skip to content

Institute of Astronomy

 

A new convection scheme for GCMs of temperate sub-Neptunes

Recent IoA Publications - Wed, 19/02/2025 - 12:19
arXiv:2502.12234v1 Announce Type: new Abstract: Atmospheric characterisation of temperate sub-Neptunes is the new frontier of exoplanetary science with recent JWST observations of possible Hycean world K2-18b. Accurate modelling of atmospheric processes is essential to interpreting high-precision spectroscopic data given the wide range of possible conditions in the sub-Neptune regime, including on potentially habitable planets. Notably, convection is an important process which can operate in different modes across sub-Neptune conditions. Convection can act very differently in atmospheres with a high condensible mass fraction (non-dilute atmospheres) or with a lighter background gas, e.g. water convection in a H$_2$-rich atmosphere, and can be much weaker or even shut down entirely in the latter case. We present a new mass-flux scheme which can capture these variations and simulate convection over a wide range of parameter space for use in 3D general circulation models (GCMs). We validate our scheme for two representative cases, a terrestrial-like atmosphere and a mini-Neptune atmosphere. In the terrestrial case, considering TRAPPIST-1e with an Earth-like atmosphere, the model performs near-identically to Earth-tuned models in an Earth-like convection case. In the mini-Neptune case, considering the bulk properties of K2-18b and assuming a deep H$_2$-rich atmosphere, we demonstrate the capability of the scheme to reproduce non-condensing convection. We find convection occurring at pressures greater than 0.3 bar and the dynamical structure shows high-latitude prograde jets. Our convection scheme will aid in the 3D climate modelling of a wide range of exoplanet atmospheres, and enable further exploration of temperate sub-Neptune atmospheres.

A new convection scheme for GCMs of temperate sub-Neptunes

Planetary systems - Wed, 19/02/2025 - 12:19
arXiv:2502.12234v1 Announce Type: new Abstract: Atmospheric characterisation of temperate sub-Neptunes is the new frontier of exoplanetary science with recent JWST observations of possible Hycean world K2-18b. Accurate modelling of atmospheric processes is essential to interpreting high-precision spectroscopic data given the wide range of possible conditions in the sub-Neptune regime, including on potentially habitable planets. Notably, convection is an important process which can operate in different modes across sub-Neptune conditions. Convection can act very differently in atmospheres with a high condensible mass fraction (non-dilute atmospheres) or with a lighter background gas, e.g. water convection in a H$_2$-rich atmosphere, and can be much weaker or even shut down entirely in the latter case. We present a new mass-flux scheme which can capture these variations and simulate convection over a wide range of parameter space for use in 3D general circulation models (GCMs). We validate our scheme for two representative cases, a terrestrial-like atmosphere and a mini-Neptune atmosphere. In the terrestrial case, considering TRAPPIST-1e with an Earth-like atmosphere, the model performs near-identically to Earth-tuned models in an Earth-like convection case. In the mini-Neptune case, considering the bulk properties of K2-18b and assuming a deep H$_2$-rich atmosphere, we demonstrate the capability of the scheme to reproduce non-condensing convection. We find convection occurring at pressures greater than 0.3 bar and the dynamical structure shows high-latitude prograde jets. Our convection scheme will aid in the 3D climate modelling of a wide range of exoplanet atmospheres, and enable further exploration of temperate sub-Neptune atmospheres.

Ultra-low-noise Infrared Detectors for Exoplanet Imaging

Astronomy News - Wed, 19/02/2025 - 11:11

5 min read

Ultra-low-noise Infrared Detectors for Exoplanet Imaging A linear-mode avalanche photodiode array in the test dewar. The detector is the dark square in the center. Michael Bottom, University of Hawai’i

One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are capable of hosting life. While thousands of planets have been discovered around other stars, the vast majority of these detections have been made via indirect methods, that is, by detecting the effect of the planet on the star’s light, rather than detecting the planet’s light directly. For example, when a planet passes in front of its host star, the brightness of the star decreases slightly.

