skip to content

Institute of Astronomy

 

Discovering neutron stars with LISA via measurements of orbital eccentricity in Galactic binaries

Wed, 12/06/2024 - 12:04
arXiv:2310.06568v2 Announce Type: replace Abstract: LISA will detect $\sim \! 10^4$ Galactic binaries, the majority being double white dwarfs. However, approximately $\sim \! 1 \textrm{--} 5 \%$ of these systems will contain neutron stars which, if they can be correctly identified, will provide new opportunities for studying binary evolution pathways involving mass reversal and supernovae as well as being promising targets for multi-messenger observations. Eccentricity, expected from neutron star natal kicks, will be a key identifying signature for binaries containing a neutron star. Eccentric binaries radiate at widely-spaced frequency harmonics that must first be identified as originating from a single source and then analysed coherently. A multi-harmonic heterodyning approach for this type of data analysis is used to perform Bayesian parameter estimation on a range of simulated eccentric LISA signals. This is used to: (i) investigate LISA's ability to measure orbital eccentricity and to quantify the minimum detectable eccentricity; (ii) demonstrate how eccentricity and periastron precession help to break the mass degeneracy allowing the individual component masses to be inferred, potentially confirming the presence of a neutron star; (iii) investigate the possibility of source misidentification when the individual harmonics of an eccentric binary masquerade as separate circular binaries; and (iv) investigate the possibility of source reclassification, where parameter estimation results of multiple circular analyses are combined in postprocessing to quickly infer the parameters of an eccentric source. The broader implications of this for the ongoing design of the LISA global fit are also discussed.

ZTF SN Ia DR2: Evidence of Changing Dust Distributions With Redshift Using Type Ia Supernovae

Wed, 12/06/2024 - 11:47
arXiv:2406.06215v1 Announce Type: new Abstract: Type Ia supernova (SNIa) are excellent probes of local distance, and the increasing sample sizes of SNIa have driven an increased need to study the associated systematic uncertainties and improve the standardisation methods in preparation for the next generation of cosmological surveys into the dark energy equation-of-state $w$. We aim to probe the potential change in the SNIa standardisation parameter $c$ with redshift and the host-galaxy of the supernova. Improving the standardisation of SNIa brightnesses will require accounting for the relationship between the host and the SNIa, and potential shifts in the SNIa standardisation parameters with redshift will cause biases in the recovered cosmology. Here, we assemble a volume-limited sample of ~3000 likely SNIa across a redshift range of $z = 0.015$ to $z = 0.36$. This sample is fitted with changing mass and redshift bins to determine the relationship between intrinsic properties of SNe Ia and their redshift and host galaxy parameters. We then investigate the colour-luminosity parameter $\beta$ as a further test of the SNIa standardisation process. We find that the changing colour distribution of SNe Ia with redshift is driven by dust at a confidence of $>4\sigma$. Additionally, we show a strong correlation between the host galaxy mass and the colour-luminosity coefficient $\beta$ ($> 4\sigma$), even when accounting for the quantity of dust in a host galaxy.

GANSky -- fast curved sky weak lensing simulations using Generative Adversarial Networks

Wed, 12/06/2024 - 11:41
arXiv:2406.05867v1 Announce Type: new Abstract: Extracting non-Gaussian information from the next generation weak lensing surveys will require fast and accurate full-sky simulations. This is difficult to achieve in practice with existing simulation methods: ray-traced $N$-body simulations are computationally expensive, and approximate simulation methods (such as lognormal mocks) are not accurate enough. Here, we present GANSky, an interpretable machine learning method that uses Generative Adversarial Networks (GANs) to produce fast and accurate full-sky tomographic weak lensing maps. The input to our GAN are lognormal maps that approximately describe the late-time convergence field of the Universe. Starting from these lognormal maps, we use GANs to learn how to locally redistribute mass to achieve simulation-quality maps. This can be achieved using remarkably small networks ($\approx 10^3$ parameters). We validate the GAN maps by computing a number of summary statistics in both simulated and GANSky maps. We show that GANSky maps correctly reproduce both the mean and $\chi^2$ distribution for several statistics, specifically: the 2-pt function, 1-pt PDF, peak and void counts, and the equilateral, folded and squeezed bispectra. These successes makes GANSky an attractive tool to compute the covariances of these statistics. In addition to being useful for rapidly generating large ensembles of artificial data sets, our method can be used to extract non-Gaussian information from weak lensing data with field-level or simulation-based inference.

