Exploring Spatially-Resolved Metallicities, Dynamics and Outflows in Low-Mass Galaxies at $z \sim 7.6$
arXiv:2507.14936v1 Announce Type: new
Abstract: A majority of JWST/NIRSpec/IFU studies at high redshifts to date have focused on UV-bright or massive objects, while our understanding of low-mass galaxies at early cosmic times remains limited. In this work, we present NIRSpec/IFS high-resolution observations of two low-mass ($M_* < 10^9 \ M_\odot$), low-metallicity ($[12 + \log(\text{O/H})] < 8$) galaxies at $z \sim 7.66$ with evidence of hosting AGN. Using spatially-resolved maps of rest-frame optical emission lines, we find flat metallicity profiles, indicative of ISM redistribution by outflows or past merging. We identify kinematical components decoupled from galactic rotation with velocities of $\sim 250 - 500 \ \text{km} \ \text{s}^{-1}$. We argue that these components are likely tracing outflows, possibly AGN-driven, for which we infer outflow rates of $\sim 21 - 40 \ M_\odot \ \text{yr}^{-1}$, suggesting they may suppress future star formation. We compare our observational results to those from the new large-volume AESOPICA simulations, which fully incorporate different models of black hole growth and AGN feedback. We find that our observational results of $v_\text{out}/v_\text{esc}$ and $\dot{M}_\text{out}$/SFR are consistent with the AGN population in these simulations, hinting that AGN-driven feedback may contribute to quenching both in our systems and in a wider population of low-mass galaxies in the early Universe. This novel study demonstrates the necessity of deep IFU observations to decompose the complex kinematics and morphology of high-$z$ galaxies, trace outflows, and constrain the effect of feedback in these low-mass systems.
Missing baryons recovered: a measurement of the gas fraction in galaxies and groups with the kinematic Sunyaev-Zel'dovich effect and CMB lensing
arXiv:2507.14136v1 Announce Type: new
Abstract: We present new constraints on the halo masses and matter density profiles of DESI galaxy groups by cross-correlating samples of Luminous Red Galaxies (LRGs) and Bright Galaxy Survey (BGS) galaxies with the publicly available CMB lensing convergence map from ACT DR6. This provides an independent, lensing-based calibration of halo masses, complementary to methods relying on clustering or dynamics. We derive constraints on the mean halo mass for three DESI-selected samples, finding $\log(M_{\rm halo}/(M_\odot/h)) \approx 13.18$, 13.03 and 13.02 for the Main LRG, Extended LRG, and BGS samples, respectively. Using a halo model approach, we also compare the projected galaxy-matter density profiles with previously reported gas profiles inferred from measurements of the kinematic Sunyaev-Zel'dovich (kSZ) effect. This work addresses one of the key uncertainties in interpreting kSZ signals -- the unknown host halo mass distribution -- by providing an independent and consistent mass calibration. The agreement between the gas and total mass profiles at large aperture suggests that sufficiently far from the group center (2--3 virial radii), we recover all the baryons, offering a resolution to the 'missing baryon' problem. We further study the cumulative gas fractions for all galaxies as well as for the most massive galaxy groups in the sample ($\log(M_{\rm halo}/(M_\odot/h)) \approx 13.5$), finding values that are physically sensible and in agreement with previous findings using kSZ and X-ray data: compared to the TNG300 simulation, the observed gas fractions are systematically lower at fixed radius by $\gtrsim$4$\sigma$, providing compelling, independent evidence for stronger baryonic feedback in the real Universe. These findings highlight the power of combining CMB lensing with galaxy surveys to probe the interplay between baryons and dark matter in group-sized halos.