However, indirect methods do not allow for characterization of the planet itself, including its temperature, pressure, gravity, and atmospheric composition. Planetary atmospheres may include “biosignature” gases like oxygen, water vapor, carbon dioxide, etc., which are known to be key ingredients needed to support life as we know it. As such, direct imaging of a planet and characterization of its atmosphere are key to understanding its potential habitability.

But the technical challenges involved in imaging Earth-like extrasolar planets are extreme. First such planets are detected only by observing light they reflect from their parent star, and so they typically appear fainter than the stars they orbit by factors of about 10 billion. Furthermore, at the cosmic distances involved, the planets appear right next to the stars. A popular expression is that exoplanet imaging is like trying to detect a firefly three feet from a searchlight from a distance of 300 miles.

Tremendous effort has gone into developing starlight suppression technologies to block the bright glare of the star, but detecting the light of the planet is challenging in its own right, as planets are incredibly faint. One way to quantify the faintness of planetary light is to understand the photon flux rate. A photon is an indivisible particle of light, that is, the minimum detectable amount of light. On a sunny day, approximately 10 thousand trillion photons enter your eye every second. The rate of photons entering your eye from an Earth-like exoplanet around a nearby star would be around 10 to 100 per year. Telescopes with large mirrors can help collect as much of this light as possible, but ultra-sensitive detectors are also needed, particularly for infrared light, where the biosignature gases have their strongest effects. Unfortunately, state-of-the-art infrared detectors are far too noisy to detect the low level of light emitted from exoplanets.

With support from NASA’s Astrophysics Division and industrial partners, researchers at the University of Hawai’i are developing a promising detector technology to meet these stringent sensitivity requirements. These detectors, known as avalanche photodiode arrays, are constructed out of the same semiconductor material as conventional infrared sensors. However, these new sensors employ an extra “avalanche” layer that takes the signal from a single photon and multiplies it, much like an avalanche can start with a single snowball and quickly grow it to the size of a boulder. This signal amplification occurs before any noise from the detector is introduced, so the effective noise is proportionally reduced. However, at high avalanche levels, photodiodes start to behave badly, with noise exponentially increasing, which negates any benefits of the signal amplification. Late University of Hawai’i faculty member Donald Hall, who was a key figure in driving technology for infrared astronomy, realized the potential use of avalanche photodiodes for ultra-low-noise infrared astronomy with some modifications to the material properties.

University of Hawai’i team members with cryogenic dewar used to test the sensors. From left to right, Angelu Ramos, Michael Bottom, Shane Jacobson, Charles-Antoine Claveau. Michael Bottom, University of Hawai’i

The most recent sensors benefit from a new design including a graded semiconductor bandgap that allows for excellent noise performance at moderate amplification, a mesa pixel geometry to reduce electronic crosstalk, and a read-out integrated circuit to allow for short readout times. “It was actually challenging figuring out just how sensitive these detectors are,” said Michael Bottom, associate professor at the University of Hawai’i and lead of development effort. “Our ‘light-tight’ test chamber, which was designed to evaluate the infrared sensors on the James Webb Space Telescope, was supposed to be completely dark. But when we put these avalanche photodiodes in the chamber, we started seeing light leaks at the level of a photon an hour, which you would never be able to detect using the previous generation of sensors.”

The new designs have a format of one megapixel, more than ten times larger than the previous iteration of sensors, and circuitry that allows for tracking and subtracting any electronic drifts. Additionally, the pixel size and control electronics are such that these new sensors could be drop-in replacements for the most common infrared sensors used on the ground, which would give new capabilities to existing instruments.

Image of the Palomar-2 globular cluster located in the constellation of Auriga, taken with the linear-mode avalanche photodiode arrays, taken from the first on-sky testing of the sensors using the University of Hawai’i’s 2.2 meter telescope. Michael Bottom, University of Hawai’i

Last year, the team took the first on-sky images from the detectors, using the University of Hawai’i’s 2.2-meter telescope. “It was impressive to see the avalanche process on sky. When we turned up the gain, we could see more stars appear,” said Guillaume Huber, a graduate student working on the project. “The on-sky demonstration was important to prove the detectors could perform well in an operational environment,” added Michael Bottom.

