Prospects for disentangling dark matter with weak lensing
arXiv:2505.02233v1 Announce Type: new
Abstract: We investigate the degeneracy between the effects of ultra-light axion dark matter and baryonic feedback in suppressing the matter power spectrum. We forecast that galaxy shear data from the Rubin Observatory's Legacy Survey of Space and Time (LSST) could limit an axion of mass $m = 10^{-25}\,\mathrm{eV}$ to be $\lesssim 5\%$ of the dark matter, stronger than any current bound, if the interplay between axions and feedback is accurately modelled. Using a halo model emulator to construct power spectra for mixed cold and axion dark matter cosmologies, including baryonic effects, we find that galaxy shear is sensitive to axions from $10^{-27}\,\mathrm{eV}$ to $10^{-21}\,\mathrm{eV}$, with the capacity to set competitive bounds across much of this range. For axions with $m \sim 10^{-25}\,\mathrm{eV}$, the scales at which axions and feedback impact structure formation are similar, introducing a parameter degeneracy. We find that, with an external feedback constraint, we can break the degeneracy and constrain the axion transfer function, such that LSST could detect a $10^{-25}\,\mathrm{eV}$ axion comprising 10\% of the dark matter at $\sim 3 \sigma$ significance. Direct reconstruction of the non-linear matter power spectrum provides an alternative way of analysing weak lensing surveys, with the advantage of identifying the scale-dependent features in the data that the dark matter model imposes. We advocate for dedicated cosmological hydrodynamical simulations with an axion dark matter component so that upcoming galaxy and cosmic microwave background lensing surveys can disentangle the dark matter-baryon transfer function.
FLAMINGO: combining kinetic SZ effect and galaxy-galaxy lensing measurements to gauge the impact of feedback on large-scale structure
arXiv:2410.19905v2 Announce Type: replace
Abstract: Energetic feedback processes associated with accreting supermassive black holes can expel gas from massive haloes and significantly alter various measures of clustering on ~Mpc scales, potentially biasing the values of cosmological parameters inferred from analyses of large-scale structure (LSS) if not modelled accurately. Here we use the state-of-the-art FLAMINGO suite of cosmological hydrodynamical simulations to gauge the impact of feedback on large-scale structure by comparing to Planck + ACT stacking measurements of the kinetic Sunyaev-Zel'dovich (kSZ) effect of SDSS BOSS galaxies. We make careful like-with-like comparisons to the observations, aided by high precision KiDS and DES galaxy-galaxy lensing measurements of the BOSS galaxies to inform the selection of the simulated galaxies. In qualitative agreement with several recent studies using dark matter only simulations corrected for baryonic effects, we find that the kSZ effect measurements prefer stronger feedback than predicted by simulations which have been calibrated to reproduce the gas fractions of low redshift X-ray-selected groups and clusters. We find that the increased feedback can help to reduce the so-called S8 tension between the observed and CMB-predicted clustering on small scales as probed by cosmic shear (although at the expense of agreement with the X-ray group measurements). However, the increased feedback is only marginally effective at reducing the reported offsets between the predicted and observed clustering as probed by the thermal SZ (tSZ) effect power spectrum and tSZ effect--weak lensing cross-spectrum, both of which are sensitive to higher halo masses than cosmic shear.
Bayesian evidence for flux scale errors in Galactic synchrotron maps
arXiv:2409.06770v2 Announce Type: replace
Abstract: The 408 MHz Haslam map is widely used as a low-frequency anchor for the intensity and morphology of Galactic synchrotron emission. Multi-frequency, multi-experiment fits show evidence of spatial variation and curvature in the synchrotron frequency spectrum, but there are also poorly-understood multiplicative flux scale disagreements between experiments. We perform a Bayesian model comparison across a range of scenarios, using fits that include recent spectroscopic observations at $\sim 1$ GHz by MeerKAT as well as a reference map from the OVRO-LWA at 73 MHz. In the few square degrees that we analyzed, a large uncorrected flux scale factor potentially as large as 1.6 in the Haslam data is preferred, indicating a 60\% overestimation of the brightness. This partly undermines its use as a reference map. We also find that models with nonzero spectral curvature are statistically disfavored. Given the limited sky coverage here, we suggest a similar analysis across many more regions of the sky to determine the extent and variation of flux scale errors, and whether they should be treated as random or systematic errors in analyses that use the Haslam map as a template.
