The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey
arXiv:2502.00946v2 Announce Type: replace
Abstract: We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio $r$. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels.
The JWST/AURORA Survey: Multiple Balmer and Paschen Emission Lines for Individual Star-forming Galaxies at z=1.5-4.4. I. A Diversity of Nebular Attenuation Curves and Evidence for Non-Unity Dust Covering Fractions
arXiv:2506.17396v1 Announce Type: new
Abstract: We present the nebular attenuation curves and dust covering fractions for 24 redshift z=1.5-4.4 star-forming galaxies using multiple Balmer and Paschen lines from the JWST/AURORA survey. Nebular reddening derived from Paschen lines exceeds that from Balmer lines for at least half the galaxies in the sample when assuming the commonly-adopted Galactic extinction curve, implying the presence of optically-thick star formation. The nebular attenuation curves exhibit a broad range of normalizations (Rv ~ 3.2-16.4). Motivated by the offsets in reddening deduced from the Balmer and Paschen lines, and the high Rv values for the individual nebular attenuation curves, both of which suggest variations in the dust-stars geometry, we propose a model with a subunity dust covering fraction (fcov). Fitting such a model to the HI recombination line ratios indicates fcov ~ 0.6-1.0. The normalizations of the nebular attenuation curves, Rv, are driven primarily by fcov and the mix of optically-thick and thin OB associations. Thus, the diversity of nebular attenuation curves can be accommodated by assuming dust grain properties similar to that of Milky Way sightlines but with a subunity covering fraction of dust. Integrated measurements of multiple Balmer and Paschen lines can be used to place novel constraints on the dust covering fraction towards OB associations. These, in turn, provide new avenues for exploring the role of dust and gas covering fraction in a number of relevant aspects of high-redshift galaxies, including the impact of stellar feedback on ISM porosity and the escape of Ly-alpha and Lyman continuum radiation.
A 16 Myr super-Neptune in Upper-Centaurus Lupus and a preliminary survey of transiting planets in Sco-Cen with TESS
arXiv:2502.00576v3 Announce Type: replace
Abstract: Measuring the properties of planets younger than about 50 Myr helps to test different planetary formation and evolution models. NASA's Transiting Exoplanet Survey Satellite (TESS) has observed nearly the entire sky, including a wide range of star-forming regions and young stellar clusters, expanding our census of the newborn planet population. In this work, we present the discovery of the TIC 88785435 planetary system located in the Upper-Centaurus Lupus (UCL) region of the Scorpius-Centaurus OB association (Sco-Cen) and a preliminary survey of the planet population within Sco-Cen. TIC 88785435 is a pre-main sequence, K7V dwarf ($M_\star = 0.72M_\odot$, $R_\star = 0.91R_\odot$, $T_\mathrm{eff}$ = 3998K, V = 11.7 mag) located within the bounds of UCL. We investigate the distribution of rotation periods measured from the TESS long-cadence data and the Halpha and Li abundances from the spectra of TIC 88785435. TESS long-candence data reveal that TIC 88785435 hosts a transiting super-Neptune ($R_b = 5.03R_\oplus$, P = 10.51 days), TIC 88785435 b. Ground-based follow-up validates the planetary nature of TIC 88785435 b. Using the TESS data, we perform a preliminary survey to investigate how TIC 88785435 b compares to the population of newly born planets located within Sco-Cen.
Infall-driven gravitational instability in accretion discs
arXiv:2506.13701v2 Announce Type: replace
Abstract: Gravitational instability (GI) is typically studied in cooling-dominated discs, often modelled using simplified prescriptions such as $\beta$-cooling. In this paper, we investigate the onset and evolution of GI in accretion discs subject to continuous mass injection, combining 1D and 3D numerical simulations. We explore an alternative self-regulation mechanism in which mass replenishment drives the system toward marginal stability $Q\sim 1$. In this regime, the disc establishes a steady-state disc-to-star mass ratio, balancing the mass transported to the central object with that added to the disc. Our 3D simulations reveal that the general scaling predicted from the linear theory are respected, however there are important difference compared to the cooling case in terms of morphology and pattern speed. Unlike the flocculent spirals seen in cooling-driven instability, the power is concentrated towards the dominant modes in infall-driven spirals. Additionally, spiral waves generate at the mass injection location, and propagate at constant pattern speed, unlike in the cooling case. This suggests a fundamental difference in how mass-regulated and cooling-regulated discs behave and transport angular momentum.
