skip to content

Institute of Astronomy

 

The connection between high-redshift galaxies and Lyman ${\alpha}$ transmission in the Sherwood-Relics simulations of patchy reionisation

Fri, 07/02/2025 - 11:28
arXiv:2502.02983v1 Announce Type: new Abstract: Recent work has suggested that, during reionisation, spatial variations in the ionising radiation field should produce enhanced Ly ${\alpha}$ forest transmission at distances of tens of comoving Mpc from high-redshift galaxies. We demonstrate that the Sherwood-Relics suite of hybrid radiation-hydrodynamical simulations are qualitatively consistent with this interpretation. The shape of the galaxy--Ly ${\alpha}$ transmission cross-correlation is sensitive to both the mass of the haloes hosting the galaxies and the volume averaged fraction of neutral hydrogen in the IGM, $\bar{x}_{\rm HI}$. The reported excess Ly ${\alpha}$ forest transmission on scales r ~ 10 cMpc at $\langle z \rangle \approx 5.2$ -- as measured using C IV absorbers as proxies for high-redshift galaxies -- is quantitatively reproduced by Sherwood-Relics at z = 6 if we assume the galaxies that produce ionising photons are hosted in haloes with mass $M_{\rm h}\geq 10^{10}~h^{-1}\,{\rm M}_\odot$. However, this redshift mismatch is equivalent to requiring $\bar{x}_{\rm HI}\sim 0.1$ at $z\simeq 5.2$, which is inconsistent with the observed Ly ${\alpha}$ forest effective optical depth distribution. We speculate this tension may be partly resolved if the minimum C IV absorber host halo mass at z > 5 is larger than $M_{\rm h}=10^{10}~h^{-1}\,{\rm M}_\odot$. After reionisation completes, relic IGM temperature fluctuations will continue to influence the shape of the cross-correlation on scales of a few comoving Mpc at $4 \leq z \leq 5$. Constraining the redshift evolution of the cross-correlation over this period may therefore provide further insight into the timing of reionisation.

Synergising semi-analytical models and hydrodynamical simulations to interpret JWST data from the first billion years

Fri, 07/02/2025 - 10:58
arXiv:2502.02647v1 Announce Type: new Abstract: The field of high redshift galaxy formation has been revolutionised by JWST, which is yielding unprecedented insights on galaxy assembly at early times. Our key aim is to study the physical mechanisms that can explain the unexpected abundance of bright galaxies at $z \geq 11$, as well as their metal enrichment and spectral properties. We also use recent data to determine the key sources of reionisation. To do so, we implement cold gas fractions and star formation efficiencies derived from the SPHINX20 high-resolution radiation-hydrodynamics simulation into DELPHI, a semi-analytic model that tracks the assembly of dark matter halos and their baryonic components from $z \sim 4.5-40$. In addition, we explore two different methodologies to boost galaxy luminosities at $z \geq 11$: a stellar initial mass function (IMF) that becomes increasingly top-heavy with decreasing metallicity and increasing redshift (eIMF model), and star formation efficiencies that increase with increasing redshift (eSFE model). Our key findings are: (i) both the eIMF and eSFE models can explain the abundance of bright galaxies at $z \geq 11$; (ii) dust attenuation plays an important role for the bright-end of the UV LF at $z \leq 11$; (iii) the mass-metallicity relation is in place as early as $z \sim 17$ in all models although its slope is model-dependent; (iv) within the spread of both models and observations, all of our models are in good agreement with current estimates of $\beta$ slopes at $z \sim 5-17$ and Balmer break strengths at $z \sim 6-10$; (v) in the eIMF model, galaxies at $z\geq12$ or with $\rm{M_{UV}}\geq-18$ show values of $\xi_{\rm{ion}} \sim 10^{25.55}~{\rm [Hz~erg^{-1}]}$, twice larger than in other models; (vi) star formation in galaxies below $10^{9}\rm{M_{\odot}}$ is the key driver of reionisation, providing the bulk ($\sim 85\%$) of ionising photons down to its midpoint at $z \sim 7$.

