc responds to secular perturbations from an inner, inclined planet. Considering the disc's axisymmetric potential, we identify two dynamical regimes: planet-dominated and disc-dominated, which may coexist, separated by a secular-inclination resonance. In the planet-dominated regime ($M_d/m_p\ll1$), we recover the classical result: a transient warp propagates outward until the disc settles into a box-like structure centered around the planetary orbit's initial inclination $I_p(0)$, with a distance-independent aspect ratio $\mathcal{H}(R)\approx I_p(0)$. In contrast, in the disc-dominated regime ($M_d/m_p\gtrsim1$), the disc exhibits dynamical rigidity, remaining thin and misaligned, with significantly suppressed inclinations and a sharply declining aspect ratio, $\mathcal{H}(R)\propto I_p(0)R^{-7/2}$. In the intermediate regime ($M_d/m_p\lesssim1$), the system exhibits a secular-inclination resonance, leading to long-lived, warp-like structures and a bimodal inclination distribution, containing both dynamically hot and cold populations. We provide analytic formulae describing these effects as a function of system parameters. We also find that the vertical density profile is intrinsically non-Gaussian and recommend fitting observations with non-zero slopes of $\mathcal{H}(R)$. Our results may be used to infer planetary parameters and debris disc masses based on observed warps and scale heights, as demonstrated for HD110058 and $\beta$ Pic.
A Machine-Learning Compositional Study of Exoplanetary Material Accreted Onto Five Helium-Atmosphere White Dwarfs with $\texttt{cecilia}$
arXiv:2505.06228v1 Announce Type: new
Abstract: We present the first application of the Machine Learning (ML) pipeline $\texttt{cecilia}$ to determine the physical parameters and photospheric composition of five metal-polluted He-atmosphere white dwarfs without well-characterised elemental abundances. To achieve this, we perform a joint and iterative Bayesian fit to their $\textit{SDSS}$ (R=2,000) and $\textit{Keck/ESI}$ (R=4,500) optical spectra, covering the wavelength range from about 3,800\r{A} to 9,000\r{A}. Our analysis measures the abundances of at least two $-$and up to six$-$ chemical elements in their atmospheres with a predictive accuracy similar to that of conventional WD analysis techniques ($\approx$0.20 dex). The white dwarfs with the largest number of detected heavy elements are SDSS J0859$+$5732 and SDSS J2311$-$0041, which simultaneously exhibit O, Mg, Si, Ca, and Fe in their $\textit{Keck/ESI}$ spectra. For all systems, we find that the bulk composition of their pollutants is largely consistent with those of primitive CI chondrites to within 1-2$\sigma$. We also find evidence of statistically significant ($>2\sigma$) oxygen excesses for SDSS J0859$+$5732 and SDSS J2311$-$0041, which could point to the accretion of oxygen-rich exoplanetary material. In the future, as wide-field astronomical surveys deliver millions of public WD spectra to the scientific community, $\texttt{cecilia}$ aspires to unlock population-wide studies of polluted WDs, therefore helping to improve our statistical knowledge of extrasolar compositions.
Comparative Biosignatures
arXiv:2505.01512v1 Announce Type: new
Abstract: The discovery of inhabited exoplanets hinges on identifying biosignature gases. JWST is revealing potential biosignatures in exoplanet atmospheres, though their presence is yet to provide strong evidence for life. The central challenge is attribution: how to confidently identify biogenic sources while ruling out, or deeming unlikely, abiotic explanations? Attribution is particularly difficult for individual planets, especially regarding system-scale stochastic processes that could set atmospheric conditions. To address this, we here propose a comparative multi-planet approach: comparing atmospheric compositions across multiple planets within a system to empirically define the 'abiotic baseline'. This baseline serves as a reference point for biosignatures, and enables marginalisation over inaccessible, shared abiotic parameters. This is possible because planets within a system are linked by their birth in the same natal disk, having been irradiated by the same evolving star, and having a related dynamical history. Observations aligning with the abiotic baseline, where the locally informed abiotic models demonstrate high out-of-sample predictive accuracy, are likely non-biological. Deviations from the baseline -- potentially biotic anomalies -- suggest an alternative origin. We present the application of Bayesian leave-one-out cross-validation to evaluate the performance of geochemical- and biogeochemical-climate models in explaining these anomalies, using the expected log pointwise predictive density as a diagnostic. When biogeochemical models outperform their abiotic counterparts, the anomaly may be shaped by life, and constitutes a comparative biosignature. If both models perform poorly, the anomaly is flagged as an "unknown unknown" -- a signature of either unrecognised abiotic chemistry, or life as we don't yet know it.