According to the research team, while the current sensors are a major step forward, the megapixel format is still too small for many science applications, particularly those involving spectroscopy. Further tasks include improving detector uniformity and decreasing persistence. The next generation of sensors will be four times larger, meeting the size requirements for the Habitable Worlds Observatory, NASA’s next envisioned flagship mission, with the goals of imaging and characterizing Earth-like exoplanets.

Project Lead: Dr. Michael Bottom, University of Hawai’i

Sponsoring Organization:  NASA Strategic Astrophysics Technology (SAT) Program

Share Details Last Updated Feb 18, 2025 Related Terms Explore More 6 min read Webb Reveals Rapid-Fire Light Show From Milky Way’s Central Black Hole

Article


5 mins ago

2 min read Hubble Captures a Cosmic Cloudscape

Article


4 days ago

5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars

Article


5 days ago

Fri 13 Jun 11:30: Title to be confirmed

IoA Institute of Astronomy Talk Lists - Wed, 19/02/2025 - 10:08
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Mapping the Filamentary Nebula of NGC 1275 with Multiwavelength SITELLE Observations

Recent IoA Publications - Tue, 18/02/2025 - 10:46
arXiv:2502.05406v2 Announce Type: replace Abstract: The filamentary nebula encompassing the central galaxy of the Perseus Cluster, NGC 1275, is a complex structure extending dozens of kiloparsecs from NGC 1275. Decades of previous works have focused on establishing the primary formation and ionization mechanisms in different filaments. These studies have pointed to a lack of star formation in the majority of the filaments, the importance of magnetic fields and turbulence in several regions, and the role of interactions between the intercluster medium (ICM) and the cool gas in the filaments, as well as the role of interaction between the central radio source, 3C84, and the filaments. In this paper, we present multi-filter observations of the entire filamentary system that cover the optical bandpass, using the SITELLE instrument at the Canada-France-Hawai'i Telescope. Here, we use the data analysis software, \href{https://crhea93.github.io/LUCI/index.html}{\texttt{LUCI}}, to produce flux maps of the prominent emission lines present in the filters: \oii{}$\lambda$3726/3729, \oiii{}$\lambda$5007, H$\beta$, \nii{}$\lambda$6548, \nii{}$\lambda$6583, and H$\alpha$. We use these maps to produce BPT and WHAN diagrams to study the ionization mechanisms at play in each distinct region of the filamentary nebula. First, we confirm the absence of \oiii{}$\lambda$5007 in the extended filaments, although we detect this line in the central core, revealing a compact region where photoionization by the AGN might affect local conditions. Our findings corroborate previous claims that the ionization in the extended filaments could be caused by the cooling ICM via collisional excitation and/or mixing. Moreover, they support the conclusion that magnetic fields play an important role in the formation and continued existence of the filaments.

The Power Spectrum of the Thermal Sunyaev-Zeldovich Effect

Cosmology and Fundamental physics - Mon, 17/02/2025 - 11:09
arXiv:2502.10232v1 Announce Type: new Abstract: The power spectrum of unresolved thermal Sunyaev-Zeldovich (tSZ) clusters is extremely sensitive to the amplitude of the matter fluctuations. This paper present an analysis of the tSZ power spectrum using temperature power spectra of the cosmic microwave background (CMB) rather than maps of the Compton y-parameter. Our analysis is robust and insensitive to the cosmic infrared background. Using data from Planck, and higher resolution CMB data from the Atacama Cosmology Telescope and the South Pole Telescope, we find strong evidence that the tSZ spectrum has a shallower slope and a much lower amplitude at multipoles l > 2000$compared to the predictions of the FLAMINGO hydrodynamic simulations of the LCDM cosmology. Recent results on CMB lensing, cross-correlations of CMB lensing with galaxy surveys and full shape analysis of galaxies and quasars from the Dark Energy Spectroscopic Instrument suggests that this discrepancy cannot be resolved by lowering the amplitude of the matter fluctuations. An alternative possibility is that the impact of baryonic feedback in the FLAMINGO simulations is underestimated.

