A black hole in a near-pristine galaxy 700 million years after the Big Bang
A black hole in a near-pristine galaxy 700 million years after the Big Bang
A black hole in a near-pristine galaxy 700 million years after the Big Bang
The Pristine Inner Galaxy Survey (PIGS) XI: Revealing the chemical evolution of the interacting Sagittarius dwarf galaxy
The Pristine Inner Galaxy Survey (PIGS) XI: Revealing the chemical evolution of the interacting Sagittarius dwarf galaxy
Euclid: Early Release Observations of ram-pressure stripping in the Perseus cluster. Detection of parsec scale star formation with in the low surface brightness stripped tails of UGC 2665 and MCG +07-07-070
Euclid: Early Release Observations of ram-pressure stripping in the Perseus cluster. Detection of parsec scale star formation with in the low surface brightness stripped tails of UGC 2665 and MCG +07-07-070
Tue 01 Jul 11:15: Title TBC
Abstract TBC
- Speaker: Prof. Howard Reader
- Tuesday 01 July 2025, 11:15-12:00
- Venue: Coffee area, Battcock Centre.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Diverse dark matter profiles in FIRE dwarfs: black holes, cosmic rays and the cusp-core enigma
Diverse dark matter profiles in FIRE dwarfs: black holes, cosmic rays and the cusp-core enigma
Thu 05 Jun 12:00: Rapid accretion and state changes in strongly magnetised disks
Accretion disks power many of the universe’s most luminous phenomena, acting as intermediaries that enable matter to shed angular momentum and accrete onto stars or compact objects. While angular momentum transport in disks has been extensively studied, especially in the context of magneto-rotational turbulence, significant challenges remain. These include reconciling simulation results with observed accretion rates and understanding state transitions in cataclysmic variables, x-ray binaries, and quasars.
In this talk, I explore how strongly magnetised disks — where azimuthal magnetic fields dominate, with energies exceeding the plasma’s thermal energy — may help resolve these issues. Interest in this regime is motivated by recent “hyper-refined” cosmological simulations, in which such a disk forms self-consistently around a black hole and supports super-Eddington accretion rates. Using local shearing-box simulations, we identify two distinct turbulent states: the previously known “high-β” state with modest accretion stresses (α << 1) and weak magnetic fields, and a new “low-β” state with strong, self-sustaining azimuthal magnetic fields, supersonic turbulence, and rapid accretion (α ≈ 1). The transition between these states is abrupt and occurs when sufficiently strong azimuthal fields are present, allowing the system to sustain a Parker-instability-driven dynamo. While many aspects of this behaviour remain uncertain, it offers a promising pathway to reconcile simulations and observations, with interesting implications for quasars and other rapidly accreting systems.
- Speaker: Jonathan Squire [Otago, New Zealand]
- Thursday 05 June 2025, 12:00-13:00
- Venue: MR12 DAMTP and online.
- Series: DAMTP Astrophysics Seminars; organiser: Loren E. Held.
A giant telescope shrouded in mystery
Amazing images reveal new details in the sun's atmosphere
NASA’s MAVEN Makes First Observation of Atmospheric Sputtering at Mars
After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.
Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”
Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.
Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.
“It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”
While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.
“It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”
To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.
The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.
The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.
“These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.
The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.
The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.
More information on NASA’s MAVEN mission
By Willow Reed
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
Media Contacts:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Tue 03 Jun 11:15: Prebiotic Chemistry, Exoplanets and Stellar Flaring
Nitroprusside is an important prebiotic molecule, thought to contribute to reaction pathways that lead to the production of amino acid chains (Mariani et al. [2018]). Nitroprusside can be made from Ferrocyanide photochemically. It has been found that the timescales for this reaction on Early Earth would have been between an order of days to months , making this route of abiotic production very useful in further prebiotic reaction networks and an important factor to consider when discussing the viability of life to evolve on a planet (Rimmer et al. [2021]). Here we investigate this reaction with a focus on constant and time varied radiation, meaning experimental runs involving the sample being subjected to a constant flux of UV light and runs with UV flux changing over time. FlareLab makes use of a broad band UV-Vis Laser Driven Light Source (LDLS), to experimentally simulate stellar irradiation and stellar flaring activity. The reasoning behind investigating flares is based on recent findings that have shown that M-dwarves are prone to flaring (G¨unther et al. [2020]). Flaring for M-dwarves is also shown to be the best way to get enough UV to an exoplanet’s surface for good yield of photochemical products (Ranjan et al. [2017]). With M-dwarves seen as the best stars to look at to detect small rocky planets, it is important to consider how flaring could effect the production of Nitroprusside and if there’s a discrepancy between assuming a constant irradiation of the surface or taking into account flaring.
We show that FlareLab can be used as a means of detecting the production of Nitroprusside in-situ during the irradiation period. We also compare the constant flux and variable flux regimes, and discuss the implications of these findings.
- Speaker: Lukas Rossmanith
- Tuesday 03 June 2025, 11:15-12:00
- Venue: Martin Ryle Seminar Room, Kavli Institute.
- Series: Hills Coffee Talks; organiser: David Buscher.
Thu 12 Jun 11:15: Title TBC
Abstract TBC
- Speaker: Prof. Natasha Hurley-Walker (Curtin University)
- Thursday 12 June 2025, 11:15-12:00
- Venue: Martin Ryle Seminar Room, Kavli Institute.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Wed 04 Jun 13:15: Geometric mixing models as a tool for investigating the ice shell of Europa
The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON , which will search for evidence of liquid water on Europa as an indicator of habitability.
However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.
- Speaker: Annie Cheng / Stanford University
- Wednesday 04 June 2025, 13:15-13:40
- Venue: The Hoyle Lecture Theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: .
Wed 04 Jun 13:15: Geometric mixing models as a tool for investigating the ice shell of Europa
The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON , which will search for evidence of liquid water on Europa as an indicator of habitability.
However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.
- Speaker: Annie Cheng / Stanford University
- Wednesday 04 June 2025, 13:15-13:40
- Venue: The Hoyle Lecture Theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: .