The Orbit of WASP-4 b is in Decay
arXiv:2506.15022v1 Announce Type: new
Abstract: WASP-4 b is a hot Jupiter exhibiting a decreasing orbital period, prompting investigations into potential mechanisms driving its evolution. We analyzed 173 transit light curves, including 37 new observations, and derived mid-transit timings with EXOFAST, forming the most extensive TTV dataset for this system. Adding 58 literature timings and removing unreliable data, we constructed a TTV diagram with 216 points. Our analysis considered linear, quadratic, and apsidal motion models, with the quadratic model proving to be significantly superior in all model comparison statistics. We found no significant periodic signals in the data. The quadratic model allows us to infer a tidal quality factor of Q' ~ 80,000 from the orbital decay rate if this is due to stellar tides. Theoretical considerations indicate that such efficient dissipation is possible due to internal gravity waves in the radiative core of WASP-4, but only in our models with a more evolved host star, possibly near the end of its main-sequence lifetime, and with a larger radius than the observed one. Our main-sequence models produce only about a third of the required dissipation (Q' ~ 200,000 - 500,000). Therefore, the observed orbital decay can only be explained by a slightly larger or more evolved host, resembling the case for WASP-12. Our findings highlight the need for further stellar modeling and improvement in our current understanding of tidal dissipation mechanisms driving orbital decay in close-in exoplanetary systems.
The Second and Third Data Releases from the UKIRT Hemisphere Survey
arXiv:2506.14621v1 Announce Type: new
Abstract: This paper describes the second and third data releases (DR2 and DR3, respectively) from the ongoing United Kingdom Infrared Telescope (UKIRT) Hemisphere Survey (UHS). DR2 is primarily comprised of the $K$-band portion of the UHS survey, and was released to the public on June 1, 2023. DR3 mainly includes the $H$-band portion of the survey, with a public release scheduled for September 2025. The $H$- and $K$-band data releases complement the previous $J$-band data release (DR1) from 2018. The survey covers approximately 12,700 square degrees between declinations of 0 degrees and $+$60 degrees and achieves median 5$\sigma$ point source sensitivities of 19.0 mag and 18.0 mag (Vega) for $H$ and $K$, respectively. The data releases include images and source catalogs which include $\sim$581 million $H$-band detections and $\sim$461 million $K$-band detections. DR2 and DR3 also include merged catalogs, created by combining $J$- and $K$-band detections (DR2) and $J$-, $H$-, and $K$-band detections (DR3). The DR2 merged catalog has a total of $\sim$513 million sources, while the DR3 merged catalog contains $\sim$560 million sources.
Extreme AGN feedback in the fossil galaxy group SDSSTG 4436
arXiv:2506.13907v1 Announce Type: new
Abstract: Supermassive black hole feedback is the currently favoured mechanism to regulate the star formation rate of galaxies and prevent the formation of ultra-massive galaxies ($M_\star>10^{12}M_\odot$). However, the mechanism through which the outflowing energy is transferred to the surrounding medium strongly varies from one galaxy evolution model to another, such that a unified model for AGN feedback does not currently exist. The hot atmospheres of galaxy groups are highly sensitive laboratories of the feedback process, as the injected black hole energy is comparable to the binding energy of halo gas particles. Here we report multi-wavelength observations of the fossil galaxy group SDSSTG 4436. The hot atmosphere of this system exhibits a highly relaxed morphology centred on the giant elliptical galaxy NGC~3298. The X-ray emission from the system features a compact core ($<$10 kpc) and a steep increase in the entropy and cooling time of the gas, with the cooling time reaching the age of the Universe $\sim15$ kpc from the centre of the galaxy. The observed entropy profile implies a total injected energy of $\sim1.5\times10^{61}$ ergs, which given the high level of relaxation could not have been injected by a recent merging event. Star formation in the central galaxy NGC~3298 is strongly quenched and its stellar population is very old ($\sim$10.6 Gyr). The currently detected radio jets have low power and are confined within the central compact core. All the available evidence implies that this system was affected by giant AGN outbursts which excessively heated the neighbouring gas and prevented the formation of a self-regulated feedback cycle. Our findings imply that AGN outbursts can be energetic enough to unbind gas particles and lead to the disruption of cool cores.