Chaotic Behavior of Trapped Cosmic Rays

Wed, 05/02/2025 - 10:24
arXiv:2502.01726v1 Announce Type: new Abstract: Recent experimental results on the arrival direction of high-energy cosmic rays have motivated studies to understand their propagating environment. The observed anisotropy is shaped by interstellar and local magnetic fields. In coherent magnetic structures, such as the heliosphere, or due to magnetohydrodynamic turbulence, magnetic mirroring can temporarily trap particles, leading to chaotic behavior. In this work, we develop a new method to characterize cosmic rays' chaotic behavior in magnetic systems using finite-time Lyapunov exponents. This quantity determines the degree of chaos and adapts to transitory behavior. We study particle trajectories in an axial-symmetric magnetic bottle to highlight mirroring effects. By introducing time-dependent magnetic perturbations, we study how temporal variations affect chaotic behavior. We tailor our model to the heliosphere; however, it can represent diverse magnetic configurations exhibiting mirroring phenomena. Our results have three key implications. (1)Theoretical: We find a correlation between the finite-time Lyapunov exponent and the particle escape time from the system, which follows a power law that persists even under additional perturbations. This power law may reveal intrinsic system characteristics, offering insight into propagation dynamics beyond simple diffusion. (2)Simulation: Chaotic effects play a role in cosmic ray simulations and can influence the resulting anisotropy maps. (3)Observational: Arrival maps display areas where the chaotic properties vary significantly; these changes can be the basis for time variability in the anisotropy maps. This work lays the framework for studying the effects of magnetic mirroring of cosmic rays within the heliosphere and the role of temporal variability in the observed anisotropy.

Cosmological super-resolution of the 21-cm signal

Tue, 04/02/2025 - 10:47
arXiv:2502.00852v1 Announce Type: new Abstract: In this study, we train score-based diffusion models to super-resolve gigaparsec-scale cosmological simulations of the 21-cm signal. We examine the impact of network and training dataset size on model performance, demonstrating that a single simulation is sufficient for a model to learn the super-resolution task regardless of the initial conditions. Our best-performing model achieves pixelwise $\mathrm{RMSE}\sim0.57\ \mathrm{mK}$ and dimensionless power spectrum residuals ranging from $10^{-2}-10^{-1}\ \mathrm{mK^2}$ for $128^3$, $256^3$ and $512^3$ voxel simulation volumes at redshift $10$. The super-resolution network ultimately allows us to utilize all spatial scales covered by the SKA1-Low instrument, and could in future be employed to help constrain the astrophysics of the early Universe.

MeerKLASS L-band deep-field intensity maps: entering the HI dominated regime

Thu, 30/01/2025 - 10:25
arXiv:2407.21626v2 Announce Type: replace Abstract: We present results from MeerKAT single-dish HI intensity maps, the final observations to be performed in L-band in the MeerKAT Large Area Synoptic Survey (MeerKLASS) campaign. The observations represent the deepest single-dish HI intensity maps to date, produced from 41 repeated scans over $236\,{\rm deg}^2$, providing 62 hours of observational data for each of the 64 dishes before flagging. By introducing an iterative self-calibration process, the estimated thermal noise of the reconstructed maps is limited to ${\sim}\,1.21\,$mK ($1.2\,\times$ the theoretical noise level). This thermal noise will be sub-dominant relative to the HI fluctuations on large scales ($k\,{\lesssim}\,0.15\,h\,\text{Mpc}^{-1}$), which demands upgrades to power spectrum analysis techniques, particularly for covariance estimation. In this work, we present the improved MeerKLASS analysis pipeline, validating it on both a suite of mock simulations and a small sample of overlapping spectroscopic galaxies from the Galaxy And Mass Assembly (GAMA) survey. Despite only overlapping with ${\sim}\,25\%$ of the MeerKLASS deep field, and a conservative approach to covariance estimation, we still obtain a ${>}\,4\,\sigma$ detection of the cross-power spectrum between the intensity maps and the 2269 galaxies at the narrow redshift range $0.39\,{<}\,z\,{<}\,0.46$. We briefly discuss the HI auto-power spectrum from this data, the detection of which will be the focus of follow-up work. For the first time with MeerKAT single-dish intensity maps, we also present evidence of HI emission from stacking the maps onto the positions of the GAMA galaxies.

The case for large-scale AGN feedback in galaxy formation simulations: insights from XFABLE