Simulation-based inference with deep ensembles: Evaluating calibration uncertainty and detecting model misspecification
arXiv:2507.13495v1 Announce Type: new
Abstract: Simulation-Based Inference (SBI) offers a principled and flexible framework for conducting Bayesian inference in any situation where forward simulations are feasible. However, validating the accuracy and reliability of the inferred posteriors remains a persistent challenge. In this work, we point out a simple diagnostic approach rooted in ensemble learning methods to assess the internal consistency of SBI outputs that does not require access to the true posterior. By training multiple neural estimators under identical conditions and evaluating their pairwise Kullback-Leibler (KL) divergences, we define a consistency criterion that quantifies agreement across the ensemble. We highlight two core use cases for this framework: a) for generating a robust estimate of the systematic uncertainty in parameter reconstruction associated with the training procedure, and b) for detecting possible model misspecification when using trained estimators on real data. We also demonstrate the relationship between significant KL divergences and issues such as insufficient convergence due to, e.g., too low a simulation budget, or intrinsic variance in the training process. Overall, this ensemble-based diagnostic framework provides a lightweight, scalable, and model-agnostic tool for enhancing the trustworthiness of SBI in scientific applications.
ChemZz I: Comparing Oxygen and Iron Abundance Patterns in the Milky Way, the Local Group and Cosmic Noon
arXiv:2507.14094v1 Announce Type: new
Abstract: Our understanding of the chemical evolution of galaxies has advanced through measurements from both distant galaxies across redshift, and our own Milky Way (MW). To form a comprehensive picture, it is essential to unify these constraints, placing them on a common scale and parlance and to understand their systematic differences. In this study, we homogenize oxygen and iron measurements from star-forming galaxies at Cosmic Noon ($z{\sim}2-3$) with resolved stellar abundances from the Local Group. The MW is divided into four components, assuming the outer halo is dominated by debris from the Gaia-Sausage-Enceladus (GSE) progenitor. After converting all abundances to a common Solar scale, we identify clear $\alpha$- and iron-enhancement trends with mass in the $z{\sim}2-3$ galaxies and find good agreement between these galaxies and the MW high-$\alpha$ disc in [O/Fe] vs. [Fe/H]. We also find excellent agreement between the [O/Fe] trends seen in the MW high- and low-$\alpha$ discs with O-abundances seen in old and young planetary nebulae in M~31 respectively, supporting the existence of $\alpha$-bimodality in the inner regions of M~31. Finally, we use globular cluster ages to project the MW and GSE back in time to $z{\sim}3$ and find that their estimated mass, oxygen and iron abundances are strikingly consistent with the mass-metallicity relation of star-forming galaxies at $z{\sim}3$. In the future, increased transparency around the choice of Solar scale and abundance methodology will make combining chemical abundances easier -- contributing to a complete picture of the chemical evolution of all galaxies.
A water-rich interior in the temperate sub-Neptune K2-18 b revealed by JWST
arXiv:2507.12622v1 Announce Type: new
Abstract: Temperate sub-Neptunes are compelling targets for detecting liquid-water oceans beyond the Solar System. If water-rich and lacking massive hydrogen-helium envelopes, these planets could sustain liquid layers beneath their atmospheres despite sizes larger than Earth. Previous observations of the temperate sub-Neptune K2-18 b revealed an H2-dominated atmosphere rich in CH4, with moderate evidence for CO2 and tentative signs of dimethyl sulfide (DMS). Here we present four new JWST/NIRSpec transit observations of K2-18 b. The resulting high-precision transmission spectrum robustly detects both CH4 and CO2, precisely measuring their abundances and firmly establishing the planet's water-rich nature: either a thick envelope with >10% H2O by volume or a thin atmosphere above a liquid-water ocean. The spectrum reveals no detectable H2O, NH3, or CO. The absence of atmospheric water vapor suggests an efficient cold trap, while the nondetections of NH3 and CO support the scenario of a small H2-rich atmosphere overlying a liquid reservoir. However, alternative models that include these gases can also reproduce the spectrum within uncertainties, highlighting the need for deeper observations. The spectrum only contains marginal signals of DMS, methyl mercaptan (CH3SH), and nitrous oxide (N2O), with none exceeding 3 sigma in model preference and all falling below ~2 sigma without imposing a strong super-Rayleigh haze. Meanwhile, our self-consistent photochemical models show that DMS and CH3SH may form abiotically in massive H2-rich atmospheres of high metallicity, making it important to consider additional indicators for their potential use as biosignatures. K2-18 b, a cool, water-rich world, stands out as one of the most promising temperate sub-Neptunes for exploring the emergence of liquid-water environments in non-Earth-like planets, motivating further characterization of its atmosphere and interior.
