The Bayesian Global Sky Model (B-GSM): A Calibrated Low Frequency Sky Model for EoR Applications
arXiv:2504.04503v1 Announce Type: new
Abstract: We present the Bayesian Global Sky Model (B-GSM), a new absolutely calibrated model of the diffuse Galactic foreground at frequencies below 408 MHz. We assemble a dataset of publicly available diffuse emission maps at frequencies between 45 MHz and 408 MHz, along with absolute temperature data from the EDGES radiometer between 40 and 200 MHz. We use nested sampling to perform a joint Bayesian analysis of these two datasets and determine posterior distributions of: spatially resolved diffuse components, spectral parameters for the diffuse emission, and calibration corrections for each observed map. Using Bayesian model comparison, we find that the low-frequency sky is optimally modelled by two emission components, each following a curved power-law spectrum. The spectrum for the first component has a spectral index of beta_1 = -2.633 plus/minus 0.002 and a curvature of gamma_1 = 0.014 plus/minus 0.001, while the second has beta_2 = -2.108 plus/minus 0.008 and gamma_2 = -0.424 plus/minus 0.008. The diffuse maps require temperature-scale corrections of 1% to 29%, and zero-level adjustments of a few kelvin to a few hundred kelvin. We find that the Haslam 408 MHz map is well calibrated, requiring a scale correction of 1.029 plus/minus 0.003 (about 3%) and a zero-level correction of 0.91 plus/minus 0.05 kelvin. Posterior predictions for the sky's absolute temperature are in excellent agreement with EDGES data, indicating accurate calibration. The posterior sky predictions agree with observations within statistical uncertainty across all frequencies. However, agreement varies by position, with the largest discrepancies in the Galactic plane. This is the second paper in the B-GSM series; the low-frequency sky model, along with all code and data, is available for download.
The Dark Ages Explorer (DEX): a filled-aperture ultra-long wavelength radio interferometer on the lunar far side
arXiv:2504.03418v1 Announce Type: new
Abstract: The measurement of the spatial fluctuations of the neutral hydrogen 21 cm signal arising during the Dark Ages and Cosmic Dawn periods of our Universe (z from 200 to 10) holds the potential to resolve these still-unexplored earliest phases of the evolution of matter structures. As these cosmological signals are very weak, large distributed telescopes are required at locations free from terrestrial radio interference and ionospheric disturbances. This paper presents a description of the scientific aims, the instrumental concept, and technological developments of an experiment - dubbed the Dark-ages EXplorer (DEX) - which would allow us to (a) measure the Global Signal and (b) measure the angular density fluctuations and conduct line-of-sight tomography in the Dark Ages and Cosmic Dawn epochs. Additional scientific goals are also briefly described. The experiment consists of a low-frequency radio interferometer, which should ideally be located on the far side of the Moon. The paper presents findings from an ESA Concurrent Design Facility (CDF) study, which was conducted to assess the feasibility of such a system using present-day technologies with a high TRL (Technology Readiness Level). Although the study finds that the number of antennas needed to achieve the primary scientific goals is not yet feasible at the moment, it points to a path of technological development that can lead to a realistic and valuable experiment in the medium-term future (i.e., the next decade(s)), as well as development of multi-purpose use technology that can be applied on Earth, and towards other lunar operations.
TDCOSMO XVII. New time delays in 22 lensed quasars from optical monitoring with the ESO-VST 2.6m and MPG 2.2m telescopes
arXiv:2504.02932v1 Announce Type: new
Abstract: We present new time delays, the main ingredient of time delay cosmography, for 22 lensed quasars resulting from high-cadence r-band monitoring on the 2.6 m ESO VLT Survey Telescope and Max-Planck-Gesellschaft 2.2 m telescope. Each lensed quasar was typically monitored for one to four seasons, often shared between the two telescopes to mitigate the interruptions forced by the COVID-19 pandemic. The sample of targets consists of 19 quadruply and 3 doubly imaged quasars, which received a total of 1 918 hours of on-sky time split into 21 581 wide-field frames, each 320 seconds long. In a given field, the 5-{\sigma} depth of the combined exposures typically reaches the 27th magnitude, while that of single visits is 24.5 mag - similar to the expected depth of the upcoming Vera-Rubin LSST. The fluxes of the different lensed images of the targets were reliably de-blended, providing not only light curves with photometric precision down to the photon noise limit, but also high-resolution models of the targets whose features and astrometry were systematically confirmed in Hubble Space Telescope imaging. This was made possible thanks to a new photometric pipeline, lightcurver, and the forward modelling method STARRED. Finally, the time delays between pairs of curves and their uncertainties were estimated, taking into account the degeneracy due to microlensing, and for the first time the full covariance matrices of the delay pairs are provided. Of note, this survey, with 13 square degrees, has applications beyond that of time delays, such as the study of the structure function of the multiple high-redshift quasars present in the footprint at a new high in terms of both depth and frequency. The reduced images will be available through the European Southern Observatory Science Portal.
