skip to content

Institute of Astronomy

 

Thu 15 May 16:00: The different merger and evolutionary histories of the Milky Way and Andromeda (M31)

Next Colloquia - Mon, 12/05/2025 - 10:26
The different merger and evolutionary histories of the Milky Way and Andromeda (M31)

The Milky Way experienced a major satellite merger 10 Gyr ago which altered, but did not destroy, the early high-alpha disk and created both an accreted and an in situ inner halo. The low-alpha disk that formed subsequently became bar-unstable 8 Gyr ago, creating the b/p bulge that also contains the inner high-alpha disk stars. M31 experienced a similar major satellite merger 3 Gyr ago which greatly heated and mixed the pre-existing high-metallicity disk, and also caused a massive inflow of gas and the formation of a dynamically hot secondary inner disk. Such a merger is consistent with the wide-spread star formation event 2-4 Gyr ago seen in disk colour-magnitude diagrams, and with the major substructures and metal-rich stars in the inner halo of M31 , when comparing photometric and recent spectroscopic data with available models. The merged satellite must have had a broad metallicity distribution and would have been the third most massive galaxy in the Local Group before the merger.

Add to your calendar or Include in your list

Categories: Talks

Was a famous supernova an alien invader from another galaxy?

Astronomy News - Sat, 10/05/2025 - 17:41

Kepler's Supernova, seen in 1604, is one of the most famous exploding stars ever seen, and now astronomers think it may have been an interloper from another galaxy

Wed 14 May 13:15: Noise from Above: Determining the Impact of Starlink's Unintended Electromagnetic Radiation on REACH

IoA Institute of Astronomy Talk Lists - Fri, 09/05/2025 - 16:22
Noise from Above: Determining the Impact of Starlink's Unintended Electromagnetic Radiation on REACH

21-cm cosmology experiments have opened new frontiers in our quest to explore the early universe. However, the rapid expansion of satellite constellations in Low Earth Orbit (LEO) poses a significant threat. SpaceX’s Starlink is particularly concerning due to unintended electromagnetic radiation (UEMR) generated by its hardware and onboard electronic subsystems, as reported by observatories such as the Low-Frequency Array (LOFAR). These emissions could contaminate observations of the faint 21-cm signal, already buried beneath foreground emissions and radio frequency interference (RFI). The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) is a low-frequency radio telescope based in the Karoo radio reserve, South Africa, designed to detect the global 21-cm signal from Cosmic Dawn. In this talk, I will present my ongoing work assessing the extent to which Starlink impacts REACH . My approach combines orbital trajectory simulations using Two-Line Element (TLE) catalogues with geometric constraints to identify Starlink flyovers within REACH ’s field of view. These are cross-referenced with power spectral density (PSD) measurements to search for correlations indicating UEMR , including Doppler shift analysis. I conclude by outlining plans to automate this process and how this work contributes to broader efforts to safeguard radio astronomy from satellite interference.

Add to your calendar or Include in your list

Wed 14 May 13:15: Noise from Above: Determining the Impact of Starlink's Unintended Electromagnetic Radiation on REACH

Next Wednesday Seminars - Fri, 09/05/2025 - 16:22
Noise from Above: Determining the Impact of Starlink's Unintended Electromagnetic Radiation on REACH

21-cm cosmology experiments have opened new frontiers in our quest to explore the early universe. However, the rapid expansion of satellite constellations in Low Earth Orbit (LEO) poses a significant threat. SpaceX’s Starlink is particularly concerning due to unintended electromagnetic radiation (UEMR) generated by its hardware and onboard electronic subsystems, as reported by observatories such as the Low-Frequency Array (LOFAR). These emissions could contaminate observations of the faint 21-cm signal, already buried beneath foreground emissions and radio frequency interference (RFI). The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) is a low-frequency radio telescope based in the Karoo radio reserve, South Africa, designed to detect the global 21-cm signal from Cosmic Dawn. In this talk, I will present my ongoing work assessing the extent to which Starlink impacts REACH . My approach combines orbital trajectory simulations using Two-Line Element (TLE) catalogues with geometric constraints to identify Starlink flyovers within REACH ’s field of view. These are cross-referenced with power spectral density (PSD) measurements to search for correlations indicating UEMR , including Doppler shift analysis. I conclude by outlining plans to automate this process and how this work contributes to broader efforts to safeguard radio astronomy from satellite interference.

Add to your calendar or Include in your list

Categories: Talks

Thu 22 May 16:00: The effect of binary mass transfer on the late evolution, death, and afterlife of massive stars

IoA Institute of Astronomy Talk Lists - Fri, 09/05/2025 - 12:00
The effect of binary mass transfer on the late evolution, death, and afterlife of massive stars

Gravitational-wave observations have revealed the population of stellar remnants from a new angle. Yet their stellar progenitors remain uncertain, in particular in the case of black holes. At least a fraction of these stars is believed to form in isolated binary systems. In this talk, I will discuss how binary mass transfer affects the late evolution and final fate of massive stars. The focus will be on stars that transfer their outer layers to a companion star and become binary-stripped. Binary-stripped stars develop systematically different core structures compared to single stars. I will discuss consequences for supernovae, black hole formation, and gravitational-wave observations.