ZTF SN Ia DR2: Study of Type Ia Supernova lightcurve fits

Wed, 05/06/2024 - 18:26
arXiv:2406.02073v1 Announce Type: new Abstract: Type Ia supernova (SN Ia) cosmology relies on the estimation of lightcurve parameters to derive precision distances that leads to the estimation of cosmological parameters. The empirical SALT2 lightcurve modeling that relies on only two parameters, a stretch x1, and a color c, has been used by the community for almost two decades. In this paper we study the ability of the SALT2 model to fit the nearly 3000 cosmology-grade SN Ia lightcurves from the second release of the Zwicky Transient Facility (ZTF) cosmology science working group. While the ZTF data was not used to train SALT2, the algorithm is modeling the ZTF SN Ia optical lightcurves remarkably well, except for lightcurve points prior to -10 d from maximum, where the training critically lacks statistics. We find that the lightcurve fitting is robust against the considered choice of phase-range, but we show the [-10; +40] d range to be optimal in terms of statistics and accuracy. We do not detect any significant features in the lightcurve fit residuals that could be connected to the host environment. Potential systematic population differences related to the SN Ia host properties might thus not be accountable for by the addition of extra lightcurve parameters. However, a small but significant inconsistency between residuals of blue- and red-SN Ia strongly suggests the existence of a phase-dependent color term, with potential implications for the use of SNe Ia in precision cosmology. We thus encourage modellers to explore this avenue and we emphasize the importance that SN Ia cosmology must include a SALT2 retraining to accurately model the lightcurves and avoid biasing the derivation of cosmological parameters.

ZTF SN Ia DR2: Colour standardisation of Type Ia Supernovae and its dependence on environment

Wed, 05/06/2024 - 18:25
arXiv:2406.02072v1 Announce Type: new Abstract: As Type Ia supernova cosmology transitions from a statistics dominated to a systematics dominated era, it is crucial to understand leftover unexplained uncertainties affecting their luminosity, such as the ones stemming from astrophysical biases. Indeed, SNe Ia are standardisable candles, whose absolute magnitude reach a 0.15~mag scatter once empirical correlations with their lightcurve stretch and colour and with their environment are accounted for. In this paper, we investigate how the standardisation process of SNe Ia depends on environment, to ultimately reduce their scatter in magnitude, focusing on colour standardisation. We use the volume-limited ZTF SN Ia DR2 sample, which offers unprecedented statistics for the low redshift ($z

ZTF SN~Ia DR2: Cosmology-independent constraints on Type Ia supernova standardisation from supernova siblings

Tue, 04/06/2024 - 12:24
arXiv:2406.01434v1 Announce Type: new Abstract: Understanding Type Ia supernovae (SNe~Ia) and the empirical standardisation relations that make them excellent distance indicators is vital to improving cosmological constraints. SN~Ia ``siblings", i.e. two or more SNe~Ia in the same host or parent galaxy offer a unique way to infer the standardisation relations and their diversity across the population. We analyse a sample of 25 SN~Ia pairs, observed homogeneously by the Zwicky Transient Factory (ZTF) to infer the SNe~Ia light curve width-luminosity and colour-luminosity parameters $\alpha$ and $\beta$. Using the pairwise constraints from siblings, allowing for a diversity in the standardisation relations, we find $\alpha = 0.218 \pm 0.055 $ and $\beta = 3.084 \pm 0.312$, respectively, with a dispersion in $\alpha$ and $\beta$ of $\leq 0.195$ and $\leq 0.923$, respectively, at 95$\%$ C.L. While the median dispersion is large, the values within $\sim 1 \sigma$ are consistent with no dispersion. Hence, fitting for a single global standardisation relation, we find $\alpha = 0.228 \pm 0.029 $ and $\beta = 3.160 \pm 0.191$. We find a very small intrinsic scatter of the siblings sample $\sigma_{\rm int} \leq 0.10$ at 95\% C.L. compared to $\sigma_{\rm int} = 0.22 \pm 0.04$ when computing the scatter using the Hubble residuals without comparing them as siblings. Splitting the sample based on host galaxy stellar mass, we find that SNe~Ia in both subsamples have consistent $\alpha$ and $\beta$. The $\beta$ value is consistent with the value for the cosmological sample. However, we find a higher $\alpha$ by $\sim 2.5 - 3.5 \sigma$. The high $\alpha$ is driven by low $x_1$ pairs, potentially suggesting that the slow and fast declining SN~Ia have different slopes of the width-luminosity relation. We can confirm or refute this with increased statistics from near future time-domain surveys. (abridged)