SpecDis: Value added distance catalogue for 4 million stars from DESI Year-1 data
arXiv:2503.02291v3 Announce Type: replace
Abstract: We present the SpecDis value added stellar distance catalog accompanying DESI DR1. SpecDis trains a feed-forward Neural Network (NN) with Gaia parallaxes and gets the distance estimates. To build up unbiased training sample, we do not apply selections on parallax error or signal-to-noise (S/N) of the stellar spectra, and instead we incorporate parallax error into the loss function. Moreover, we employ Principal Component Analysis (PCA) to reduce the noise and dimensionality of stellar spectra. Validated by independent external samples of member stars with precise distances from globular clusters (GCs), dwarf galaxies, stellar streams, combined with blue horizontal branch (BHB) stars, we demonstrate that our distance measurements show no significant bias up to 100kpc, and are much more precise than Gaia parallax beyond 7kpc. The median distance uncertainties are 23%, 19%, 11% and 7% for S/N $<$ 20, 20 $\leq$ S/N$<$ 60, 60 $\leq$ S/N $<$ 100 and S/N $\geq$ 100. Selecting stars with $\log g<3.8$ and distance uncertainties smaller than 25%, we have more than 74,000 giant candidates within 50kpc to the Galactic center and 1,500 candidates beyond this distance. Additionally, we develop a Gaussian mixture model to identify unresolvable equal-mass binaries by modeling the discrepancy between the NN-predicted and the geometric absolute magnitudes from Gaia parallaxes and identify 120,000 equal-mass binary candidates. Our final catalog provides distances and distance uncertainties for $>$ 4 million stars, offering a valuable resource for Galactic astronomy.
BEBOP VII. SOPHIE discovery of BEBOP-3b, a circumbinary giant planet on an eccentric orbit
arXiv:2506.14615v2 Announce Type: replace
Abstract: Planetary systems orbiting close binaries are valuable testing grounds for planet formation and migration models. More detections with good mass measurements are needed. We present a new planet discovered during the BEBOP survey for circumbinary exoplanets using radial velocities. We use data taken with the SOPHIE spectrograph at the Observatoire de Haute-Provence, and perform a spectroscopic analysis to obtain high precision radial velocities. This planet is the first radial velocity detection of a previously unknown circumbinary system. The planet has a mass of $0.56$ $M_{Jup}$ and orbits its host binary in 550 days with an eccentricity of 0.25. Compared to most of the previously known circumbinary planets, BEBOP-3b has a long period (relative to the binary) and a high eccentricity. There also is a candidate outer planet with a $\sim1400$ day orbital period. We test the stability of potential further candidate signals inside the orbit of BEBOP-3b, and demonstrate that there are stable orbital solutions for planets near the instability region which is where the Kepler circumbinary planets are located. We also use our data to obtain independent dynamical masses for the two stellar components of the eclipsing binary using High Resolution Cross-Correlation Spectroscopy (HRCCS), and compare those results to a more traditional approach, finding them compatible with one another.
A young gas giant and hidden substructures in a protoplanetary disk
arXiv:2507.11612v1 Announce Type: new
Abstract: The detection of planets in protoplanetary disks has proven to be extremely challenging. In contrast, rings and gaps, usually attributed to planet-disk interactions, have been found in virtually every large protoplanetary (Class II) disk observed at 0.9-1.3 mm with sufficient spatial resolution (5 au). The nearby disk around MP Mus (PDS 66) stands as an exception to this rule, and its advanced age (7-10 Myr) is particularly difficult to reconcile with its apparent lack of substructures. Despite the disk's smooth appearance, Gaia data of MP Mus show a significant proper motion anomaly, signalling the presence of a companion. Here we present ALMA 3 mm observations of the system with comparable high spatial resolution to previous 1.3 mm data. The new observations pierce deeper into the disk midplane and reveal an inner cavity (<3 au) and a ring at 10 au. The disk structure inferred from ALMA observations narrows down the properties of the companion to a gas giant orbiting at 1-3 au, and hydrodynamic simulations further confirm that such a planet can produce the observed cavity. These independent pieces of evidence constitute an indirect but compelling detection of an exoplanet within a protoplanetary disk using Gaia astrometry. MP Mus is the first system in which undetected substructures are revealed thanks to the lower optical depths at longer wavelengths, suggesting that rings and gaps are even more abundant than what is currently believed.