Unified and consistent structure growth measurements from joint ACT, SPT and \textit{Planck} CMB lensing
arXiv:2504.20038v1 Announce Type: new
Abstract: We present the tightest cosmic microwave background (CMB) lensing constraints to date on the growth of structure by combining CMB lensing measurements from the Atacama Cosmology Telescope (ACT), the South Pole Telescope (SPT) and \textit{Planck}. Each of these surveys individually provides lensing measurements with similarly high statistical power, achieving signal-to-noise ratios of approximately 40. The combined lensing bandpowers represent the most precise CMB lensing power spectrum measurement to date with a signal-to-noise ratio of 61 and an amplitude of $A_\mathrm{lens}^\mathrm{recon} = 1.025 \pm 0.017$ with respect to the theory prediction from the best-fit CMB \textit{Planck}-ACT cosmology. The bandpowers from all three lensing datasets, analyzed jointly, yield a $1.6\%$ measurement of the parameter combination $S_8^\mathrm{CMBL} \equiv \sigma_8\,(\Omega_m/0.3)^{0.25} = 0.825^{+0.015}_{-0.013}$. Including Dark Energy Spectroscopic Instrument (DESI) Baryon Acoustic Oscillation (BAO) data improves the constraint on the amplitude of matter fluctuations to $\sigma_8 = 0.829 \pm 0.009$ (a $1.1\%$ determination). When combining with uncalibrated supernovae from \texttt{Pantheon+}, we present a $4\%$ sound-horizon-independent estimate of $H_0=66.4\pm2.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} $. The joint lensing constraints on structure growth and present-day Hubble rate are fully consistent with a $\Lambda$CDM model fit to the primary CMB data from \textit{Planck} and ACT. While the precise upper limit is sensitive to the choice of data and underlying model assumptions, when varying the neutrino mass sum within the $\Lambda\mathrm{CDM}$ cosmological model, the combination of primary CMB, BAO and CMB lensing drives the probable upper limit for the mass sum towards lower values, comparable to the minimum mass prior required by neutrino oscillation experiments.
Stirring the cosmic pot: how black hole feedback shapes the matter power spectrum in the Fable simulations
arXiv:2407.18349v2 Announce Type: replace
Abstract: Understanding the impact of baryonic physics on cosmic structure formation is crucial for accurate cosmological predictions, especially as we usher in the era of large galaxy surveys with the Rubin Observatory as well as the Euclid and Roman Space Telescopes. A key process that can redistribute matter across a large range of scales is feedback from accreting supermassive black holes. How exactly these active galactic nuclei (AGN) operate from sub-parsec to Mega-parsec scales however remains largely unknown. To understand this, we investigate how different AGN feedback models in the Fable simulation suite affect the cosmic evolution of the matter power spectrum (MPS).
Our analysis reveals that AGN feedback significantly suppresses clustering at scales $k \sim 10\,h\,cMpc^{-1}$, with the strongest effect at redshift $z = 0$ causing a reduction of $\sim 10\%$ with respect to the dark matter-only simulation. This is due to the efficient feedback in both radio (low Eddington ratio) and quasar (high Eddington ratio) modes in our fiducial Fable model. We find that variations of the quasar and radio mode feedback with respect to the fiducial Fable model have distinct effects on the MPS redshift evolution, with the radio mode being more effective on larger scales and later epochs. Furthermore, MPS suppression is dominated by AGN feedback effects inside haloes at $z = 0$, while for $z \gtrsim 1$ the matter distribution both inside and outside of haloes shapes the MPS suppression. Hence, future observations probing earlier cosmic times beyond $z \sim 1$ will be instrumental in constraining the nature of AGN feedback.
Radiometer Calibration using Machine Learning
arXiv:2504.16791v1 Announce Type: new
Abstract: Radiometers are crucial instruments in radio astronomy, forming the primary component of nearly all radio telescopes. They measure the intensity of electromagnetic radiation, converting this radiation into electrical signals. A radiometer's primary components are an antenna and a Low Noise Amplifier (LNA), which is the core of the ``receiver'' chain. Instrumental effects introduced by the receiver are typically corrected or removed during calibration. However, impedance mismatches between the antenna and receiver can introduce unwanted signal reflections and distortions. Traditional calibration methods, such as Dicke switching, alternate the receiver input between the antenna and a well-characterised reference source to mitigate errors by comparison. Recent advances in Machine Learning (ML) offer promising alternatives. Neural networks, which are trained using known signal sources, provide a powerful means to model and calibrate complex systems where traditional analytical approaches struggle. These methods are especially relevant for detecting the faint sky-averaged 21-cm signal from atomic hydrogen at high redshifts. This is one of the main challenges in observational Cosmology today. Here, for the first time, we introduce and test a machine learning-based calibration framework capable of achieving the precision required for radiometric experiments aiming to detect the 21-cm line.