HD 35843: A Sun-like star hosting a long period sub-Neptune and inner super-Earth
arXiv:2505.00898v1 Announce Type: new
Abstract: We report the discovery and confirmation of two planets orbiting the metal-poor Sun-like star, HD 35843 (TOI 4189). HD 35843 c is a temperate sub-Neptune transiting planet with an orbital period of 46.96 days that was first identified by Planet Hunters TESS. We combine data from TESS and follow-up observations to rule out false-positive scenarios and validate the planet. We then use ESPRESSO radial velocities to confirm the planetary nature and characterize the planet's mass and orbit. Further analysis of these RVs reveals the presence of an additional planet, HD 35843 b, with a period of 9.90 days and a minimum mass of $5.84\pm0.84$ $M_{\oplus}$. For HD 35843 c, a joint photometric and spectroscopic analysis yields a radius of $2.54 \pm 0.08 R_{\oplus}$, a mass of $11.32 \pm 1.60 M_{\oplus}$, and an orbital eccentricity of $e = 0.15\pm0.07$. With a bulk density of $3.80 \pm 0.70$ g/cm$^3$, the planet might be rocky with a substantial H$_2$ atmosphere or it might be a ``water world". With an equilibrium temperature of $\sim$480 K, HD 35843 c is among the coolest $\sim 5\%$ of planets discovered by TESS. Combined with the host star's relative brightness (V= 9.4), HD 35843 c is a promising target for atmospheric characterization that will probe this sparse population of temperate sub-Neptunes.
exoALMA VII: Benchmarking Hydrodynamics and Radiative Transfer Codes
arXiv:2504.18643v2 Announce Type: replace
Abstract: Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes (FARGO3D, Idefix, Athena++, PLUTO) and a smoothed particle hydrodynamics code (Phantom), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes (mcfost, RADMC-3D) to calculate disk temperatures and create synthetic 12CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER. We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within $\lesssim 3~\%$ everywhere in the domain. In synthetic $^{12}$CO channel maps, this results in brightness temperature differences within $\pm1.5$ K in all our models. This good agreement ensures consistent retrieval of planet's radial/azimuthal location with only a few % of scatter, with velocity perturbations varying $\lesssim 20~\%$ among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.
"Oh FUors where art thou": A search for long-lasting YSO outbursts hiding in infrared surveys
arXiv:2504.21237v1 Announce Type: new
Abstract: Long-lasting episodes of high accretion can strongly impact stellar and planetary formation. However, the universality of these events during the formation of young stellar objects (YSOs) is still under debate. Accurate statistics of strong outbursts (FUors), are necessary to understand the role of episodic accretion bursts. In this work, we search for a population of FUors that may have gone undetected in the past because they either a) went into outburst before the start of modern monitoring surveys and are now slowly fading back into quiescence or b) are slow-rising outbursts that would not commonly be classified as candidate FUors. We hypothesise that the light curves of these outbursts should be well fitted by linear models with negative (declining) or positive (rising) slopes. The analysis of the infrared light curves and photometry of $\sim$99000 YSO candidates from SPICY yields 717 candidate FUors. Infrared spectroscopy of 20 candidates, from both the literature and obtained by our group, confirms that 18 YSOs are going through long-term outbursts and identifies two evolved sources as contaminants. The number of candidate FUors combined with previously measured values of the frequency of FUor outbursts, yield average outburst decay times that are 2.5 times longer than the rise times. In addition, a population of outbursts with rise timescales between 2000 and 5000 days must exist to obtain our observed number of YSOs with positive slopes. Finally, we estimate a mean burst lifetime of between 45 and 100 years.