On Hot Jupiters and Stellar Clustering: The Role of Host Star Demographics
arXiv:2507.11225v1 Announce Type: new
Abstract: The variation in hot Jupiter (HJ) occurrence across stellar environments holds clues as to the dominant formation channels of these extreme planets. Recent studies suggest HJ hosts preferentially reside in regions of high phase space density, possibly reflecting natal environmental conditions. These regions are kinematically cold (|v| < 40 km/s), prompting the alternative hypothesis that the correlation reflects an age bias: planetary systems in overdensities are systematically younger and therefore less likely to have undergone tidal inspiral and destruction. We test whether the apparent excess of HJs in phase space overdensities arises from differences in intrinsic host properties -- mass, metallicity, age -- which may correlate with phase space density or whether there is evidence for an additional environmental effect. We derive homogeneous estimates for the mass, metallicity, and age of planet-hosting stars using 2MASS and Gaia DR3 photometry, parallaxes, and self-consistent spectroscopic and spectrophotometric observables. In a sample of 2265 confirmed exoplanet hosts, we find a significant relative excess of HJs orbiting stars in overdense regions. However, we also find that overdensities preferentially host younger, more massive, and more metal-rich stars compared to underdensities. After correcting for these differences, either by detrending the phase space density against age or by matching host properties across subsamples, we find no significant differences in the HJ populations between over- and underdense regions. Our results suggest that the previously reported correlation between HJ occurrence and phase space density is driven by underlying differences in host star demographics rather than an intrinsic environmental effect.
Euclid VI. NISP-P optical ghosts
arXiv:2507.11072v1 Announce Type: new
Abstract: The Near-Infrared Spectrometer and Photometer (NISP) onboard Euclid includes several optical elements in its path, which introduce artefacts into the data from non-nominal light paths. To ensure uncontaminated source photometry, these artefacts must be accurately accounted for. This paper focuses on two specific optical features in NISP's photometric data (NISP-P): ghosts caused by the telescope's dichroic beamsplitter, and the bandpass filters within the NISP fore-optics. Both ghost types exhibit a characteristic morphology and are offset from the originating stars. The offsets are well modelled using 2D polynomials, with only stars brighter than approximately 10 magnitudes in each filter producing significant ghost contributions. The masking radii for these ghosts depend on both the source-star brightness and the filter wavelength, ranging from 20 to 40 pixels. We present the final relations and models used in the near-infrared (NIR) data pipeline to mask these ghosts for Euclid's Quick Data Release (Q1).
The HOSTS Survey: Suspected variable dust emission and constraints on companions around {\theta} Boo
arXiv:2505.07585v2 Announce Type: replace
Abstract: During the HOSTS survey by the LBTI, an excess emission from the main sequence star {\theta} Boo (F7V spectral type, 14.5pc distance) was observed. This excess indicates the presence of exozodiacal dust near the habitable zone (HZ) of the star. Previous observations from Spitzer and Herschel showed no sign of outer cold dust within their respective detection limits. Additional nulling and high-contrast AO observations were taken to spatially constrain the dust distribution, search for variability, and directly image potential companions in the system. This study presents the results of these observations and provides an interpretation of the inner system's architecture. The star was observed using the LBTI's N'-band nulling mode during three epochs in 2017, 2018, and 2023. The dust distribution is modeled and constrained for each epoch using the standard LBTI nulling pipeline, assuming a vertically thin disk with a face-on inclination. In addition, high-contrast AO observations are performed in the L'-band and H-band to constrain the presence of substellar companions around the star. Several solutions are found for the dust distribution, and for each epoch. However, the LBTI nulling observations are not able to discriminate between them. Using the upper limits from previous observations, we constrain the representative size of the dust grains around 3-5$\mu$m. A tentative increase in dust brightness is also measured at the Earth-equivalent insolation distance between 2017 and 2023. Several options are considered to explain the origin of the observed dust and its variability, but no clear sources could be identified from the current observations. Partly because our high-contrast AO observations could only constrain the presence of companions down to $11M_\text{Jup}$ at 1.3" separation.