BEBOP VII. SOPHIE discovery of BEBOP-3b, a circumbinary giant planet on an eccentric orbit
arXiv:2506.14615v1 Announce Type: new
Abstract: Planetary systems orbiting close binaries are valuable testing grounds for planet formation and migration models. More detections with good mass measurements are needed. We present a new planet discovered during the BEBOP survey for circumbinary exoplanets using radial velocities. We use data taken with the SOPHIE spectrograph at the Observatoire de Haute-Provence, and perform a spectroscopic analysis to obtain high precision radial velocities. This planet is the first radial velocity detection of a previously unknown circumbinary system. The planet has a mass of $0.56$ $M_{Jup}$ and orbits its host binary in 550 days with an eccentricity of 0.25. Compared to most of the previously known circumbinary planets, BEBOP-3b has a long period (relative to the binary) and a high eccentricity. There also is a candidate outer planet with a $\sim1400$ day orbital period. We test the stability of potential further candidate signals inside the orbit of BEBOP-3b, and demonstrate that there are stable orbital solutions for planets near the instability region which is where the Kepler circumbinary planets are located. We also use our data to obtain independent dynamical masses for the two stellar components of the eclipsing binary using High Resolution Cross-Correlation Spectroscopy (HRCCS), and compare those results to a more traditional approach, finding them compatible with one another.
Infall-driven gravitational instability in accretion discs
arXiv:2506.13701v1 Announce Type: new
Abstract: Gravitational instability (GI) is typically studied in cooling-dominated discs, often modelled using simplified prescriptions such as $\beta$-cooling. In this paper, we investigate the onset and evolution of GI in accretion discs subject to continuous mass injection, combining 1D and 3D numerical simulations. We explore an alternative self-regulation mechanism in which mass replenishment drives the system toward marginal stability $Q\sim 1$. In this regime, the disc establishes a steady-state disc-to-star mass ratio, balancing the mass transported to the central object with that added to the disc. Our 3D simulations reveal that the general scaling predicted from the linear theory are respected, however there are important difference compared to the cooling case in terms of morphology and pattern speed. Unlike the flocculent spirals seen in cooling-driven instability, the power is concentrated towards the dominant modes in infall-driven spirals. Additionally, spiral waves generate at the mass injection location, and propagate at constant pattern speed, unlike in the cooling case. This suggests a fundamental difference in how mass-regulated and cooling-regulated discs behave and transport angular momentum.