Synergising semi-analytical models and hydrodynamical simulations to interpret JWST data from the first billion years
arXiv:2502.02647v2 Announce Type: replace
Abstract: The field of high redshift galaxy formation has been revolutionised by JWST, which is yielding unprecedented insights on galaxy assembly at early times. Our key aim is to study the physical mechanisms that can explain the unexpected abundance of bright galaxies at $z \geq 11$, as well as their metal enrichment and spectral properties. We also use recent data to determine the key sources of reionisation. To do so, we implement cold gas fractions and star formation efficiencies derived from the SPHINX20 high-resolution radiation-hydrodynamics simulation into DELPHI, a semi-analytic model that tracks the assembly of dark matter halos and their baryonic components from $z \sim 4.5-40$. In addition, we explore two different methodologies to boost galaxy luminosities at $z \geq 11$: a stellar initial mass function (IMF) that becomes increasingly top-heavy with decreasing metallicity and increasing redshift (eIMF model), and star formation efficiencies that increase with increasing redshift (eSFE model). Our key findings are: (i) both the eIMF and eSFE models can explain the abundance of bright galaxies at $z \geq 11$; (ii) dust attenuation plays an important role for the bright-end of the UV LF at $z \leq 11$; (iii) the mass-metallicity relation is in place as early as $z \sim 17$ in all models although its slope is model-dependent; (iv) within the spread of both models and observations, all of our models are in good agreement with current estimates of $\beta$ slopes at $z \sim 5-17$ and Balmer break strengths at $z \sim 6-10$; (v) in the eIMF model, galaxies at $z\geq12$ or with $\rm{M_{UV}}\geq-18$ show values of $\xi_{\rm{ion}} \sim 10^{25.55}~{\rm [Hz~erg^{-1}]}$, twice larger than in other models; (vi) star formation in galaxies below $10^{9}\rm{M_{\odot}}$ is the key driver of reionisation, providing the bulk ($\sim 85\%$) of ionising photons down to its midpoint at $z \sim 7$.
Measurement of the power spectrum turnover scale from the cross-correlation between CMB lensing and Quaia
arXiv:2410.24134v3 Announce Type: replace
Abstract: We use the projected clustering of quasars in the Gaia-unWISE quasar catalog, Quaia, and its cross-correlation with CMB lensing data from Planck, to measure the large-scale turnover of the matter power spectrum, associated with the size of the horizon at the epoch of matter-radiation equality. The turnover is detected with a significance of between $2.3$ and $3.1\sigma$, depending on the method used to quantify it. From this measurement, the equality scale is determined at the $\sim20\%$ level. Using the turnover scale as a standard ruler alone (suppressing information from the large-scale curvature of the power spectrum), in combination with supernova data through an inverse distance ladder approach, we measure the current expansion rate to be $H_0=62.7\pm17.2\,{\rm km}\,{\rm s}^{-1}\,{\rm Mpc}^{-1}$. The addition of information coming from the power spectrum curvature approximately halves the standard ruler uncertainty. Our measurement in combination with calibrated supernovae from Pantheon$+$ and SH0ES constrains the CMB temperature to be $T_{\rm CMB}=3.10^{+0.48}_{-0.36}\,{\rm K}$, independently of CMB data. Alternatively, assuming the value of $T_{\rm CMB}$ from COBE-FIRAS, we can constrain the effective number of relativistic species in the early Universe to be $N_{\rm eff}=3.0^{+5.8}_{-2.9}$.
Flat-sky Angular Power Spectra Revisited
arXiv:2307.13768v2 Announce Type: replace
Abstract: We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.