Alleviating the Hubble tension with Torsion Condensation (TorC)
arXiv:2507.09228v1 Announce Type: new
Abstract: Constraints on the cosmological parameters of Torsion Condensation (TorC) are investigated using Planck 2018 Cosmic Microwave Background data. TorC is a case of Poincar\'e gauge theory -- a formulation of gravity motivated by the gauge field theories underlying fundamental forces in the standard model of particle physics. Unlike general relativity, TorC incorporates intrinsic torsion degrees of freedom while maintaining second-order field equations. At specific parameter values, it reduces to the $\Lambda$CDM model, providing a natural extension to standard cosmology. The base model of TorC introduces two parameters beyond those in $\Lambda$CDM: the initial value of the torsion scalar field and its time derivative -- one can absorb the latter by allowing the dark energy density to float. To constrain these parameters, `PolyChord` nested sampling algorithm is employed, interfaced via `Cobaya` with a modified version of `CAMB`. Our results indicate that TorC allows for a larger inferred Hubble constant, offering a potential resolution to the Hubble tension. Tension analysis using the $R$-statistic shows that TorC alleviates the statistical tension between the Planck 2018 and SH0Es 2020 datasets, though this improvement is not sufficient to decisively favour TorC over $\Lambda$CDM in a Bayesian model comparison. This study highlights TorC as a compelling theory of gravity, demonstrating its potential to address cosmological tensions and motivating further investigations of extended theories of gravity within a cosmological context. As current and upcoming surveys -- including Euclid, Roman Space Telescope, Vera C. Rubin Observatory, LISA, and Simons Observatory -- deliver data on gravity across all scales, they will offer critical tests of gravity models like TorC, making the present a pivotal moment for exploring extended theories of gravity.
The THESAN-ZOOM project: Mystery N/O more -- uncovering the origin of peculiar chemical abundances and a not-so-fundamental metallicity relation at $3<z<12$
arXiv:2507.08787v1 Announce Type: new
Abstract: We present an analysis of metallicities and chemical abundances at $3-0.6$) without the need for exotic yields in our chemical network. Instead, bursty star formation naturally generates order-of-magnitude excursions in N/O on $\lesssim$100 Myr timescales due to temporally differential galactic winds; after a starburst, stellar feedback expels gas, leaving a large population of asymptotic-giant-branch stars to dominate the enrichment of the relatively low-mass interstellar medium. NRGs lie below the main sequence and typically exhibit $\mathrm{EW}[H$\beta$]\lesssim40$ \r{A}, in apparent tension with observed high-EW NRGs. This tension is reconciled if observed NRGs are in the initial stages of a subsequent starburst, illuminating previously enriched gas, which is supported by the finding of high SFR surface density nitrogen-rich giant molecular clouds.
Constraining the survival of HCN during cometary impacts
arXiv:2507.08727v1 Announce Type: new
Abstract: Cometary impacts have been invoked as an atmosphere-independent method of stockpiling hydrogen cyanide (HCN), a key prebiotic feedstock molecule, into environments favourable for the onset of prebiotic chemistry on the early Earth. This work revisits the prospects for cometary delivery of HCN through new impacts simulations of idealised cometary bodies using the shock physics code iSALE combined with simple chemical modelling. Using temperature and pressure profiles for material within spherical, non-porous comets with a high resolution of Lagrangian tracer particles, we assess the survival rate of HCN across a range of impact velocities, sizes and angles, assuming both steady state and equilibrium chemistry. We find that HCN survival is extremely limited at impact velocities above the escape velocity of the Earth, unless the impact occurs at extreme obliquity ($\theta \sim 15^\circ$). We present a parametrisation of the survival of HCN as a function of impact velocity, angle, and cometary diameter, which provides an upper limit to survival in more realistic scenarios to aid with future studies investigating the role of comets in the origins of life. Although successful HCN delivery may be possible in our idealised model, we neglect to consider the effect of atmospheric passage and our results suggest that delivery alone is not likely to be sufficient for the onset of prebiotic chemistry.