Wed, 29/01/2025 - 10:58
arXiv:2501.16983v1 Announce Type: new Abstract: While cosmological simulations of galaxy formation have reached maturity, able to reproduce many fundamental galaxy and halo properties, no consensus has yet been reached on the impact of `baryonic feedback' on the non-linear matter power spectrum. This severely limits the precision of (and potentially biases) small-scale cosmological constraints obtained from weak lensing and galaxy surveys. Recent observational evidence indicates that `baryonic feedback' may be more extreme than commonly assumed in current cosmological hydrodynamical simulations. In this paper, we therefore explore a range of empirical AGN feedback models, within the FABLE simulation suite, with different parameterizations as a function of cosmic time, host halo properties, and/or spatial location where feedback energy is thermalized. We demonstrate that an AGN radio-mode feedback acting in a larger population of black holes, with jets thermalizing at relatively large cluster-centric distances, as exemplified by our XFABLE model, is in good agreement with the latest weak lensing + kSZ constraints across all k-scales. Furthermore, XFABLE maintains good agreement with the galaxy stellar mass function, gas fraction measurements, and all key galaxy group and cluster properties, including scaling relations and ICM radial profiles. Our work highlights the pressing need to model black hole accretion and feedback physics with a greater level of realism, including relativistic, magnetized jets in full cosmological simulations. Finally, we discuss how a range of complementary observational probes in the near future will enable us to constrain AGN feedback models, and therefore reduce `baryonic feedback' modelling uncertainty for the upcoming era of large cosmological surveys.

Candidate strongly lensed type Ia supernovae in the Zwicky Transient Facility archive

Tue, 28/01/2025 - 11:14
arXiv:2405.18589v2 Announce Type: replace Abstract: Gravitationally lensed type Ia supernovae (glSNe Ia) are unique astronomical tools that can be used to study cosmological parameters, distributions of dark matter, the astrophysics of the supernovae, and the intervening lensing galaxies themselves. A small number of highly magnified glSNe Ia have been discovered by ground-based telescopes such as the Zwicky Transient Facility (ZTF), but simulations predict that a fainter population may also exist. We present a systematic search for glSNe Ia in the ZTF archive of alerts distributed from June 1 2019 to September 1 2022. Using the AMPEL platform, we developed a pipeline that distinguishes candidate glSNe Ia from other variable sources. Initial cuts were applied to the ZTF alert photometry before forced photometry was obtained for the remaining candidates. Additional cuts were applied to refine the candidates based on their light curve colours, lens galaxy colours, and the resulting parameters from fits to the SALT2 SN Ia template. The candidates were also cross-matched with the DESI spectroscopic catalogue. Seven transients were identified that had an associated galaxy DESI redshift, which we present as glSN Ia candidates. Although superluminous supernovae (SLSNe) cannot be fully rejected as contaminants, two events, ZTF19abpjicm and ZTF22aahmovu, are significantly different from typical SLSNe and their light curves can be modelled as two-image glSN Ia systems. From this two-image modelling, we estimate time delays of 22 $\pm$ 3 and 34 $\pm$ 1 days for the two events, respectively, which suggests that we have uncovered a population of glSNe Ia with longer time delays. The pipeline is currently being applied to the live ZTF alert stream to identify and follow-up future candidates while active, and it could be the foundation for glSNe Ia searches in future surveys, such as the Rubin Observatory Legacy Survey of Space and Time.

Inferring dark energy properties from the scale factor parametrisation

Mon, 27/01/2025 - 10:55
arXiv:2407.10845v2 Announce Type: replace Abstract: We propose and implement a novel test to assess deviations from well-established concordance $\Lambda$CDM cosmology while inferring dark energy properties. In contrast to the commonly implemented parametric forms of the dark energy equation-of-state (EoS), we test the validity of the cosmological constant on the more fundamental scale factor [$a(t)$] which determines the expansion rate of the Universe. We constrain our extended `general model' using the late-time observables. The posterior of the dark energy EoS is mainly constrained to be quintessence-like naturally excluding physically unviable regions such as phantom crossings or exponential growth.

Black-Hole Cartography

Mon, 20/01/2025 - 11:40
arXiv:2410.13935v2 Announce Type: replace-cross Abstract: Quasinormal modes (QNMs) are usually characterized by their time dependence; oscillations at specific frequencies predicted by black hole (BH) perturbation theory. QNMs are routinely identified in the ringdown of numerical relativity waveforms, are widely used in waveform modeling, and underpin key tests of general relativity and of the nature of compact objects; a program sometimes called BH spectroscopy. Perturbation theory also predicts a specific spatial shape for each QNM perturbation. For the Kerr metric, these are the ($s=-2$) spheroidal harmonics. Spatial information can be extracted from numerical relativity by fitting a feature with known time dependence to all of the spherical harmonic modes, allowing the shape of the feature to be reconstructed; a program initiated here and that we call BH cartography. Accurate spatial reconstruction requires fitting to many spherical harmonics and is demonstrated using highly accurate Cauchy-characteristic numerical relativity waveforms. The loudest QNMs are mapped, and their reconstructed shapes are found to match the spheroidal harmonic predictions. The cartographic procedure is also applied to the quadratic QNMs -- nonlinear features in the ringdown -- and their reconstructed shapes are compared with expectations based on second-order perturbation theory. BH cartography allows us to determine the viewing angles that maximize the amplitude of the quadratic QNMs, an important guide for future searches, and is expected to lead to an improved understanding of nonlinearities in BH ringdown.