pop-cosmos: Insights from generative modeling of a deep, infrared-selected galaxy population
arXiv:2506.12122v1 Announce Type: new
Abstract: We present an extension of the pop-cosmos model for the evolving galaxy population up to redshift $z\sim6$. The model is trained on distributions of observed colors and magnitudes, from 26-band photometry of $\sim420,000$ galaxies in the COSMOS2020 catalog with Spitzer IRAC $\textit{Ch. 1}<26$. The generative model includes a flexible distribution over 16 stellar population synthesis (SPS) parameters, and a depth-dependent photometric uncertainty model, both represented using score-based diffusion models. We use the trained model to predict scaling relationships for the galaxy population, such as the stellar mass function, star-forming main sequence, and gas-phase and stellar metallicity vs. mass relations, demonstrating reasonable-to-excellent agreement with previously published results. We explore the connection between mid-infrared emission from active galactic nuclei (AGN) and star-formation rate, finding high AGN activity for galaxies above the star-forming main sequence at $1\lesssim z\lesssim 2$. Using the trained population model as a prior distribution, we perform inference of the redshifts and SPS parameters for 429,669 COSMOS2020 galaxies, including 39,588 with publicly available spectroscopic redshifts. The resulting redshift estimates exhibit minimal bias ($\text{median}[\Delta_z]=-8\times10^{-4}$), scatter ($\sigma_\text{MAD}=0.0132$), and outlier fraction ($6.19\%$) for the full $0
Emission-line Stacking of 21cm Intensity Maps with MeerKLASS: Inference Pipeline and Application to the L-band Deep-field Data
arXiv:2504.03908v2 Announce Type: replace
Abstract: We present a novel analysis of observational systematics through the emission-line stacking of the MeerKLASS L-band deep-field intensity maps, following the detection in arXiv:2407.21626. A stacking signal is obtained by stacking the 21cm intensity map cubelets around the galaxy positions from the GAMA survey at $0.39\lesssim z \lesssim0.46$. An extensive simulation framework is built to study the viability of the stacking detection, the covariance estimation, and the model inference, which are then applied to the data. The statistical significance of the detection is $8.66\sigma$ when averaged into an angular map, and $7.45\sigma$ when averaged into a spectrum. The stacked spectrum exhibits an oscillating component of systematics, and we provide evidence that these systematics are a convolutional effect on the map data. The oscillation frequency matches the diffraction from the secondary reflector into the primary beam of the MeerKAT telescope. Bayesian inference can be used to constrain the systematics and the average HI emission of the galaxies. The fitting of the parameters gives a constraint on the systematics frequency $\nu_{\rm sys}\,[{\rm MHz}] = 17.90^{+6.53}_{-4.27}$. The posterior of the systematics amplitude reaches the wide prior and gives $A_{\rm sys}=0.50^{+0.33}_{-0.33}$. A tentative measurement of the average HI mass of the sources is achieved at $\log_{10}[\langle M_{HI}\rangle/M_\odot ]=9.84^{+0.48}_{-0.59}$, which is an underestimation limited by the narrow redshift bin, the strong degeneracy with the systematics, and the low-density galaxy sample. These shortfalls will be resolved for future MeerKLASS data to enable accurate measurements of the HI density through stacking of intensity maps.
Euclid: Relativistic effects in the dipole of the 2-point correlation function
arXiv:2410.06268v2 Announce Type: replace
Abstract: Gravitational redshift and Doppler effects give rise to an antisymmetric component of the galaxy correlation function when cross-correlating two galaxy populations or two different tracers. In this paper, we assess the detectability of these effects in the Euclid spectroscopic galaxy survey. We model the impact of gravitational redshift on the observed redshift of galaxies in the Flagship mock catalogue using a Navarro-Frenk-White profile for the host haloes. We isolate these relativistic effects, largely subdominant in the standard analysis, by splitting the galaxy catalogue into two populations of faint and bright objects and estimating the dipole of their cross-correlation in four redshift bins. In the simulated catalogue, we detect the dipole signal on scales below $30\,h^{-1}{\rm Mpc}$, with detection significances of $4\,\sigma$ and $3\,\sigma$ in the two lowest redshift bins, respectively. At higher redshifts, the detection significance drops below $2\,\sigma$. Overall, we estimate the total detection significance in the Euclid spectroscopic sample to be approximately $6\,\sigma$. We find that on small scales, the major contribution to the signal comes from the nonlinear gravitational potential. Our study on the Flagship mock catalogue shows that this observable can be detected in Euclid Data Release 2 and beyond.