ExoALMA XIII. gas masses from N2H+ and C18O: a comparison of protoplanetary gas disk mass measurement techniques
arXiv:2504.19371v2 Announce Type: replace
Abstract: The gas masses of protoplanetary disks are important but elusive quantities. In this work we present new ALMA observations of N2H+ (3-2) for 11 exoALMA disks. N2H+ is a molecule sensitive to CO freeze-out and has recently been shown to significantly improve the accuracy of gas masses estimated from CO line emission. We combine these new observations with archival N2H+ and CO isotopologue observations to measure gas masses for 19 disks, predominantly from the exoALMA Large program. For 15 of these disks the gas mass has also been measured using gas rotation curves. We show that the CO + N2H+ line emission-based gas masses typically agree with the kinematically measured ones within a factor 3 (1-2{\sigma}). Gas disk masses from CO + N2H+ are on average a factor 2.3(+0.7,-1.0) x lower than the kinematic disk masses, which could suggest slightly lower N2 abundances and/or lower midplane ionization rates than typically assumed. Herbig disks are found to have ISM level CO gas abundances based on their CO and N2H+ fluxes, which sets them apart from T-Tauri disks where abundances are typically 3-30x lower. The agreement between CO + N2H+ -based and kinematically measured gas masses is promising and shows that multi-molecule line fluxes are a robust tool to accurately measure disk masses at least for extended disks.
exoALMA IX: Regularized Maximum Likelihood Imaging of Non-Keplerian Features
arXiv:2504.19111v1 Announce Type: new
Abstract: The planet-hunting ALMA large program exoALMA observed 15 protoplanetary disks at ~0.15" angular resolution and ~100 m/s spectral resolution, characterizing disk structures and kinematics in enough detail to detect non-Keplerian features (NKFs) in the gas emission. As these features are often small and low-contrast, robust imaging procedures are critical for identifying and characterizing NKFs, including determining which features may be signatures of young planets. The exoALMA collaboration employed two different imaging procedures to ensure the consistent detection of NKFs: CLEAN, the standard iterative deconvolution algorithm, and regularized maximum likelihood (RML) imaging. This paper presents the exoALMA RML images, obtained by maximizing the likelihood of the visibility data given a model image and subject to regularizer penalties. Crucially, in the context of exoALMA, RML images serve as an independent verification of marginal features seen in the fiducial CLEAN images. However, best practices for synthesizing RML images of multi-channeled (i.e. velocity-resolved) data remain undefined, as prior work on RML imaging for protoplanetary disk data has primarily addressed single-image cases. We used the open source Python package MPoL to explore RML image validation methods for multi-channeled data and synthesize RML images from the exoALMA observations of 7 protoplanetary disks with apparent NKFs in the 12CO J=3-2 CLEAN images. We find that RML imaging methods independently reproduce the NKFs seen in the CLEAN images of these sources, suggesting that the NKFs are robust features rather than artifacts from a specific imaging procedure.
exoALMA XII: Weighing and sizing exoALMA disks with rotation curve modelling
arXiv:2504.18726v1 Announce Type: new
Abstract: The exoALMA large program offers a unique opportunity to investigate the fundamental properties of protoplanetary disks, such as their masses and sizes, providing important insights in the mechanism responsible for the transport of angular momentum. In this work, we model the rotation curves of CO isotopologues $^{12}$CO and $^{13}$CO of ten sources within the exoALMA sample, and we constrain the stellar mass, the disk mass and the density scale radius through precise characterization of the pressure gradient and disk self gravity. We obtain dynamical disk masses for our sample measuring the self-gravitating contribution to the gravitational potential. We are able to parametrically describe their surface density, and all of them appear gravitationally stable. By combining dynamical disk masses with dust continuum emission data, we determine an averaged gas-to-dust ratio of approximately 400, not statistically consistent with the standard value of 100, assuming optically thin dust emission. In addition, the measurement of the dynamical scale radius allows for direct comparison with flux-based radii of gas and dust. This comparison suggests that substructures may influence the size of the dust disk, and that CO depletion might reconcile our measurements with thermochemical models. Finally, with the stellar mass, disk mass, scale radius, and accretion rate, and assuming self-similar evolution of the surface density, we constrain the effective $\alpha_S$ for these systems. We find a broad range of $\alpha_S$ values ranging between $10^{-5}$ and $10^{-2}$.