The Luminosity Function and Clustering of H$\alpha$ Emitting Galaxies at $z\approx4-6$ from a Complete NIRCam Grism Redshift Survey
arXiv:2504.08028v1 Announce Type: new
Abstract: We study the luminosity function (LF) and clustering properties of 888 H$\alpha$ emitters (HAEs) at $3.75 < z < 6$ in the GOODS-N field. The sample, built from JWST CONGRESS and FRESCO NIRCam grism surveys using a novel redshift assignment algorithm, spans $\sim$62 arcmin$^2$ and reaches $L_{\rm H\alpha} \sim 10^{41.2} {\rm erg s^{-1}}$. We identify two prominent filamentary protoclusters at $z \approx 4.41$ and $z \approx 5.19$, hosting 98 and 144 HAEs, respectively. The observed H$\alpha$ LFs show similar shallow faint-end slopes for both protocluster and field galaxies at $z=3.75-5$, and for the protocluster at $z=5-6$ ($\alpha\approx 1.2$ to $-1.3$). In contrast, the field LF at $z=5-6$ is much steeper ($\alpha=-1.87_{-0.23}^{+0.30}$), suggesting that protocluster galaxies at $z > 5$ are more evolved, resembling those at $z=3.75-5$. The observed star formation rate density from H$\alpha$, integrated down to 0.45 ${\rm M_\odot yr^{-1}}$, is $0.050^{+0.002}_{-0.003}$ and $0.046^{+0.006}_{-0.004} M_\odot {\rm yr}^{-1} {\rm Mpc}^{-3}$ at $z=3.75-5$ and $z=5-6$, with protoclusters contributing $\sim$25% and 55%, respectively. This implies that a large fraction of star formation at $z > 4$ occurs in protoclusters. We conduct the first star-formation-rate-limited 3D clustering analysis at $z > 4$. We find the filamentary protocluster geometry flattens the power-law shape of the HAE auto-correlation functions, with slopes much shallower than typically assumed. The auto-correlation function of field HAEs have correlation lengths of $r_0 = 4.61^{+1.00}_{-0.68} h^{-1}{\rm Mpc}$ at $z \approx 4-5$ and $r_0 = 6.23^{+1.68}_{-1.13} h^{-1}{\rm Mpc}$ at $z=5-6$. Comparing the observed correlation functions with the UniverseMachine simulation, we infer the dark matter (sub-)halo masses of HAEs to be $\log (M_h/M_\odot)=11.0-11.2$ at $z\approx 4-6$, with a scatter of 0.4 dex.
FAST drift scan survey for HI intensity mapping: simulation on hunting HI filament with pairwise stacking
arXiv:2411.03988v2 Announce Type: replace
Abstract: Filaments stand as pivotal structures within the cosmic web. However, direct detection of the cold gas content of the filaments remains challenging due to its inherent low brightness temperature. With the TNG hydrodynamical simulations, we demonstrate the effectiveness of isolating faint filament HI signal from the FAST HI intensity mapping (IM) survey through pairwise stacking of galaxies, which yields an average HI filament signal amplitude of $\sim 0.29\ {\mu{\rm K}}$ at $z\simeq 0.1$. However, our simulations reveal a non-negligible contribution from HI-rich galaxies within or near the filaments. Particularly, the faint galaxies dominantly contribute to the extra filament HI signal. Our simulation also shows that the measurement uncertainty is produced by both thermal noise and background variation caused by brightness leakage from surrounding random galaxies. Given a fixed total observation time, a wide-field HI IM survey, which includes a large number of galaxy pairs, can simultaneously reduce thermal noise to below the filament signal level and minimize background variation to a negligible level. Through the end-to-end simulation, this work demonstrates the critical role of the galaxy pairwise stacking method in future filament HI detection, outlining a road map for filament HI detection in the next-generation HI IM surveys.