Detectability and Characterisation of Strongly Lensed Supernova Lightcurves in the Zwicky Transient Facility

Tue, 04/06/2024 - 11:34
arXiv:2406.00052v1 Announce Type: new Abstract: The Zwicky Transient Facility (ZTF) was expected to detect more than one strong gravitationally-lensed supernova (glSN) per year, but only one event was identified in the first four years of the survey. This work investigates selection biases in the search strategy that could explain the discrepancy and revise discovery predictions. We present simulations of realistic lightcurves for lensed thermonuclear (glSNIa) and core-collapse supernova (glCCSN) explosions over a span of 5.33 years of the survey, utilizing the actual observation logs of ZTF. We find that the magnitude limit in spectroscopic screening significantly biases the selection towards highly magnified glSNe, for which the detection rates are consistent with the identification of a single object by ZTF. To reach the higher predicted rate of detections requires an optimization of the identification criteria for fainter objects. We find that around 1.36 (3.08) Type Ia SNe (CCSNe) are identifiable with the magnification method per year in ZTF, but when applying the magnitude cut of m

ZTF SN Ia DR2: Environmental dependencies of stretch and luminosity of a volume limited sample of 1,000 Type Ia Supernovae

Mon, 03/06/2024 - 10:23
arXiv:2405.20965v1 Announce Type: new Abstract: To get distances, Type Ia Supernovae magnitudes are corrected for their correlation with lightcurve width and colour. Here we investigate how this standardisation is affected by the SN environment, with the aim to reduce scatter and improve standardisation. We first study the SN Ia stretch distribution, as well as its dependence on environment, as characterised by local and global (g-z) colour and stellar mass. We then look at the standardisation parameter $\alpha$, which accounts for the correlation between residuals and stretch, along with its environment dependence and linearity. We finally compute magnitude offsets between SNe in different astrophysical environments after colour and stretch standardisation, aka steps. This analysis is made possible due to the unprecedented statistics of the ZTF SN Ia DR2 volume-limited sample. The stretch distribution exhibits a bimodal behaviour, as previously found in literature. However, we find the distribution means to decrease with host stellar mass at a 9.0$\sigma$ significance. We demonstrate, at the 14.3$\sigma$ level, that the stretch-magnitude relation is non-linear, challenging the usual linear stretch-residuals relation. Fitting for a broken-$\alpha$ model, we indeed find two different slopes between stretch regimes ($x_1

ZTF SN Ia DR2: Peculiar velocities impact on the Hubble diagram

Mon, 03/06/2024 - 10:14
arXiv:2405.20409v1 Announce Type: new Abstract: SNe Ia are used to determine the distance-redshift relation and build the Hubble diagram. Neglecting their host-galaxy peculiar velocities (PVs) may bias the measurement of cosmological parameters. The smaller the redshift, the larger the effect is. We use realistic simulations of SNe Ia observed by the Zwicky Transient Facility (ZTF) to investigate the effect of different methods to take into account PVs. We study the impact of neglecting galaxy PVs and their correlations in an analysis of the SNe Ia Hubble diagram. We find that it is necessary to use the PV full covariance matrix computed from the velocity power spectrum to take into account the sample variance. Considering the results we have obtained using simulations, we determine the PV systematic effects in the context of the ZTF DR2 SNe Ia sample. We determine the PV impact on the intercept of the Hubble diagram, $a_B$, which is directly linked to the measurement of $H_0$. We show that not taking into account PVs and their correlations results in a shift of the $H_0$ value of about $1.0$km.s$^{-1}$.Mpc$^{-1}$ and a slight underestimation of the $H_0$ error bar.