ZTF SN Ia DR2: The diversity and relative rates of the thermonuclear SN population

Wed, 15/01/2025 - 11:00
arXiv:2409.04200v3 Announce Type: replace Abstract: The Zwicky Transient Facility SN Ia Data Release 2 (ZTF SN Ia DR2) contains more than 3,000 Type Ia supernovae (SNe Ia), providing the largest homogeneous low-redshift sample of SNe Ia. Having at least one spectrum per event, this data collection is ideal for large-scale statistical studies of the photometric, spectroscopic and host-galaxy properties of SNe Ia, particularly of the rarer 'peculiar' sub-classes. In this paper we first present the method we developed to spectroscopically classify the SNe in the sample, and the techniques we used to model their multi-band light curves and explore their photometric properties. We then show a method to distinguish between the peculiar sub-types and the normal SNe Ia. We also explore the properties of their host galaxies and estimate their relative rates, focusing on the peculiar sub-types and their connection to the cosmologically useful SNe Ia. Finally, we discuss the implications of our study with respect to the progenitor systems of the peculiar SN Ia events.

Constraints on Primordial Magnetic Fields from the Lyman-{\alpha} forest

Tue, 14/01/2025 - 09:35
arXiv:2501.06299v1 Announce Type: new Abstract: We present the first constraints on primordial magnetic fields from the Lyman-$\alpha$ forest using full cosmological hydrodynamic simulations. At the scales and redshifts probed by the data, the flux power spectrum is extremely sensitive to the extra power induced by primordial magnetic fields in the linear matter power spectrum, at a scale that we parametrize with $k_{\rm peak}$. We rely on a set of more than a quarter million flux models obtained by varying thermal, reionization histories and cosmological parameters. We find a hint of extra power that is well fitted by the PMF model with $B\sim 0.2$ nG, corresponding to $k_{\rm peak}\sim 20$ Mpc$^{-1}$. However, when applying very conservative assumptions on the modelling of the noise, we obtain a 3$\sigma$ C.L. lower limit $k_{\rm peak}> 30$ Mpc$^{-1}$ which translates into the tightest bounds on the strength of primordial intergalactic magnetic fields: $B < 0.30$ nG (for fixed, nearly scale-invariant $n_{\rm B}=-2.9$).

A measurement of atmospheric circular polarization with POLARBEAR

Mon, 13/01/2025 - 11:41
arXiv:2410.18154v2 Announce Type: replace Abstract: At millimeter wavelengths, the atmospheric emission is circularly polarized owing to the Zeeman splitting of molecular oxygen by the Earth's magnetic field. We report a measurement of the signal in the 150 GHz band using 3 years of observational data with the \textsc{Polarbear} project. Non-idealities of a continuously rotating half-wave plate (HWP) partially convert circularly polarized light to linearly polarized light. While \textsc{Polarbear} detectors are sensitive to linear polarization, this effect makes them sensitive to circular polarization. Although this was not the intended use, we utilized this conversion to measure circular polarization. We reconstruct the azimuthal gradient of the circular polarization signal and measure its dependency from the scanning direction and the detector bandpass. We compare the signal with a simulation based on atmospheric emission theory, the detector bandpass, and the HWP leakage spectrum model. We find the ratio of the observed azimuthal slope to the simulated slope is $0.92 \pm 0.01\rm{(stat)} \pm 0.07\rm{(sys)}$. This ratio corresponds to a brightness temperature of $3.8\,\mathrm{m K}$ at the effective band center of $121.8\,\mathrm{GHz}$ and bandwidth of $3.5\,\mathrm{GHz}$ estimated from representative detector bandpass and the spectrum of Zeeman emission. This result validates our understanding of the instrument and reinforces the feasibility of measuring the circular polarization using the imperfection of continuously rotating HWP. Continuously rotating HWP is popular in ongoing and future cosmic microwave background experiments to modulate the polarized signal. This work shows a method for signal extraction and leakage subtraction that can help measuring circular polarization in such experiments.