CHANCES, the Chilean Cluster Galaxy Evolution Survey: Selection and initial characterisation of clusters and superclusters
arXiv:2411.13655v3 Announce Type: replace
Abstract: CHANCES, the CHileAN Cluster galaxy Evolution Survey, will study the evolution of galaxies in and around 100 massive galaxy clusters from the local Universe out to $z = 0.45$, and two superclusters at $z \sim 0.05$ that contain roughly 25 Abell clusters each. CHANCES will use the new 4MOST Spectroscopic Survey Facility on the VISTA 4m telescope to obtain spectra for $\sim$500,000 galaxies with magnitudes $r_\mathrm{AB} < 20.4$, providing comprehensive spectroscopic coverage of each cluster out to $5r_{200}$. Its wide and deep scope will trace massive and dwarf galaxies from the surrounding filaments and groups to the cores of galaxy clusters. This will enable the study of galaxy preprocessing and of the role of the evolving environment on galaxy evolution. In this paper, we present and characterise the sample of clusters and superclusters to be targeted by CHANCES. We used literature catalogues based on X-ray emission and the Sunyaev-Zel'dovich effect to define the cluster sample in a homogeneous way, with attention to cluster mass and redshift, as well as the availability of ancillary data. We calibrated literature mass estimates from various surveys against each other and provide an initial mass estimate for each cluster, which we used to define the radial extent of the 4MOST coverage. We also present an initial assessment of the structure surrounding these clusters based on the redMaPPer red-sequence algorithm as a preview of some of the science CHANCES will enable.
Bubbles in a box: Eliminating edge nucleation in cold-atom simulators of vacuum decay
arXiv:2504.02829v1 Announce Type: cross
Abstract: The decay of metastable 'false vacuum' states via bubble nucleation plays a crucial role in many cosmological scenarios. Cold-atom analog experiments will soon provide the first empirical probes of this process, with potentially far-reaching implications for early-Universe cosmology and high-energy physics. However, an inevitable difference between these analog systems and the early Universe is that the former have a boundary. We show, using a combination of Euclidean calculations and real-time lattice simulations, that these boundaries generically cause rapid bubble nucleation on the edge of the experiment, obscuring the bulk nucleation that is relevant for cosmology. We demonstrate that implementing a high-density 'trench' region at the boundary completely eliminates this problem, and recovers the desired cosmological behavior. Our findings are relevant for ongoing efforts to probe vacuum decay in the laboratory, providing a practical solution to a key experimental obstacle.
Effects of chemically homogeneous evolution of the first stars on the 21-cm signal and reionization
arXiv:2504.00535v1 Announce Type: new
Abstract: The first generation of stars, known as Population III (Pop III), played a crucial role in the early Universe through their unique formation environment and metal-free composition. These stars can undergo chemically homogeneous evolution (CHE) due to fast rotation, becoming more compact and hotter/bluer than their (commonly assumed) non-rotating counterparts. In this study, we investigate the impact of Pop III CHE on the 21-cm signal and cosmic reionization under various assumptions on Pop III star formation, such as their formation efficiency, initial mass function, and transition to metal-enriched star formation. We combine stellar spectra computed by detailed atmosphere models with semi-numerical simulations of Cosmic Dawn and the Epoch of Reionization ($z\sim 6-30$). The key effect of CHE arises from the boosted ionizing power of Pop III stars, which reduces the Pop III stellar mass density required to reproduce the observed Thomson scattering optical depth by a factor of $\sim 2$. Meanwhile, the maximum 21-cm global absorption signal is shallower by up to $\sim 15$ mK (11%), partly due to the reduced Lyman-band emission from CHE, and the large-scale ($k\sim 0.2\ \rm cMpc^{-1}$) power drops by a factor of a few at $z\gtrsim 25$. In general, the effects of CHE are comparable to those of Pop III star formation parameters, showing an interesting interplay with distinct features in different epochs. These results highlight the importance of metal-free/poor stellar evolution in understanding the early Universe and suggest that future studies should consider joint constraints on the physics of star/galaxy formation and stellar evolution.