The Power Spectrum of the Thermal Sunyaev-Zeldovich Effect

Recent IoA Publications - Mon, 17/02/2025 - 11:09
arXiv:2502.10232v1 Announce Type: new Abstract: The power spectrum of unresolved thermal Sunyaev-Zeldovich (tSZ) clusters is extremely sensitive to the amplitude of the matter fluctuations. This paper present an analysis of the tSZ power spectrum using temperature power spectra of the cosmic microwave background (CMB) rather than maps of the Compton y-parameter. Our analysis is robust and insensitive to the cosmic infrared background. Using data from Planck, and higher resolution CMB data from the Atacama Cosmology Telescope and the South Pole Telescope, we find strong evidence that the tSZ spectrum has a shallower slope and a much lower amplitude at multipoles l > 2000$compared to the predictions of the FLAMINGO hydrodynamic simulations of the LCDM cosmology. Recent results on CMB lensing, cross-correlations of CMB lensing with galaxy surveys and full shape analysis of galaxies and quasars from the Dark Energy Spectroscopic Instrument suggests that this discrepancy cannot be resolved by lowering the amplitude of the matter fluctuations. An alternative possibility is that the impact of baryonic feedback in the FLAMINGO simulations is underestimated.

Wed 19 Feb 13:15: Stellar flybys in protoplanetary discs

Next Wednesday Seminars - Mon, 17/02/2025 - 10:18
Stellar flybys in protoplanetary discs

Substructures in protoplanetary discs have long been hypothesised to act as sites of planetesimal formation, where dust particles can collide and grow to macroscopic sizes. In this talk, I will consider the substructures formed when a protoplanetary disc is perturbed by an unbound stellar companion (a stellar flyby). I will present the results of 3D hydrodynamical simulations of discs after a range of flyby encounters, and employ a novel particle tracking algorithm to study the fate of dust particles in the flyby-induced rings and spirals. Our results show that stellar flybys could trigger planetesimal formation in protoplanetary discs.

Add to your calendar or Include in your list

Categories: Talks

ZTF SN Ia DR2: Improved SN Ia colors through expanded dimensionality with SALT3+

Cosmology and Fundamental physics - Mon, 17/02/2025 - 09:10
arXiv:2502.09713v1 Announce Type: new Abstract: Type Ia supernovae (SNe Ia) are a key probe in modern cosmology, as they can be used to measure luminosity distances at gigaparsec scales. Models of their light-curves are used to project heterogeneous observed data onto a common basis for analysis. The SALT model currently used for SN Ia cosmology describes SNe as having two sources of variability, accounted for by a color parameter c, and a "stretch parameter" x1. We extend the model to include an additional parameter we label x2, to investigate the cosmological impact of currently unaddressed light-curve variability. We construct a new SALT model, which we dub "SALT3+". This model was trained by an improved version of the SALTshaker code, using training data combining a selection of the second data release of cosmological SNe Ia from the Zwicky Transient Facility and the existing SALT3 training compilation. We find additional, coherent variability in supernova light-curves beyond SALT3. Most of this variation can be described as phase-dependent variation in g-r and r-i color curves, correlated with a boost in the height of the secondary maximum in i-band. These behaviors correlate with spectral differences, particularly in line velocity. We find that fits with the existing SALT3 model tend to address this excess variation with the color parameter, leading to less informative measurements of supernova color. We find that neglecting the new parameter in light-curve fits leads to a trend in Hubble residuals with x2 of 0.039 +/- 0.005 mag, representing a potential systematic uncertainty. However, we find no evidence of a bias in current cosmological measurements. We conclude that extended SN Ia light-curve models promise mild improvement in the accuracy of color measurements, and corresponding cosmological precision. However, models with more parameters are unlikely to substantially affect current cosmological results.