Constraining Mixed Dark Matter models with high redshift Lyman-alpha forest data
arXiv:2504.06367v1 Announce Type: new
Abstract: This study sets new constraints on Cold+Warm Dark Matter (CWDM) models by leveraging the small-scale suppression of structure formation imprinted in the Lyman-$\alpha$ forest. Using the Sherwood-Relics suite, we extract high-fidelity flux power spectra from simulated Lyman-$\alpha$ forest data, spanning a broad range of cosmologies and thermal histories. This enables precise constraints on the warm dark matter (WDM) fraction, $f_{\mathrm{WDM}}$, and the mass of the WDM particle, $m_{\mathrm{WDM}}$. A key advancement of our analysis is the integration of a neural network emulator directly at the likelihood level, significantly accelerating Bayesian parameter inference. With new observations of high-redshift ($z$ = 4.2$-$5.0) quasar spectra from UVES and HIRES, we establish stringent upper limits: for $m_{\mathrm{WDM}}$ = 1 keV, we find $f_{\mathrm{WDM}} < 0.16$ (2$\sigma$), with constraints loosening to 35\%, 50\%, and 67\% for $m_{\mathrm{WDM}}$ = 2, 3, and 4 keV, respectively. Our results for pure WDM reaffirm the lower bounds of previous work. Crucially, we account for the fixed resolution of simulations and the impact of patchy reionization, demonstrating their minimal influence on mixed dark matter constraints. This robustness paves the way for tighter bounds with improved statistical samples in the future. Our findings suggest that CWDM models can naturally accommodate mild suppression of matter clustering in the high redshift Lyman-$\alpha$ forest 1D flux power, potentially offering a resolution to some of the ongoing cosmological tensions at low redshifts, namely the $S_{8}$ tension.
Exploring cosmological constraints of the weak gravitational lensing and galaxy clustering joint analysis in the CSST photometric survey
arXiv:2410.19388v2 Announce Type: replace
Abstract: We explore the joint weak lensing and galaxy clustering analysis from the photometric survey operated by the China Space Station Telescope (CSST), and study the strength of the cosmological constraints. We employ a high-resolution JiuTian-1G simulation to construct a partial-sky light cone to $z=3$ covering 100 deg$^2$, and obtain the CSST galaxy mock samples based on an improved semi-analytical model. We perform a multi-lens-plane algorithm to generate corresponding synthetic weak lensing maps and catalogs. Then we generate the mock data based on these catalogs considering the instrumental and observational effects of the CSST, and use the Markov Chain Monte Carlo (MCMC) method to perform the constraints. The covariance matrix includes non-Gaussian contributions and super-sample covariance terms, and the systematics from intrinsic alignments, galaxy bias, photometric redshift uncertainties, shear calibration, and non-linear effects are considered in the analysis. We find that the constraint result is comparable to that from Stage III surveys, and it can be significantly improved further in the full CSST survey with 17500 deg$^2$. This indicates the CSST photometric survey is powerful for exploring the Universe.
The Bayesian Global Sky Model (B-GSM): A Calibrated Low Frequency Sky Model for EoR Applications
arXiv:2504.04503v1 Announce Type: new
Abstract: We present the Bayesian Global Sky Model (B-GSM), a new absolutely calibrated model of the diffuse Galactic foreground at frequencies below 408 MHz. We assemble a dataset of publicly available diffuse emission maps at frequencies between 45 MHz and 408 MHz, along with absolute temperature data from the EDGES radiometer between 40 and 200 MHz. We use nested sampling to perform a joint Bayesian analysis of these two datasets and determine posterior distributions of: spatially resolved diffuse components, spectral parameters for the diffuse emission, and calibration corrections for each observed map. Using Bayesian model comparison, we find that the low-frequency sky is optimally modelled by two emission components, each following a curved power-law spectrum. The spectrum for the first component has a spectral index of beta_1 = -2.633 plus/minus 0.002 and a curvature of gamma_1 = 0.014 plus/minus 0.001, while the second has beta_2 = -2.108 plus/minus 0.008 and gamma_2 = -0.424 plus/minus 0.008. The diffuse maps require temperature-scale corrections of 1% to 29%, and zero-level adjustments of a few kelvin to a few hundred kelvin. We find that the Haslam 408 MHz map is well calibrated, requiring a scale correction of 1.029 plus/minus 0.003 (about 3%) and a zero-level correction of 0.91 plus/minus 0.05 kelvin. Posterior predictions for the sky's absolute temperature are in excellent agreement with EDGES data, indicating accurate calibration. The posterior sky predictions agree with observations within statistical uncertainty across all frequencies. However, agreement varies by position, with the largest discrepancies in the Galactic plane. This is the second paper in the B-GSM series; the low-frequency sky model, along with all code and data, is available for download.