Exploiting synergies between JWST and cosmic 21-cm observations to uncover star formation in the early Universe
arXiv:2503.21687v1 Announce Type: new
Abstract: In the current era of JWST, we continue to uncover a wealth of information about the Universe deep into the Epoch of Reionization. In this work, we run a suite of simulations using the code 21cmSPACE, to explore the astrophysical properties of galaxies in the early Universe, and their impact on high-redshift observables. We use multi-wavelength observational data including the global 21-cm signal and power spectrum limits from SARAS~3 and HERA respectively, present-day diffuse X-ray and radio backgrounds, and UV luminosity functions (UVLFs) from HST and JWST in the range $z=6-14.5$ to derive our constraints. We constrain a flexible model of halo-mass and redshift dependent star-formation efficiency (SFE), defined as the gas fraction converted into stars, and find that it is best described by little to no redshift evolution at $z\approx6-10$ and rapid evolution at $z\approx10-15$. We derive Bayesian functional posterior distributions for the SFE across this redshift range, inferring that a halo of mass $M_h=10^{10}\text{M}_\odot$ has an efficiency of $2-3\%$ at $z\lesssim10$, $12\%$ at $z=12$ and $26\%$ at $z=15$. We also find, through synergy between SARAS~3 and UVLFs, that the minimum circular velocity for star-formation in halos is $V_c = 16.9^{+25.7}_{-9.5}\text{km s}^{-1}$ or equivalently $\log_{10}(M_\text{crit}/\text{M}_\odot) = 8.29^{+1.21}_{-1.08}$ at $z=6$. Alongside these star-formation constraints, we find the X-ray and radio efficiencies of early galaxies to be $f_X = 0.5^{+6.3}_{-0.3}$ and $f_r \lesssim 11.7$ respectively, improving upon existing works that do not use UVLF data. Our results demonstrate the critical role of UVLFs in constraining the early Universe, and its synergies with 21-cm observations, alongside other multi-wavelength observational datasets.
Euclid preparation LXIII. Simulations and nonlinearities beyond $\Lambda$CDM. 2. Results from non-standard simulations
arXiv:2409.03523v2 Announce Type: replace
Abstract: The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard $\Lambda$-cold-dark-matter ($\Lambda$CDM) paradigm and in many non-standard models beyond $\Lambda$CDM. We present the scientific results from a suite of cosmological N-body simulations using non-standard models including dynamical dark energy, k-essence, interacting dark energy, modified gravity, massive neutrinos, and primordial non-Gaussianities. We investigate how these models affect the large-scale-structure formation and evolution in addition to providing synthetic observables that can be used to test and constrain these models with Euclid data. We developed a custom pipeline based on the Rockstar halo finder and the nbodykit large-scale structure toolkit to analyse the particle output of non-standard simulations and generate mock observables such as halo and void catalogues, mass density fields, and power spectra in a consistent way. We compare these observables with those from the standard $\Lambda$CDM model and quantify the deviations. We find that non-standard cosmological models can leave significant imprints on the synthetic observables that we have generated. Our results demonstrate that non-standard cosmological N-body simulations provide valuable insights into the physics of dark energy and dark matter, which is essential to maximising the scientific return of Euclid.
How do Massive Primordial Black Holes Impact the Formation of the First Stars and Galaxies?
arXiv:2503.17585v1 Announce Type: new
Abstract: We investigate the impact of massive primordial black holes (PBHs; $m_{\rm BH}\sim 10^6~M_{\odot}$) on the star formation and first galaxy assembly process using high-resolution hydrodynamical simulations from $z = 1100$ to $z \sim 9$. We find that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs accelerate structure formation by seeding dark matter halos and gravitationally attracting gas, but strong feedback can delay cooling and suppress star formation. In addition, the presence of baryon-dark matter streaming creates an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star formation compared to standard $\Lambda$CDM. By $z \sim 10$, PBH-seeded galaxies form dense star clusters, with PBH-to-stellar mass ratios comparable to observed high-$z$ AGN like UHZ-1. Our results support PBHs as viable SMBH seeds but do not exclude alternative scenarios. We emphasize that PBH-seeding provides a natural explanation for some of the newly-discovered overmassive SMBHs at high redshift, in particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels. Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such as SKA and HERA will be critical in distinguishing PBH-driven SMBH growth from other pathways.