ZTF SN Ia DR2: Improved SN Ia colors through expanded dimensionality with SALT3+

Recent IoA Publications - Mon, 17/02/2025 - 09:10
arXiv:2502.09713v1 Announce Type: new Abstract: Type Ia supernovae (SNe Ia) are a key probe in modern cosmology, as they can be used to measure luminosity distances at gigaparsec scales. Models of their light-curves are used to project heterogeneous observed data onto a common basis for analysis. The SALT model currently used for SN Ia cosmology describes SNe as having two sources of variability, accounted for by a color parameter c, and a "stretch parameter" x1. We extend the model to include an additional parameter we label x2, to investigate the cosmological impact of currently unaddressed light-curve variability. We construct a new SALT model, which we dub "SALT3+". This model was trained by an improved version of the SALTshaker code, using training data combining a selection of the second data release of cosmological SNe Ia from the Zwicky Transient Facility and the existing SALT3 training compilation. We find additional, coherent variability in supernova light-curves beyond SALT3. Most of this variation can be described as phase-dependent variation in g-r and r-i color curves, correlated with a boost in the height of the secondary maximum in i-band. These behaviors correlate with spectral differences, particularly in line velocity. We find that fits with the existing SALT3 model tend to address this excess variation with the color parameter, leading to less informative measurements of supernova color. We find that neglecting the new parameter in light-curve fits leads to a trend in Hubble residuals with x2 of 0.039 +/- 0.005 mag, representing a potential systematic uncertainty. However, we find no evidence of a bias in current cosmological measurements. We conclude that extended SN Ia light-curve models promise mild improvement in the accuracy of color measurements, and corresponding cosmological precision. However, models with more parameters are unlikely to substantially affect current cosmological results.

The Pristine survey: XXVIII. The extremely metal-poor stream C-19 stretches over more than 100 degrees

Stars and stellar evolution - Mon, 17/02/2025 - 09:03
arXiv:2502.09710v1 Announce Type: new Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $11.1^{+1.9}_{-1.6}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.

The Pristine survey: XXVIII. The extremely metal-poor stream C-19 stretches over more than 100 degrees

Recent IoA Publications - Mon, 17/02/2025 - 09:03
arXiv:2502.09710v1 Announce Type: new Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $11.1^{+1.9}_{-1.6}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.

Fri 16 May 11:30: Title to be confirmed

IoA Institute of Astronomy Talk Lists - Sun, 16/02/2025 - 10:49
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Fri 28 Mar 11:30: Modelling black hole accretion through an 𝛼-disc with a resolved interstellar medium in dwarf galaxies

IoA Institute of Astronomy Talk Lists - Fri, 14/02/2025 - 15:43
Modelling black hole accretion through an 𝛼-disc with a resolved interstellar medium in dwarf galaxies

We perform high-resolution simulations of an isolated dwarf galaxy with a virial mass of 1e10 Msun harbouring a 1e4 Msun intermediate mass black hole (IMBH) embedded in a nuclear star cluster (NSC) at its centre. To model a realistic interstellar medium (ISM), we incorporate IMF -sampled star formation, photo-ionisation feedback, H_II region modelling, photoelectric heating from a spatially varying far-ultraviolet field, and supernova feedback. Our approach employs a sub-grid Shakura-Sunyaev accretion disc model to accurately simulate the evolution of BH mass and spin. Using super-Lagrangian refinement techniques, we resolve spatial scales up to 0.01 pc, capturing the self-gravitating radius of the accretion disc, allowing accurate measurement of mass and angular momentum transfer to the IMBH . The gravitational potential of the NSC captures the ISM , forming a circumnuclear disc (CND), while its torques drive angular momentum loss from parsec to sub-parsec scales, circularising gas onto the 𝛼-accretion disc and fuelling IMBH accretion. We further investigate star formation in the vicinity of the IMBH . In the innermost regions, within 0.2 pc, star formation is highly suppressed. However, at distances of approximately 1 to 7 pc from the centre, the gas remains locally susceptible to fragmentation, leading to the formation of massive, young stars. The feedback from these stars can potentially disrupt the CND entirely and cut off the gas supply to the IMBH . Our study demonstrates the complexity of IMBH accretion once the resolved ISM is taken into account and paves the way for next-generation studies incorporating IMBH -driven feedback processes.