The Dark Ages Explorer (DEX): a filled-aperture ultra-long wavelength radio interferometer on the lunar far side
arXiv:2504.03418v1 Announce Type: new
Abstract: The measurement of the spatial fluctuations of the neutral hydrogen 21 cm signal arising during the Dark Ages and Cosmic Dawn periods of our Universe (z from 200 to 10) holds the potential to resolve these still-unexplored earliest phases of the evolution of matter structures. As these cosmological signals are very weak, large distributed telescopes are required at locations free from terrestrial radio interference and ionospheric disturbances. This paper presents a description of the scientific aims, the instrumental concept, and technological developments of an experiment - dubbed the Dark-ages EXplorer (DEX) - which would allow us to (a) measure the Global Signal and (b) measure the angular density fluctuations and conduct line-of-sight tomography in the Dark Ages and Cosmic Dawn epochs. Additional scientific goals are also briefly described. The experiment consists of a low-frequency radio interferometer, which should ideally be located on the far side of the Moon. The paper presents findings from an ESA Concurrent Design Facility (CDF) study, which was conducted to assess the feasibility of such a system using present-day technologies with a high TRL (Technology Readiness Level). Although the study finds that the number of antennas needed to achieve the primary scientific goals is not yet feasible at the moment, it points to a path of technological development that can lead to a realistic and valuable experiment in the medium-term future (i.e., the next decade(s)), as well as development of multi-purpose use technology that can be applied on Earth, and towards other lunar operations.
TDCOSMO XVII. New time delays in 22 lensed quasars from optical monitoring with the ESO-VST 2.6m and MPG 2.2m telescopes
arXiv:2504.02932v1 Announce Type: new
Abstract: We present new time delays, the main ingredient of time delay cosmography, for 22 lensed quasars resulting from high-cadence r-band monitoring on the 2.6 m ESO VLT Survey Telescope and Max-Planck-Gesellschaft 2.2 m telescope. Each lensed quasar was typically monitored for one to four seasons, often shared between the two telescopes to mitigate the interruptions forced by the COVID-19 pandemic. The sample of targets consists of 19 quadruply and 3 doubly imaged quasars, which received a total of 1 918 hours of on-sky time split into 21 581 wide-field frames, each 320 seconds long. In a given field, the 5-{\sigma} depth of the combined exposures typically reaches the 27th magnitude, while that of single visits is 24.5 mag - similar to the expected depth of the upcoming Vera-Rubin LSST. The fluxes of the different lensed images of the targets were reliably de-blended, providing not only light curves with photometric precision down to the photon noise limit, but also high-resolution models of the targets whose features and astrometry were systematically confirmed in Hubble Space Telescope imaging. This was made possible thanks to a new photometric pipeline, lightcurver, and the forward modelling method STARRED. Finally, the time delays between pairs of curves and their uncertainties were estimated, taking into account the degeneracy due to microlensing, and for the first time the full covariance matrices of the delay pairs are provided. Of note, this survey, with 13 square degrees, has applications beyond that of time delays, such as the study of the structure function of the multiple high-redshift quasars present in the footprint at a new high in terms of both depth and frequency. The reduced images will be available through the European Southern Observatory Science Portal.
CHANCES, the Chilean Cluster Galaxy Evolution Survey: Selection and initial characterisation of clusters and superclusters
arXiv:2411.13655v3 Announce Type: replace
Abstract: CHANCES, the CHileAN Cluster galaxy Evolution Survey, will study the evolution of galaxies in and around 100 massive galaxy clusters from the local Universe out to $z = 0.45$, and two superclusters at $z \sim 0.05$ that contain roughly 25 Abell clusters each. CHANCES will use the new 4MOST Spectroscopic Survey Facility on the VISTA 4m telescope to obtain spectra for $\sim$500,000 galaxies with magnitudes $r_\mathrm{AB} < 20.4$, providing comprehensive spectroscopic coverage of each cluster out to $5r_{200}$. Its wide and deep scope will trace massive and dwarf galaxies from the surrounding filaments and groups to the cores of galaxy clusters. This will enable the study of galaxy preprocessing and of the role of the evolving environment on galaxy evolution. In this paper, we present and characterise the sample of clusters and superclusters to be targeted by CHANCES. We used literature catalogues based on X-ray emission and the Sunyaev-Zel'dovich effect to define the cluster sample in a homogeneous way, with attention to cluster mass and redshift, as well as the availability of ancillary data. We calibrated literature mass estimates from various surveys against each other and provide an initial mass estimate for each cluster, which we used to define the radial extent of the 4MOST coverage. We also present an initial assessment of the structure surrounding these clusters based on the redMaPPer red-sequence algorithm as a preview of some of the science CHANCES will enable.