Euclid preparation. Accurate and precise data-driven angular power spectrum covariances
arXiv:2506.09118v1 Announce Type: new
Abstract: We develop techniques for generating accurate and precise internal covariances for measurements of clustering and weak lensing angular power spectra. These methods are designed to produce non-singular and unbiased covariances for Euclid's large anticipated data vector and will be critical for validation against observational systematic effects. We construct jackknife segments that are equal in area to high precision by adapting the binary space partition algorithm to work on arbitrarily shaped regions on the unit sphere. Jackknife estimates of the covariances are internally derived and require no assumptions about cosmology or galaxy population and bias. Our covariance estimation, called DICES (Debiased Internal Covariance Estimation with Shrinkage), first estimates a noisy covariance through conventional delete-1 jackknife resampling. This is followed by linear shrinkage of the empirical correlation matrix towards the Gaussian prediction, rather than linear shrinkage of the covariance matrix. Shrinkage ensures the covariance is non-singular and therefore invertible, critical for the estimation of likelihoods and validation. We then apply a delete-2 jackknife bias correction to the diagonal components of the jackknife covariance that removes the general tendency for jackknife error estimates to be biased high. We validate internally derived covariances, which use the jackknife resampling technique, on synthetic Euclid-like lognormal catalogues. We demonstrate that DICES produces accurate, non-singular covariance estimates, with the relative error improving by $33\%$ for the covariance and $48\%$ for the correlation structure in comparison to jackknife estimates. These estimates can be used for highly accurate regression and inference.
Euclid preparation: The NISP spectroscopy channel, on ground performance and calibration
arXiv:2506.08378v1 Announce Type: new
Abstract: ESA's Euclid cosmology mission relies on the very sensitive and accurately calibrated spectroscopy channel of the Near-Infrared Spectrometer and Photometer (NISP). With three operational grisms in two wavelength intervals, NISP provides diffraction-limited slitless spectroscopy over a field of $0.57$ deg$^2$. A blue grism $\text{BG}_\text{E}$ covers the wavelength range $926$--$1366$\,nm at a spectral resolution $R=440$--$900$ for a $0.5''$ diameter source with a dispersion of $1.24$ nm px$^{-1}$. Two red grisms $\text{RG}_\text{E}$ span $1206$ to $1892$\,nm at $R=550$--$740$ and a dispersion of $1.37$ nm px$^{-1}$. We describe the construction of the grisms as well as the ground testing of the flight model of the NISP instrument where these properties were established.
Constraints on cosmology and baryonic feedback with joint analysis of Dark Energy Survey Year 3 lensing data and ACT DR6 thermal Sunyaev-Zel'dovich effect observations
arXiv:2506.07432v1 Announce Type: new
Abstract: We present a joint analysis of weak gravitational lensing (shear) data obtained from the first three years of observations by the Dark Energy Survey and thermal Sunyaev-Zel'dovich (tSZ) effect measurements from a combination of Atacama Cosmology Telescope (ACT) and Planck data. A combined analysis of shear (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) can jointly probe both the distribution of matter and the thermodynamic state of the gas, accounting for the correlated effects of baryonic feedback on both observables. We detect the shear$~\times~$tSZ cross-correlation at a 21$\sigma$ significance, the highest to date, after minimizing the bias from cosmic infrared background leakage in the tSZ map. By jointly modeling the small-scale shear auto-correlation and the shear$~\times~$tSZ cross-correlation, we obtain $S_8 = 0.811^{+0.015}_{-0.012}$ and $\Omega_{\rm m} = 0.263^{+0.023}_{-0.030}$, results consistent with primary CMB analyses from Planck and P-ACT. We find evidence for reduced thermal gas pressure in dark matter halos with masses $M < 10^{14} \, M_{\odot}/h$, supporting predictions of enhanced feedback from active galactic nuclei on gas thermodynamics. A comparison of the inferred matter power suppression reveals a $2-4\sigma$ tension with hydrodynamical simulations that implement mild baryonic feedback, as our constraints prefer a stronger suppression. Finally, we investigate biases from cosmic infrared background leakage in the tSZ-shear cross-correlation measurements, employing mitigation techniques to ensure a robust inference. Our code is publicly available on GitHub.