exoALMA. XVII. Characterizing the Gas Dynamics around Dust Asymmetries
arXiv:2504.20023v1 Announce Type: new
Abstract: The key planet-formation processes in protoplanetary disks remain an active matter of research. One promising mechanism to radially and azimuthally trap millimeter-emitting dust grains, enabling them to concentrate and grow into planetesimals, is anticyclonic vortices. While dust observations have revealed crescent structures in several disks, observations of their kinematic signatures are still lacking. Studying the gas dynamics is, however, essential to confirm the presence of a vortex and understand its dust trapping properties. In this work, we make use of the high-resolution and sensitivity observations conducted by the exoALMA large program to search for such signatures in the $^{12}$CO and $^{13}$CO molecular line emission of four disks with azimuthal dust asymmetries: HD 135344B, HD 143006, HD 34282, and MWC 758. To assess the vortex features, we constructed an analytical vortex model and performed hydrodynamical simulations. For the latter, we assumed two scenarios: a vortex triggered at the edge of a dead zone and of a gap created by a massive embedded planet. These models reveal a complex kinematical morphology of the vortex. When compared to the data, we find that none of the sources show a distinctive vortex signature around the dust crescents in the kinematics.
exoALMA IV: Substructures, Asymmetries, and the Faint Outer Disk in Continuum Emission
arXiv:2504.18725v1 Announce Type: new
Abstract: The exoALMA Large Program targeted a sample of 15 disks to study gas dynamics within these systems, and these observations simultaneously produced continuum data at 0.9 mm (331.6 GHz) with exceptional surface brightness sensitivity at high angular resolution. To provide a robust characterization of the observed substructures, we performed a visibility space analysis of the continuum emission from the exoALMA data, characterizing axisymmetric substructures and nonaxisymmetric residuals obtained by subtracting an axisymmetric model from the observed data. We defined a nonaxisymmetry index and found that the most asymmetric disks predominantly show an inner cavity and consistently present higher values of mass accretion rate and near-infrared excess. This suggests a connection between outer disk dust substructures and inner disk properties. The depth of the data allowed us to describe the azimuthally averaged continuum emission in the outer disk, revealing that larger disks (both in dust and gas) in our sample tend to be gradually tapered compared to the sharper outer edge of more compact sources. Additionally, the data quality revealed peculiar features in various sources, such as shadows, inner disk offsets, tentative external substructures, and a possible dust cavity wall.
exoALMA. X. channel maps reveal complex $^{12}$CO abundance distributions and a variety of kinematic structures with evidence for embedded planets
arXiv:2504.18717v1 Announce Type: new
Abstract: We analyze the $^{12}$CO $J=3-2$ data cubes of the disks in the exoALMA program. 13/15 disks reveal a variety of kinematic substructures in individual channels: large-scale arcs or spiral arms, localized velocity kinks, and/or multiple faints arcs that appear like filamentary structures on the disk surface. We find kinematic signatures that are consistent with planet wakes in six disks: AA Tau, SY Cha, J1842, J1615, LkCa 15 and HD 143006. Comparison with hydrodynamical and radiative transfer simulations suggests planets with orbital radii between 80 and 310\,au and masses between 1 and 5 M$_\mathrm{Jup}$. Additional kinematic substructures limit our ability to place tight constraints on the planet masses. When the inclination is favorable to separate the upper and lower surfaces (near 45$^\mathrm{o}$, i.e. in 7/15 disks), we always detect the vertical CO snowline and find that the $^{12}$CO freeze-out is partial in the disk midplane, with a depletion factor of $\approx 10^{-3}$ - $10^{-2}$ compared to the warm molecular layer. In these same seven disks, we also systematically detect evidence of CO desorption in the outer regions.