Euclid Quick Data Release (Q1). The role of cosmic connectivity in shaping galaxy clusters
arXiv:2503.15332v1 Announce Type: new
Abstract: The matter distribution around galaxy clusters is distributed over several filaments, reflecting their positions as nodes in the large-scale cosmic web. The number of filaments connected to a cluster, namely its connectivity, is expected to affect the physical properties of clusters. Using the first Euclid galaxy catalogue from the Euclid Quick Release 1 (Q1), we investigate the connectivity of galaxy clusters and how it correlates with their physical and galaxy member properties. Around 220 clusters located within the three fields of Q1 (covering $\sim 63 \ \text{deg}^2$), are analysed in the redshift range $0.2 < z < 0.7$. Due to the photometric redshift uncertainty, we reconstruct the cosmic web skeleton, and measure cluster connectivity, in 2-D projected slices with a thickness of 170 comoving $h^{-1}.\text{Mpc}$ and centred on each cluster redshift, by using two different filament finder algorithms on the most massive galaxies ($M_*\ > 10^{10.3} \ M_\odot$). In agreement with previous measurements, we recover the mass-connectivity relation independently of the filament detection algorithm, showing that the most massive clusters are, on average, connected to a larger number of cosmic filaments, consistent with hierarchical structure formation models. Furthermore, we explore possible correlations between connectivities and two cluster properties: the fraction of early-type galaxies and the S\'ersic index of galaxy members. Our result suggests that the clusters populated by early-type galaxies exhibit higher connectivity compared to clusters dominated by late-type galaxies. These preliminary investigations highlight our ability to quantify the impact of the cosmic web connectivity on cluster properties with Euclid.
Data Release 1 of the Dark Energy Spectroscopic Instrument
arXiv:2503.14745v1 Announce Type: new
Abstract: In 2021 May the Dark Energy Spectroscopic Instrument (DESI) collaboration began a 5-year spectroscopic redshift survey to produce a detailed map of the evolving three-dimensional structure of the universe between $z=0$ and $z\approx4$. DESI's principle scientific objectives are to place precise constraints on the equation of state of dark energy, the gravitationally driven growth of large-scale structure, and the sum of the neutrino masses, and to explore the observational signatures of primordial inflation. We present DESI Data Release 1 (DR1), which consists of all data acquired during the first 13 months of the DESI main survey, as well as a uniform reprocessing of the DESI Survey Validation data which was previously made public in the DESI Early Data Release. The DR1 main survey includes high-confidence redshifts for 18.7M objects, of which 13.1M are spectroscopically classified as galaxies, 1.6M as quasars, and 4M as stars, making DR1 the largest sample of extragalactic redshifts ever assembled. We summarize the DR1 observations, the spectroscopic data-reduction pipeline and data products, large-scale structure catalogs, value-added catalogs, and describe how to access and interact with the data. In addition to fulfilling its core cosmological objectives with unprecedented precision, we expect DR1 to enable a wide range of transformational astrophysical studies and discoveries.
DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest
arXiv:2503.14739v1 Announce Type: new
Abstract: We present the Baryon Acoustic Oscillation (BAO) measurements with the Lyman-alpha (LyA) forest from the second data release (DR2) of the Dark Energy Spectroscopic Instrument (DESI) survey. Our BAO measurements include both the auto-correlation of the LyA forest absorption observed in the spectra of high-redshift quasars and the cross-correlation of the absorption with the quasar positions. The total sample size is approximately a factor of two larger than the DR1 dataset, with forest measurements in over 820,000 quasar spectra and the positions of over 1.2 million quasars. We describe several significant improvements to our analysis in this paper, and two supporting papers describe improvements to the synthetic datasets that we use for validation and how we identify damped LyA absorbers. Our main result is that we have measured the BAO scale with a statistical precision of 1.1% along and 1.3% transverse to the line of sight, for a combined precision of 0.65% on the isotropic BAO scale at $z_{eff} = 2.33$. This excellent precision, combined with recent theoretical studies of the BAO shift due to nonlinear growth, motivated us to include a systematic error term in LyA BAO analysis for the first time. We measure the ratios $D_H(z_{eff})/r_d = 8.632 \pm 0.098 \pm 0.026$ and $D_M(z_{eff})/r_d = 38.99 \pm 0.52 \pm 0.12$, where $D_H = c/H(z)$ is the Hubble distance, $D_M$ is the transverse comoving distance, $r_d$ is the sound horizon at the drag epoch, and we quote both the statistical and the theoretical systematic uncertainty. The companion paper presents the BAO measurements at lower redshifts from the same dataset and the cosmological interpretation.
Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web
arXiv:2503.15333v1 Announce Type: new
Abstract: Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 $\mathrm{deg}^2$) at $0.5 10^{10} M_\odot$) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of S\'ersic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey.
DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints
arXiv:2503.14738v1 Announce Type: new
Abstract: We present baryon acoustic oscillation (BAO) measurements from more than 14 million galaxies and quasars drawn from the Dark Energy Spectroscopic Instrument (DESI) Data Release 2 (DR2), based on three years of operation. For cosmology inference, these galaxy measurements are combined with DESI Lyman-$\alpha$ forest BAO results presented in a companion paper. The DR2 BAO results are consistent with DESI DR1 and SDSS, and their distance-redshift relationship matches those from recent compilations of supernovae (SNe) over the same redshift range. The results are well described by a flat $\Lambda$CDM model, but the parameters preferred by BAO are in mild, $2.3\sigma$ tension with those determined from the cosmic microwave background (CMB), although the DESI results are consistent with the acoustic angular scale $\theta_*$ that is well-measured by Planck. This tension is alleviated by dark energy with a time-evolving equation of state parametrized by $w_0$ and $w_a$, which provides a better fit to the data, with a favored solution in the quadrant with $w_0>-1$ and $w_a<0$. This solution is preferred over $\Lambda$CDM at $3.1\sigma$ for the combination of DESI BAO and CMB data. When also including SNe, the preference for a dynamical dark energy model over $\Lambda$CDM ranges from $2.8-4.2\sigma$ depending on which SNe sample is used. We present evidence from other data combinations which also favor the same behavior at high significance. From the combination of DESI and CMB we derive 95% upper limits on the sum of neutrino masses, finding $\sum m_\nu<0.064$ eV assuming $\Lambda$CDM and $\sum m_\nu<0.16$ eV in the $w_0w_a$ model. Unless there is an unknown systematic error associated with one or more datasets, it is clear that $\Lambda$CDM is being challenged by the combination of DESI BAO with other measurements and that dynamical dark energy offers a possible solution.
Combined Euclid and Spitzer galaxy density catalogues at $z$>1.3 and detection of significant Euclid passive galaxy overdensities in Spitzer overdense regions
arXiv:2503.15331v1 Announce Type: new
Abstract: Euclid will detect tens of thousands of clusters and protoclusters at z>1.3. With a total coverage of 63.1deg^2, the Euclid Quick Data Release 1 (Q1) is large enough to detect tens of clusters and hundreds of protoclusters at these early epochs. The Q1 photometric redshift catalogue enables us to detect clusters out to z < 1.5; however, infrared imaging from Spitzer extends this limit to higher redshifts by using high local projected densities of Spitzer-selected galaxies as signposts for cluster and protocluster candidates. We use Spitzer imaging of the Euclid Deep Fields (EDFs) to derive densities for a sample of Spitzer-selected galaxies at redshifts z > 1.3, building Spitzer IRAC1 and IRAC2 photometric catalogues that are 95% complete at a magnitude limit of IRAC2=22.2, 22.6, and 22.8 for the EDF-S, EDF-F, and EDF-N, respectively. We apply two complementary methods to calculate galaxy densities: (1) aperture and surface density; and (2) the Nth-nearest-neighbour method. When considering a sample selected at a magnitude limit of IRAC2 < 22.2, at which all three EDFs are 95% complete, our surface density distributions are consistent among the three EDFs and with the SpUDS blank field survey. We also considered a deeper sample (IRAC2 < 22.8), finding that 2% and 3% of the surface densities in the North and Fornax fields are 3 sigma higher than the average field distribution and similar to densities found in the CARLA cluster survey. Our surface densities are also consistent with predictions from the GAEA semi-analytical model. Using combined Euclid and ground-based i-band photometry we show that our highest Spitzer-selected galaxy overdence regions, found at z~1.5, also host high densities of passive galaxies. This means that we measure densities consistent with those found in clusters and protoclusters at z>1.3.
Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates
arXiv:2503.15327v1 Announce Type: new
Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.