Bubbles in a box: Eliminating edge nucleation in cold-atom simulators of vacuum decay
arXiv:2504.02829v1 Announce Type: cross
Abstract: The decay of metastable 'false vacuum' states via bubble nucleation plays a crucial role in many cosmological scenarios. Cold-atom analog experiments will soon provide the first empirical probes of this process, with potentially far-reaching implications for early-Universe cosmology and high-energy physics. However, an inevitable difference between these analog systems and the early Universe is that the former have a boundary. We show, using a combination of Euclidean calculations and real-time lattice simulations, that these boundaries generically cause rapid bubble nucleation on the edge of the experiment, obscuring the bulk nucleation that is relevant for cosmology. We demonstrate that implementing a high-density 'trench' region at the boundary completely eliminates this problem, and recovers the desired cosmological behavior. Our findings are relevant for ongoing efforts to probe vacuum decay in the laboratory, providing a practical solution to a key experimental obstacle.
Effects of chemically homogeneous evolution of the first stars on the 21-cm signal and reionization
arXiv:2504.00535v1 Announce Type: new
Abstract: The first generation of stars, known as Population III (Pop III), played a crucial role in the early Universe through their unique formation environment and metal-free composition. These stars can undergo chemically homogeneous evolution (CHE) due to fast rotation, becoming more compact and hotter/bluer than their (commonly assumed) non-rotating counterparts. In this study, we investigate the impact of Pop III CHE on the 21-cm signal and cosmic reionization under various assumptions on Pop III star formation, such as their formation efficiency, initial mass function, and transition to metal-enriched star formation. We combine stellar spectra computed by detailed atmosphere models with semi-numerical simulations of Cosmic Dawn and the Epoch of Reionization ($z\sim 6-30$). The key effect of CHE arises from the boosted ionizing power of Pop III stars, which reduces the Pop III stellar mass density required to reproduce the observed Thomson scattering optical depth by a factor of $\sim 2$. Meanwhile, the maximum 21-cm global absorption signal is shallower by up to $\sim 15$ mK (11%), partly due to the reduced Lyman-band emission from CHE, and the large-scale ($k\sim 0.2\ \rm cMpc^{-1}$) power drops by a factor of a few at $z\gtrsim 25$. In general, the effects of CHE are comparable to those of Pop III star formation parameters, showing an interesting interplay with distinct features in different epochs. These results highlight the importance of metal-free/poor stellar evolution in understanding the early Universe and suggest that future studies should consider joint constraints on the physics of star/galaxy formation and stellar evolution.
Exploiting synergies between JWST and cosmic 21-cm observations to uncover star formation in the early Universe
arXiv:2503.21687v1 Announce Type: new
Abstract: In the current era of JWST, we continue to uncover a wealth of information about the Universe deep into the Epoch of Reionization. In this work, we run a suite of simulations using the code 21cmSPACE, to explore the astrophysical properties of galaxies in the early Universe, and their impact on high-redshift observables. We use multi-wavelength observational data including the global 21-cm signal and power spectrum limits from SARAS~3 and HERA respectively, present-day diffuse X-ray and radio backgrounds, and UV luminosity functions (UVLFs) from HST and JWST in the range $z=6-14.5$ to derive our constraints. We constrain a flexible model of halo-mass and redshift dependent star-formation efficiency (SFE), defined as the gas fraction converted into stars, and find that it is best described by little to no redshift evolution at $z\approx6-10$ and rapid evolution at $z\approx10-15$. We derive Bayesian functional posterior distributions for the SFE across this redshift range, inferring that a halo of mass $M_h=10^{10}\text{M}_\odot$ has an efficiency of $2-3\%$ at $z\lesssim10$, $12\%$ at $z=12$ and $26\%$ at $z=15$. We also find, through synergy between SARAS~3 and UVLFs, that the minimum circular velocity for star-formation in halos is $V_c = 16.9^{+25.7}_{-9.5}\text{km s}^{-1}$ or equivalently $\log_{10}(M_\text{crit}/\text{M}_\odot) = 8.29^{+1.21}_{-1.08}$ at $z=6$. Alongside these star-formation constraints, we find the X-ray and radio efficiencies of early galaxies to be $f_X = 0.5^{+6.3}_{-0.3}$ and $f_r \lesssim 11.7$ respectively, improving upon existing works that do not use UVLF data. Our results demonstrate the critical role of UVLFs in constraining the early Universe, and its synergies with 21-cm observations, alongside other multi-wavelength observational datasets.