Multi-frequency analysis of the ALMA and VLA high resolution continuum observations of the substructured disc around CI Tau. Preference for sub-mm-sized low-porosity amorphous carbonaceous grains
arXiv:2507.08797v1 Announce Type: new
Abstract: (Abridged) We present high angular resolution and sensitivity ALMA 3.1 mm and VLA 9.1 mm observations of the disc around CI Tau. These new data were combined with similar-resolution archival ALMA 0.9 and 1.3 mm observations and new and archival VLA 7.1 mm, 2.0, 3.0, and 6.0 cm photometry to study the properties of dust in this system. At wavelengths <3.1 mm, CI Tau's continuum emission is very extended and highly substructured (with three gaps, four rings, and two additional gap-ring pairs identified by non-parametric visibility modelling). Instead, the VLA 9.1 mm data are dominated by a bright central component, only partially (< 50%) due to dust emission, surrounded by a marginally detected, faint, and smooth halo. We fitted the ALMA and VLA 9.1 mm data together, adopting a physical model that accounts for the effects of dust absorption and scattering. For our fiducial dust composition ("Ricci" opacities), we retrieved a flat maximum grain size distribution across the disc radius of $(7.1\pm0.8)\times10^{-2}$ cm, that we tentatively attributed to fragmentation of fragile dust or bouncing. We tested, for the first time, the dependence of our results on the adopted dust composition model to assess which mixture can best reproduce the observations. We found that the "Ricci" opacities work better than the traditionally adopted "DSHARP" ones, while graphite-rich mixtures perform significantly worse. We also show that, for our fiducial composition, the data prefer low-porosity (< 70%) grains, in contrast with claims of highly porous aggregates in younger sources, which we tentatively justified by time-dependent compaction. Our results are in line with constraints from disc population synthesis models and naturally arise from CI Tau's peculiar spectral behaviour, making this disc an ideal target for deeper cm-wavelength and dust polarisation follow-ups.
CLASS_SZ II: Notes and Examples of Fast and Accurate Calculations of Halo Model, Large Scale Structure and Cosmic Microwave Background Observables
arXiv:2507.07346v2 Announce Type: replace
Abstract: These notes are very much work-in-progress and simply intended to showcase, in various degrees of details (and rigour), some of the cosmology calculations that class_sz can do. We describe the class_sz code in C, Python and Jax. Based on the Boltzmann code class, it can compute a wide range of observables relevant to current and forthcoming CMB and Large Scale Structure surveys. This includes galaxy shear and clustering, CMB lensing, thermal and kinetic Sunyaev and Zeldovich observables, Cosmic Infrared Background, cross-correlations and three-point statistics. Calculations can be done either within the halo model or the linear bias model. For standard $\Lambda$CDM cosmology and extensions, class_sz uses high-accuracy cosmopower emulators of the CMB and matter power spectrum to accelerate calculations. With this, along with efficient numerical integration routines, most class_sz output can be obtained in less than 500 ms (CMB $C_\ell$'s or matter $P(k)$ take $\mathcal{O}(1\mathrm{ms})$), allowing for fast or ultra-fast parameter inference analyses. Parts of the calculations are "jaxified", so the software can be integrated into differentiable pipelines.