Add to your calendar or Include in your list

Tue 04 Mar 11:15: Cygnus X-3 in 2024: many giant radio flares!

Next External Talks - Thu, 13/02/2025 - 11:34
Cygnus X-3 in 2024: many giant radio flares!

Cygnus X-3 is a `high mass X-ray binary’, which was first detected in the early days of X-ray astronomy, in 1966. It is also seen in the radio and the infra-red (but not optically due to obscuration). The emission is due to accretion from the companion star onto the compact source, thought to be a Wolf-Rayet star and a black hole respectively. It occasionally shows giant fares, and has been monitored—approximately daily—for several years with the Arcminute Microkelvin Image (AMI) at Lord’s Bridge, SW of Cambridge. During 2022 and 2023 was placid, with little variation in its radio (or X-ray) emission, but in 2024 it showed five giant radio flares, brightening from a few mJy to > 10 Jy over a few days.

Add to your calendar or Include in your list

Categories: Talks

Prospects for biological evolution on Hycean worlds

Planetary systems - Thu, 13/02/2025 - 10:32
arXiv:2502.07872v1 Announce Type: new Abstract: Recent detections of carbon-bearing molecules in the atmosphere of a candidate Hycean world, K2-18 b, with JWST are opening the prospects for characterising potential biospheres on temperate exoplanets. Hycean worlds are a recently theorised class of habitable exoplanets with ocean covered surfaces and hydrogen-rich atmospheres. Hycean planets are thought to be conducive for hosting microbial life under conditions similar to those in the Earth's oceans. In the present work we investigate the potential for biological evolution on Hycean worlds and their dependence on the thermodynamic conditions. We find that a large range of evolutionary rates and origination times are possible for unicellular life in oceanic environments for a relatively marginal range in environmental conditions. For example, a relatively small (10 K) increase in the average ocean temperature can lead to over twice the evolutionary rates, with key unicellular groups originating as early as $\sim$1.3 billion years from origin of life. On the contrary, similar decreases in temperatures can also significantly delay the origination times by several billion years. This delay in turn could affect their observable biomarkers such as dimethylsulfide, which is known to be produced predominantly by Eukaryotic marine phytoplankton in Earth's oceans. Therefore, Hycean worlds that are significantly cooler than Earth may be expected to host simpler microbial life than Earth's oceans and may show weaker biosignatures, unless they orbit significantly older stars than the Sun. Conversely, Hycean worlds with warmer surface temperatures than Earth are more likely to show stronger atmospheric biosignatures due to microbial life if present.

Prospects for biological evolution on Hycean worlds

Recent IoA Publications - Thu, 13/02/2025 - 10:32
arXiv:2502.07872v1 Announce Type: new Abstract: Recent detections of carbon-bearing molecules in the atmosphere of a candidate Hycean world, K2-18 b, with JWST are opening the prospects for characterising potential biospheres on temperate exoplanets. Hycean worlds are a recently theorised class of habitable exoplanets with ocean covered surfaces and hydrogen-rich atmospheres. Hycean planets are thought to be conducive for hosting microbial life under conditions similar to those in the Earth's oceans. In the present work we investigate the potential for biological evolution on Hycean worlds and their dependence on the thermodynamic conditions. We find that a large range of evolutionary rates and origination times are possible for unicellular life in oceanic environments for a relatively marginal range in environmental conditions. For example, a relatively small (10 K) increase in the average ocean temperature can lead to over twice the evolutionary rates, with key unicellular groups originating as early as $\sim$1.3 billion years from origin of life. On the contrary, similar decreases in temperatures can also significantly delay the origination times by several billion years. This delay in turn could affect their observable biomarkers such as dimethylsulfide, which is known to be produced predominantly by Eukaryotic marine phytoplankton in Earth's oceans. Therefore, Hycean worlds that are significantly cooler than Earth may be expected to host simpler microbial life than Earth's oceans and may show weaker biosignatures, unless they orbit significantly older stars than the Sun. Conversely, Hycean worlds with warmer surface temperatures than Earth are more likely to show stronger atmospheric biosignatures due to microbial life if present.