Microlensing of lensed supernovae Zwicky & iPTF16geu: constraints on the lens galaxy mass slope and dark compact object fraction

Mon, 06/01/2025 - 10:28
arXiv:2501.01578v1 Announce Type: new Abstract: To date, only two strongly lensed type Ia supernovae (SNIa) have been discovered with an isolated galaxy acting as the lens: iPTF16geu and SN Zwicky. The observed image fluxes for both lens systems were inconsistent with predictions from a smooth macro lens model. A potential explanation for the anomalous flux ratios is microlensing: additional (de)magnification caused by stars and other compact objects in the lens galaxy. In this work, we combine observations of iPTF16geu and SN Zwicky with simulated microlensing magnification maps, leveraging their standardizable candle properties to constrain the lens galaxy mass slope, $\eta$, and the fraction of dark compact objects, $f_{\rm dc}$. The resulting mass slopes are $\eta = 1.70 \pm 0.07$ for iPTF16geu and $\eta = 1.81 \pm 0.10$ for SN Zwicky. Our results indicate no evidence for a population of dark compact objects, placing upper limits at the $95\%$ confidence level of $f_{\rm dc} < 0.25$ for iPTF16geu and $f_{\rm dc} < 0.47$ for SN Zwicky. Assuming a constant fraction of dark compact objects for both lensed SNe, we obtain $f_{\rm dc} < 0.19$. These results highlight the potential of strongly lensed SNIa to probe the innermost parts of lens galaxies and learn about compact matter.

The Bayesian Global Sky Model (B-GSM): Validation of a Data Driven Bayesian Simultaneous Component Separation and Calibration Algorithm for EoR Foreground Modelling

Fri, 03/01/2025 - 10:27
arXiv:2501.01417v1 Announce Type: new Abstract: We introduce the Bayesian Global Sky Model (B-GSM), a novel data-driven Bayesian approach to modelling radio foregrounds at frequencies <400~MHz. B-GSM aims to address the limitations of previous models by incorporating robust error quantification and calibration. Using nested sampling, we compute Bayesian evidence and posterior distributions for the spectral behaviour and spatial amplitudes of diffuse emission components. Bayesian model comparison is used to determine the optimal number of emission components and their spectral parametrisation. Posterior sky predictions are conditioned on both diffuse emission and absolute temperature datasets, enabling simultaneous component separation and calibration. B-GSM is validated against a synthetic dataset designed to mimic the partial sky coverage, thermal noise, and calibration uncertainties present in real observations of the diffuse sky at low frequencies. B-GSM correctly identifies a model parametrisation with two emission components featuring curved power-law spectra. The posterior sky predictions agree with the true synthetic sky within statistical uncertainty. We find that the root-mean-square (RMS) residuals between the true and posterior predictions for the sky temperature as a function of LST are significantly reduced, when compared to the uncalibrated dataset. This indicates that B-GSM is able to correctly calibrate its posterior sky prediction to the independent absolute temperature dataset. We find that while the spectral parameters and component amplitudes exhibit some sensitivity to prior assumptions, the posterior sky predictions remain robust across a selection of different priors. This is the first of two papers, and is focused on validation of B-GSMs Bayesian framework, the second paper will present results of deployment on real data and introduce the low-frequency sky model which will be available for public download.

Supermassive black hole growth in hierarchically merging nuclear star clusters

Mon, 23/12/2024 - 10:44
arXiv:2412.15334v1 Announce Type: new Abstract: Supermassive black holes are prevalent at the centers of massive galaxies, and their masses scale with galaxy properties, increasing evidence suggesting that these trends continue to low stellar masses. Seeds are needed for supermassive black holes, especially at the highest redshifts explored by the James Webb Space Telescope. We study the hierarchical merging of galaxies via cosmological merger trees and argue that the seeds of supermassive black holes formed in nuclear star clusters via stellar black hole mergers at early epochs. Observable tracers include intermediate-mass black holes, nuclear star clusters, and early gas accretion in host dwarf galaxies, along with a potentially detectable stochastic gravitational wave background, ejection of intermediate and supermassive black holes, and consequences of a significant population of tidal disruption events and extreme-mass ratio inspirals.

Filtering in CMB data analysis with application to ACT DR4 and Planck

Thu, 19/12/2024 - 12:14
arXiv:2412.13995v1 Announce Type: new Abstract: Motivated by observed discrepancies between ACT DR4 and Planck 2018 cosmic microwave background (CMB) anisotropy power spectra, particularly in the cross-correlation of temperature and E-mode polarization, we investigate challenges that may be encountered in the comparison of satellite and ground-based CMB data. In particular, we focus on the effects of Fourier-space filtering and masking involving bright point sources. We show that the filtering operation generates bright cross-shaped artifacts in the map, which stretch far outside typical point-source masks. If not corrected, these artifacts can add bias or additional variance to cross-spectra, skewing results. However we find that the effect of this systematic is not large enough to explain the ACT-Planck differences presented with ACT DR4.