The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

Thu, 30/05/2024 - 10:55
arXiv:2304.05202v2 Announce Type: replace Abstract: We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43\sigma$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $\Lambda$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $\Lambda$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $\Lambda$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts

Deep learning insights into non-universality in the halo mass function

Tue, 28/05/2024 - 10:39
arXiv:2405.15850v1 Announce Type: new Abstract: The abundance of dark matter haloes is a key cosmological probe in forthcoming galaxy surveys. The theoretical understanding of the halo mass function (HMF) is limited by our incomplete knowledge of the origin of non-universality and its cosmological parameter dependence. We present a deep learning model which compresses the linear matter power spectrum into three independent factors which are necessary and sufficient to describe the $z=0$ HMF from the state-of-the-art AEMULUS emulator to sub-per cent accuracy in a $w$CDM$+N_\mathrm{eff}$ parameter space. Additional information about growth history does not improve the accuracy of HMF predictions if the matter power spectrum is already provided as input, because required aspects of the former can be inferred from the latter. The three factors carry information about the universal and non-universal aspects of the HMF, which we interrogate via the information-theoretic measure of mutual information. We find that non-universality is captured by recent growth history after matter-dark-energy equality and $N_\mathrm{eff}$ for $M\sim 10^{13} \, \mathrm{M_\odot}\, h^{-1}$ haloes, and by $\Omega_{\rm m}$ for $M\sim 10^{15} \, \mathrm{M_\odot}\, h^{-1}$. The compact representation learnt by our model can inform the design of emulator training sets to achieve high emulator accuracy with fewer simulations.

Euclid. II. The VIS Instrument

Fri, 24/05/2024 - 11:38
arXiv:2405.13492v1 Announce Type: new Abstract: This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

Euclid. I. Overview of the Euclid mission

Fri, 24/05/2024 - 11:28
arXiv:2405.13491v1 Announce Type: new Abstract: The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance.

The Simons Observatory: Combining delensing and foreground cleaning for improved constraints on inflation

Fri, 24/05/2024 - 10:40
arXiv:2405.13201v1 Announce Type: new Abstract: The Simons Observatory (SO), a next-generation ground-based CMB experiment in its final stages of construction, will target primordial $B$-modes with unprecedented sensitivity to set tight bounds on the amplitude of inflationary gravitational waves. Aiming to infer the tensor-to-scalar ratio $r$ with precision $\sigma(r=0) \leq 0.003$, SO will rely on powerful component-separation algorithms to distinguish the faint primordial signal from stronger sources of large-scale $B$-modes such as Galactic foregrounds and weak gravitational lensing. We present an analysis pipeline that performs delensing and foreground cleaning simultaneously by including multifrequency CMB data and a lensing $B$-mode template in a power-spectrum-based likelihood. Here, we demonstrate this algorithm on masked SO-like simulations containing inhomogeneous noise and non-Gaussian foregrounds. The lensing convergence is reconstructed from high-resolution simulations of the CMB and external mass tracers. Using optimized pixel weights for power spectrum estimation, the target precision for SO's nominal design is achieved and delensing reduces $\sigma(r)$ by 27-37%, depending on foreground complexity.

Damping Wing-Like Features in the Stacked Ly$\alpha$ Forest: Potential Neutral Hydrogen Islands at $z<6$

Wed, 22/05/2024 - 10:18
arXiv:2405.12275v1 Announce Type: new Abstract: Recent quasar absorption line observations suggest that reionization may end as late as $z \approx 5.3$. As a means to search for large neutral hydrogen islands at $z

How do Primordial Black Holes change the Halo Mass Function and Structure?

Tue, 21/05/2024 - 11:08
arXiv:2405.11381v1 Announce Type: new Abstract: We examine the effects of massive primordial black holes (PBHs) on cosmic structure formation, employing both a semi-analytical approach and cosmological simulations. Our simulations incorporate PBHs with a monochromatic mass distribution centered around $10^6 \ \rm M_{\odot}$, constituting a fraction of $10^{-2}$ to $10^{-4}$ of the dark matter (DM) in the universe, with the remainder being collision-less particle dark matter (PDM). Additionally, we conduct a $\Lambda$CDM simulation for comparative analysis with runs that include PBHs. At smaller scales, halos containing PBHs exhibit similar density and velocity dispersion profiles to those without PBHs. Conversely, at larger scales, PBHs can expedite the formation of massive halos and reside at their centers due to the `seed effect'. To analyze the relative distribution of PBH host halos compared to non-PBH halos, we apply nearest-neighbor (NN) statistics. Our results suggest that PBH host halos, through gravitational influence, significantly impact the structure formation process, compared to the $\Lambda$CDM case, by attracting and engulfing nearby newly-formed minihalos. Should PBHs constitute a fraction of DM significantly larger than $\sim$$10^{-3}$, almost all newly-formed halos will be absorbed by PBH-seeded halos. Consequently, our simulations predict a bimodal feature in the halo mass function, with most of the massive halos containing at least one PBH at their core and the rest being less massive non-PBH halos.

Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological results

Mon, 20/05/2024 - 10:17
arXiv:2405.10881v1 Announce Type: new Abstract: We present a simulation-based cosmological analysis using a combination of Gaussian and non-Gaussian statistics of the weak lensing mass (convergence) maps from the first three years (Y3) of the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase harmonics; 3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven $\nu w$CDM cosmological parameters, and forward models the most relevant sources of systematics inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration. We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a simulation-based inference approach. Including and combining different non-Gaussian statistics is a powerful tool that strongly improves constraints over Gaussian statistics (in our case, the second moments); in particular, the Figure of Merit $\textrm{FoM}(S_8, \Omega_{\textrm{m}})$ is improved by 70 percent ($\Lambda$CDM) and 90 percent ($w$CDM). When all the summary statistics are combined, we achieve a 2 percent constraint on the amplitude of fluctuations parameter $S_8 \equiv \sigma_8 (\Omega_{\textrm{m}}/0.3)^{0.5}$, obtaining $S_8 = 0.794 \pm 0.017$ ($\Lambda$CDM) and $S_8 = 0.817 \pm 0.021$ ($w$CDM). The constraints from different statistics are shown to be internally consistent (with a $p$-value>0.1 for all combinations of statistics examined). We compare our results to other weak lensing results from the DES Y3 data, finding good consistency; we also compare with results from external datasets, such as \planck{} constraints from the Cosmic Microwave Background, finding statistical agreement, with discrepancies no greater than $

Detecting strongly-lensed type Ia supernovae with LSST

Fri, 17/05/2024 - 10:54
arXiv:2312.04621v2 Announce Type: replace Abstract: Strongly-lensed supernovae are rare and valuable probes of cosmology and astrophysics. Upcoming wide-field time-domain surveys, such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST), are expected to discover an order-of-magnitude more lensed supernovae than have previously been observed. In this work, we investigate the cosmological prospects of lensed type Ia supernovae (SNIa) in LSST by quantifying the expected annual number of detections, the impact of stellar microlensing, follow-up feasibility, and how to best separate lensed and unlensed SNIa. We simulate SNIa lensed by galaxies, using the current LSST baseline v3.0 cadence, and find an expected number of 44 lensed SNIa detections per year. Microlensing effects by stars in the lens galaxy are predicted to lower the lensed SNIa detections by $\sim 8 \%$. The lensed events can be separated from the unlensed ones by jointly considering their colours and peak magnitudes. We define a `gold sample' of $\sim 10$ lensed SNIa per year with time delay $> 10$ days, $> 5$ detections before light-curve peak, and sufficiently bright ($m_i

An Anti-halo Void Catalogue of the Local Super-Volume

Fri, 17/05/2024 - 10:53
arXiv:2311.12926v2 Announce Type: replace Abstract: We construct an anti-halo void catalogue of $150$ voids with radii $R > 10\,h^{-1}\mathrm{\,Mpc}$ in the Local Super-Volume ($

SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data

Wed, 15/05/2024 - 11:50
arXiv:2403.07871v2 Announce Type: replace Abstract: We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovae (SNae Ia). Our hardware-accelerated forward model, released in the Python package slicsim, includes stochastic variations of each SN's spectral flux distribution (based on the pre-trained BayeSN model), extinction from dust in the host and in the Milky Way, redshift, and realistic instrumental noise. By utilising truncated marginal neural ratio estimation (TMNRE), a neural network-enabled simulation-based inference technique, we implicitly marginalise over 4000 latent variables (for a set of $\approx 100$ SNae Ia) to efficiently infer SN Ia absolute magnitudes and host-galaxy dust properties at the population level while also constraining the parameters of individual objects. Amortisation of the inference procedure allows us to obtain coverage guarantees for our results through Bayesian validation and frequentist calibration. Furthermore, we show a detailed comparison to full likelihood-based inference, implemented through Hamiltonian Monte Carlo, on simulated data and then apply TMNRE to the light curves of 86 SNae Ia from the Carnegie Supernova Project, deriving marginal posteriors in excellent agreement with previous work. Given its ability to accommodate arbitrarily complex extensions to the forward model -- e.g. different populations based on host properties, redshift evolution, complicated photometric redshift estimates, selection effects, and non-Ia contamination -- without significant modifications to the inference procedure, TMNRE has the potential to become the tool of choice for cosmological parameter inference from future, large SN Ia samples.