The Mystery of Alpha and the Isotopes
arXiv:2401.00888v2 Announce Type: replace
Abstract: We report unbiased AI measurements of the fine structure constant $\alpha$ in two proximate absorption regions in the spectrum of the quasar HE0515$-$4414. The data are high resolution, high signal to noise, and laser frequency comb calibrated, obtained using the ESPRESSO spectrograph on the VLT. The high quality of the data and proximity of the regions motivate a differential comparison, exploring the possibility of spatial variations of fundamental constants, as predicted in some theories. We show that if the magnesium isotopic relative abundances are terrestrial, the fine structure constants in these two systems differ at the 7$\sigma$ level. A 3$\sigma$ discrepancy between the two measurements persists even for the extreme non-terrestrial case of 100\% $^{24}$Mg, if shared by both systems. However, if Mg isotopic abundances take independent values in these two proximate systems, one terrestrial, the other with no heavy isotopes, both can be reconciled with a terrestrial $\alpha$, and the discrepancy between the two measurements falls to 2$\sigma$. We cannot rule out other systematics that are unaccounted for in our study that could masquerade as a varying alpha signal. We discuss varying constant and varying isotope interpretations and resolutions to this conundrum for future high precision measurements.
UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey
arXiv:2503.13783v1 Announce Type: new
Abstract: The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain $ugriz$ images of a core survey region of 6250 deg$^2$ of the northern sky. The $10\sigma$ point source depth of the data, as measured within a 2-arcsecond diameter aperture, are $[u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]$\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.
Tests for model misspecification in simulation-based inference: from local distortions to global model checks
arXiv:2412.15100v2 Announce Type: replace
Abstract: Model misspecification analysis strategies, such as anomaly detection, model validation, and model comparison are a key component of scientific model development. Over the last few years, there has been a rapid rise in the use of simulation-based inference (SBI) techniques for Bayesian parameter estimation, applied to increasingly complex forward models. To move towards fully simulation-based analysis pipelines, however, there is an urgent need for a comprehensive simulation-based framework for model misspecification analysis. In this work, we provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks, using distortion-driven model misspecification tests. From a theoretical perspective, we introduce the statistical framework built around performing many hypothesis tests for distortions of the simulation model. We also make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis. Furthermore, we introduce an efficient self-calibrating training algorithm that is useful for practitioners. We demonstrate the performance of the framework in multiple scenarios, making the connection to classical results where they are valid. Finally, we show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.
Improved Halo Model Calibrations for Mixed Dark Matter Models of Ultralight Axions
arXiv:2409.11469v2 Announce Type: replace
Abstract: We study the implications of relaxing the requirement for ultralight axions to account for all dark matter in the Universe by examining mixed dark matter (MDM) cosmologies with axion fractions $f \leq 0.3$ within the fuzzy dark matter (FDM) window $10^{-25}$ eV $\lesssim m \lesssim 10^{-23}$ eV. Our simulations, using a new MDM gravity solver implemented in AxiREPO, capture wave dynamics across various scales with high accuracy down to redshifts $z\approx 1$. We identify halos with Rockstar using the CDM component and find good agreement of inferred halo mass functions (HMFs) and concentration-mass relations with theoretical models across redshifts $z=1-10$. This justifies our halo finder approach a posteriori as well as the assumptions underlying the MDM halo model AxionHMcode. Using the inferred axion halo mass-cold halo mass relation $M_{\text{a}}(M_{\text{c}})$ and calibrating a generalised smoothing parameter $\alpha$ to our MDM simulations, we present a new version of AxionHMcode. The code exhibits excellent agreement with simulations on scales $k< 20 \ h$ cMpc$^{-1}$ at redshifts $z=1-3.5$ for $f\leq 0.1$ around the fiducial axion mass $m = 10^{-24.5}$ eV $ = 3.16\times 10^{-25}$ eV, with maximum deviations remaining below 10%. For axion fractions $f\leq 0.3$, the model maintains accuracy with deviations under 20% at redshifts $z\approx 1$ and scales $k< 10 \ h$ cMpc$^{-1}$, though deviations can reach up to 30% for higher redshifts when $f=0.3$. Reducing the run-time for a single evaluation of AxionHMcode to below $1$ minute, these results highlight the potential of AxionHMcode to provide a robust framework for parameter sampling across MDM cosmologies in Bayesian constraint and forecast analyses.