Searching for Hot Water World Candidates with CHEOPS: Refining the radii and analysing the internal structures and atmospheric lifetimes of TOI-238 b and TOI-1685 b

Recent IoA Publications - Thu, 13/02/2025 - 10:30
arXiv:2502.07887v1 Announce Type: new Abstract: Studying the composition of exoplanets is one of the most promising approaches to observationally constrain planet formation and evolution processes. However, this endeavour is complicated for small exoplanets by the fact that a wide range of compositions is compatible with their bulk properties. To overcome this issue, we identify triangular regions in the mass-radius space where part of this degeneracy is lifted for close-in planets, since low-mass H/He envelopes would not be stable due to high-energy stellar irradiation. Planets in these Hot Water World triangles need to contain at least some heavier volatiles and are therefore interesting targets for atmospheric follow-up observations. We perform a demographic study to show that only few well-characterised planets in these regions are currently known and introduce our CHEOPS GTO programme aimed at identifying more of these potential hot water worlds. Here, we present CHEOPS observations for the first two targets of our programme, TOI-238 b and TOI-1685 b. Combined with TESS photometry and published RVs, we use the precise radii and masses of both planets to study their location relative to the corresponding Hot Water World triangles, perform an interior structure analysis and study the lifetimes of H/He and water-dominated atmospheres under these conditions. We find that TOI-238 b lies, at the 1-sigma level, inside the corresponding triangle. While a pure H/He atmosphere would have evaporated after 0.4-1.3 Myr, it is likely that a water-dominated atmosphere would have survived until the current age of the system, which makes TOI-238 b a promising hot water world candidate. Conversely, TOI-1685 b lies below the mass-radius model for a pure silicate planet, meaning that even though a water-dominated atmosphere would be compatible both with our internal structure and evaporation analysis, we cannot rule out the planet to be a bare core.

Searching for Hot Water World Candidates with CHEOPS: Refining the radii and analysing the internal structures and atmospheric lifetimes of TOI-238 b and TOI-1685 b

Planetary systems - Thu, 13/02/2025 - 10:30
arXiv:2502.07887v1 Announce Type: new Abstract: Studying the composition of exoplanets is one of the most promising approaches to observationally constrain planet formation and evolution processes. However, this endeavour is complicated for small exoplanets by the fact that a wide range of compositions is compatible with their bulk properties. To overcome this issue, we identify triangular regions in the mass-radius space where part of this degeneracy is lifted for close-in planets, since low-mass H/He envelopes would not be stable due to high-energy stellar irradiation. Planets in these Hot Water World triangles need to contain at least some heavier volatiles and are therefore interesting targets for atmospheric follow-up observations. We perform a demographic study to show that only few well-characterised planets in these regions are currently known and introduce our CHEOPS GTO programme aimed at identifying more of these potential hot water worlds. Here, we present CHEOPS observations for the first two targets of our programme, TOI-238 b and TOI-1685 b. Combined with TESS photometry and published RVs, we use the precise radii and masses of both planets to study their location relative to the corresponding Hot Water World triangles, perform an interior structure analysis and study the lifetimes of H/He and water-dominated atmospheres under these conditions. We find that TOI-238 b lies, at the 1-sigma level, inside the corresponding triangle. While a pure H/He atmosphere would have evaporated after 0.4-1.3 Myr, it is likely that a water-dominated atmosphere would have survived until the current age of the system, which makes TOI-238 b a promising hot water world candidate. Conversely, TOI-1685 b lies below the mass-radius model for a pure silicate planet, meaning that even though a water-dominated atmosphere would be compatible both with our internal structure and evaporation analysis, we cannot rule out the planet to be a bare core.