Impact of redshift distribution uncertainties on Lyman-break galaxy cosmological parameter inference
arXiv:2506.06475v1 Announce Type: new
Abstract: A significant number of Lyman-break galaxies (LBGs) with redshifts 3 < z < 5 are expected to be observed by the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). This will enable us to probe the universe at higher redshifts than is currently possible with cosmological galaxy clustering and weak lensing surveys. However, accurate inference of cosmological parameters requires precise knowledge of the redshift distributions of selected galaxies, where the number of faint objects expected from LSST alone will make spectroscopic based methods of determining these distributions extremely challenging. To overcome this difficulty, it may be possible to leverage the information in the large volume of photometric data alone to precisely infer these distributions. This could be facilitated using forward models, where in this paper we use stellar population synthesis (SPS) to estimate uncertainties on LBG redshift distributions for a 10 year LSST (LSSTY10) survey. We characterise some of the modelling uncertainties inherent to SPS by introducing a flexible parameterisation of the galaxy population prior, informed by observations of the galaxy stellar mass function (GSMF) and cosmic star formation density (CSFRD). These uncertainties are subsequently marginalised over and propagated to cosmological constraints in a Fisher forecast. Assuming a known dust attenuation model for LBGs, we forecast constraints on the sigma8 parameter comparable to Planck cosmic microwave background (CMB) constraints.
Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Evidence of planet-disk interaction in the 2MASSJ16120668-3010270 system
arXiv:2506.05892v1 Announce Type: new
Abstract: The architectures of exoplanet systems are likely set during the initial planet-formation phase in the circumstellar disk. To understand this process, we have to study the earliest phases of planet formation. Complex sub-structures, believed to be driven by embedded planets, have been detected in a significant portion of disks observed at high angular resolution. We aim to extend the sample of such disks to low stellar masses and to connect the disk morphology to the expected proto-planet properties.
We resolve the disk in the 2MASSJ16120668-3010270 system for the first time in scattered near-infrared light on scales of 10 au using VLT/SPHERE and reveal an exceptionally structured disk. We find an inner disk (inside 40 au) with two spiral arms, separated by a gap from an outer ring. By comparison with hydrodynamic models, we find that these structures are consistent with the presence of an embedded gas giant with a mass range between 0.1 and 5 MJup depending on the employed model. Our SPHERE observations find a tentative candidate point source within the disk gap, which may be consistent with this mass range if it indeed traces thermal emission by an embedded planet. This interpretation is somewhat strengthened by the proximity of this signal to compact mm continuum emission in the disk gap, which may trace circumplanetary material. It is, however, unclear if this tentative companion candidate could be responsible for the observed disk gap size, given its close proximity to the inner disk.
The 2MASSJ16120668-3010270 system is one of only a few systems that shows this exceptional morphology of spiral arms located inside a scattered light gap and ring. We speculate that this may have to do with a higher disk viscosity compared with other systems such as PDS 70.
A Reassessment of the Pantheon+ and DES 5YR Calibration Uncertainties: Dovekie
arXiv:2506.05471v1 Announce Type: new
Abstract: Type Ia Supernovae (SNe Ia) are crucial tools to measure the accelerating expansion of the universe, comprising thousands of SNe across multiple telescopes. Accurate measurements of cosmological parameters with SNe Ia require a robust understanding and cross-calibration of the telescopes and filters. A previous cross-calibration effort, 'Fragilistic', provided 25 photometric systems, but offered no public code or ability to add new surveys. We provide an open-source cross-calibration solution, available at https://github.com/bap37/Dovekie/ . Using the Pan-STARRs (PS1) and Gaia all-sky telescopes, we characterise the measured filters from 11 photometric systems, including CfA, PS1, Foundation, DES, CSP, SDSS, and SNLS, using published observations of field stars. For the first time, we derive uncertainties on effective filter transmissions and modify filters to match the data. With the addition of direct observations of DA white dwarfs (Boyd et al. 2025), we simultaneously cross-calibrate our zeropoints across photometric systems and propagate to cosmology. With improved uncertainties from DA WDs, we find improvements to the calibration systematic uncertainty of x1.5 for the Pantheon+ (Brout et al. 2022) sample with a new systematic photometric uncertainty = 0.016 for FlatwCDM, and modest improvements to that of the DES5YR analysis. We find good agreement with previous calibration, and show that even these small calibration changes can be amplified by up to a factor of x6 in the inferred SN Ia distances, driven by calibration sensitivity in the colour-luminosity relations and SALT training. Initial results indicate that these changes cause dmu/dz = 0.025 and change the recovered value of Omega_M in LCDM by ~0.01. These may have a potentially larger impact in w0/wa space and inferences about evolving dark energy. We pursue this calculation in an ongoing full re-analysis of DES.