CLASS_SZ II: Notes and Examples of Fast and Accurate Calculations of Halo Model, Large Scale Structure and Cosmic Microwave Background Observables
arXiv:2507.07346v1 Announce Type: new
Abstract: These notes are very much work-in-progress and simply intended to showcase, in various degrees of details (and rigour), some of the cosmology calculations that class_sz can do. We describe the class_sz code in C, Python and Jax. Based on the Boltzmann code class, it can compute a wide range of observables relevant to current and forthcoming CMB and Large Scale Structure surveys. This includes galaxy shear and clustering, CMB lensing, thermal and kinetic Sunyaev and Zeldovich observables, Cosmic Infrared Background, cross-correlations and three-point statistics. Calculations can be done either within the halo model or the linear bias model. For standard $\Lambda$CDM cosmology and extensions, class_sz uses high-accuracy cosmopower emulators of the CMB and matter power spectrum to accelerate calculations. With this, along with efficient numerical integration routines, most class_sz output can be obtained in less than 500 ms (CMB $C_\ell$'s or matter $P(k)$ take $\mathcal{O}(1\mathrm{ms})$), allowing for fast or ultra-fast parameter inference analyses. Parts of the calculations are "jaxified", so the software can be integrated into differentiable pipelines.
Cool Gas in the Circumgalactic Medium of Massive Post Starburst Galaxies
arXiv:2506.22287v2 Announce Type: replace
Abstract: Observing the interplay between galaxies and their gaseous surroundings is crucial for understanding how galaxies form and evolve, including the roles of long-lived cool gas reservoirs, starburst and AGN driven outflows. We use stacked Mg II absorption lines in the spectra of background quasars to study the cool gas out to 9Mpc from massive quiescent, star-forming and post-starburst galaxies with stellar masses $\log_{10}(M_{\mathrm{gal}}/M_\odot) \gtrsim 11.4$ and $0.4 \lesssim z \lesssim 0.8$ selected from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies. Consistent with previous studies, we observe a decline in absorption strength indicating a decrease in cool gas content with increasing distance from the galaxies, as well as decreasing star formation rate of the galaxies. Beyond 1Mpc, this decline levels off to the same absorption strength in all galaxy types, suggesting a transition from the circumgalactic medium (CGM) to the intergalactic medium (IGM) at approximately the virial radius of the host dark matter haloes. We find that post-starburst galaxies, that have experienced a recent burst of star formation that has rapidly quenched, exhibit significantly stronger Mg II absorption within 1Mpc than star-forming or quiescent galaxies of the same stellar mass. Because post-starburst galaxies are a potentially significant pathway for the formation of quiescent elliptical galaxies, our results have wide reaching implications for understanding the mechanisms involved in quenching star formation in galaxies. We speculate that the excess cool gas absorption out to 1Mpc around post-starburst galaxies is related to their observed high velocity ($\sim$1000\,km/s) cool gas outflows. Thus, strong, short-lived bursts of star formation impact the CGM around galaxies on Mpc distances and Gyr timescales.
Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery
arXiv:2507.07257v1 Announce Type: cross
Abstract: We present a multi-agent system for automation of scientific research tasks, cmbagent. The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.
High-Resolution Optical IFU Spectroscopy of the Complex Galaxy Merger II Zw 096
arXiv:2507.06339v1 Announce Type: new
Abstract: Luminous and Ultra-luminous IR galaxies ((U)LIRGs) are critical for investigating feedback mechanisms due to a combination of intense star formation (SF) episodes and active galactic nuclei (AGN), particularly in the context of complex galaxy interactions. We conduct a detailed analysis of the II ZW 096 merging system using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), combining high-resolution Narrow Field Mode (NFM) and large-area Wide Field Mode (WFM) observations. We mapped the morphology, kinematics, and ionizing radiation of the system's gas by fitting atomic emission lines and the optical continuum. We identify three or more distinct galaxies within II ZW 096, revealing rotational patterns and complex interactions consistent with a collapsing small galaxy group. The kinematics and ionization structures suggest high star formation rates and shock-driven processes, which align with this proposed scenario. Focusing on the D1 compact region, which contributes 40-70% of the system's IR emission, and combining information from archival multi-wavelength observations, we find strong evidence of a heavily obscured AGN powering it. Our analysis of the internal structure, interactions, and merger state of II ZW 096 offers novel insights into the galaxy evolution processes in this dynamic and highly chaotic system