Tracing the formation and migration history: molecular signatures in the atmosphere of misaligned hot Jupiter WASP-94Ab using JWST NIRSpec/G395H
arXiv:2505.11224v2 Announce Type: replace
Abstract: The discovery of hot Jupiters that orbit very close to their host stars has long challenged traditional models of planetary formation and migration. Characterising their atmospheric composition - mainly in the form of the carbon-to-oxygen (C/O) ratio and metallicity - can provide insights into their formation locations and evolution pathways. With JWST we can characterise the atmospheres of these types of planets more precisely than previously possible, primarily because it allows us to determine both their atmospheric oxygen and carbon composition. Here, we present a JWST NIRSpec/G395H transmission spectrum from 2.8-5.1$\mu m$ of WASP-94Ab, an inflated hot Jupiter with a retrograde misaligned orbit around its F-type host star. We find a relatively cloud-free atmosphere, with absorption features of H$_2$O and CO$_2$ at detection significances of $\sim 4\sigma$ and $\sim 11\sigma$, respectively. In addition, we detect tentative evidence of CO absorption at $\sim3\sigma$, as well as hints of sulphur with the detection of H$_2$S at a $\sim 2.5\sigma$ confidence level. Our favoured equilibrium chemistry model determines a C/O ratio of $0.49^{+0.08}_{-0.13}$ for WASP-94Ab's atmosphere, which is substellar compared to the star's C/O ratio of $0.68 \pm 0.10$. The retrieved atmospheric metallicity is similar to the star's metallicity as both are $\sim 2\times$ solar. We find that this sub-stellar C/O ratio and stellar metallicity can be best explained by pebble accretion or planetesimal accretion in combination with large-distance migration of the planet.
Long Term Reverberation Mapping of Iron Coronal Lines in MKN 110
arXiv:2506.04337v1 Announce Type: new
Abstract: We present flux measurements of the coronal lines [Fe VII] and [Fe X] spanning three decades, in the highly variable Active Galactic Nucleus (AGN) MKN 110. These coronal lines are sensitive to the spectral energy distribution (SED) of AGNs in the extreme ultraviolet (EUV). Neither [Fe VII] nor [Fe X] demonstrates variability in the short term on a weekly or monthly timescale. However, by taking advantage of a long term decrease in the continuum flux of MKN 110 on the order of years, we were able to track the [Fe VII] and [Fe X] fluxes as they respond to the continuum. We were able to detect a lag for [Fe VII] relative to the continuum at 5100 {\AA}, with a modal lag of 652 days, but were unable to detect a significant lag in the [Fe x] flux, though there exist significant uncertainties in the [Fe X] fit. These two lag results are not consistent and the line widths for the two line species also do not match. This provides strong evidence for stratification within the coronal line region (CLR). There is also evidence of a non-varying component within the coronal line flux, probably a result of a more extended region of origin. Taken together, these results suggest a CLR where the bulk of the [Fe VII] originates on parsec scales, but a portion of the [Fe VII] flux originates further out, at or beyond a 10 pc scale. These results also indicate the limitations of single-cloud models in describing the physical conditions of the CLR.