Add to your calendar or Include in your list

Thu 22 May 16:00: The effect of binary mass transfer on the late evolution, death, and afterlife of massive stars

Next Colloquia - Fri, 09/05/2025 - 12:00
The effect of binary mass transfer on the late evolution, death, and afterlife of massive stars

Gravitational-wave observations have revealed the population of stellar remnants from a new angle. Yet their stellar progenitors remain uncertain, in particular in the case of black holes. At least a fraction of these stars is believed to form in isolated binary systems. In this talk, I will discuss how binary mass transfer affects the late evolution and final fate of massive stars. The focus will be on stars that transfer their outer layers to a companion star and become binary-stripped. Binary-stripped stars develop systematically different core structures compared to single stars. I will discuss consequences for supernovae, black hole formation, and gravitational-wave observations.

Add to your calendar or Include in your list

Categories: Talks

GOTO065054+593624: a 8.5 mag amplitude dwarf nova identified in real time via Kilonova Seekers

Recent IoA Publications - Fri, 09/05/2025 - 11:37
arXiv:2501.11524v2 Announce Type: replace Abstract: Dwarf novae are astrophysical laboratories for probing the nature of accretion, binary mass transfer, and binary evolution -- yet their diverse observational characteristics continue to challenge our theoretical understanding. We here present the discovery of, and subsequent observing campaign on GOTO065054+593624 (hereafter GOTO0650), a dwarf nova of the WZ Sge type, discovered in real-time by citizen scientists via the Kilonova Seekers citizen science project, which has an outburst amplitude of 8.5 mag. An extensive dataset charts the photometric and spectroscopic evolution of this object, covering the 2024 superoutburst. GOTO0650 shows an absence of visible emission lines during the high state, strong H and barely-detected HeII emission, and high-amplitude echo outbursts with a rapidly decreasing timescale. The comprehensive dataset presented here marks GOTO0650 as a candidate period bouncer, and highlights the important contribution that citizen scientists can make to the study of Galactic transients.

GOTO065054+593624: a 8.5 mag amplitude dwarf nova identified in real time via Kilonova Seekers

Stars and stellar evolution - Fri, 09/05/2025 - 11:37
arXiv:2501.11524v2 Announce Type: replace Abstract: Dwarf novae are astrophysical laboratories for probing the nature of accretion, binary mass transfer, and binary evolution -- yet their diverse observational characteristics continue to challenge our theoretical understanding. We here present the discovery of, and subsequent observing campaign on GOTO065054+593624 (hereafter GOTO0650), a dwarf nova of the WZ Sge type, discovered in real-time by citizen scientists via the Kilonova Seekers citizen science project, which has an outburst amplitude of 8.5 mag. An extensive dataset charts the photometric and spectroscopic evolution of this object, covering the 2024 superoutburst. GOTO0650 shows an absence of visible emission lines during the high state, strong H and barely-detected HeII emission, and high-amplitude echo outbursts with a rapidly decreasing timescale. The comprehensive dataset presented here marks GOTO0650 as a candidate period bouncer, and highlights the important contribution that citizen scientists can make to the study of Galactic transients.

On the Double: Two Luminous Flares from the Nearby Tidal Disruption Event ASASSN-22ci (AT2022dbl) and Connections to Repeating TDE Candidates

Galaxy Evolution and AGN - Fri, 09/05/2025 - 11:36
arXiv:2412.15326v2 Announce Type: replace Abstract: We present observations of ASASSN-22ci (AT2022dbl), a nearby tidal disruption event (TDE) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d$_L \simeq 125$ Mpc. Roughly two years after the initial ASAS-SN discovery, a second flare was detected coincident with ASASSN-22ci. UV/optical photometry and optical spectroscopy indicate that both flares are likely powered by TDEs. The striking similarity in flare properties suggests that these flares result from subsequent disruptions of the same star. Each flare rises on a timescale of $\sim$30 days, has a temperature of $\approx$30,000 K, a peak bolometric luminosity of $L_{UV/Opt} = 10^{43.6 - 43.9} \textrm{ erg} \textrm{ s}^{-1}$, and exhibits a blue optical spectrum with broad H, He, and N lines. No X-ray emission is detected during either flare, but X-ray emission with an unabsorbed luminosity of $L_{X} = 3\times10^{41} \textrm{ erg} \textrm{ s}^{-1}$ and $kT = 0.042$ eV is observed between the flares. Pre-discovery survey observations rule out the existence of earlier flares within the past $\approx$6000 days, indicating that the discovery of ASASSN-22ci likely coincides with the first flare. If the observed flare separation of $720 \pm 4.7$ days is the orbital period, the next flare of ASASSN-22ci should occur near MJD 61075 (2026 February 04). Finally, we find that the existing sample of repeating TDE candidates is consistent with Hills capture of a star initially in a binary with a total mass between $\sim$$1 - 4$ M$_{\odot}$ and a separation of $\sim$$0.01 - 0.1$ AU.

On the Double: Two Luminous Flares from the Nearby Tidal Disruption Event ASASSN-22ci (AT2022dbl) and Connections to Repeating TDE Candidates

Recent IoA Publications - Fri, 09/05/2025 - 11:36
arXiv:2412.15326v2 Announce Type: replace Abstract: We present observations of ASASSN-22ci (AT2022dbl), a nearby tidal disruption event (TDE) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d$_L \simeq 125$ Mpc. Roughly two years after the initial ASAS-SN discovery, a second flare was detected coincident with ASASSN-22ci. UV/optical photometry and optical spectroscopy indicate that both flares are likely powered by TDEs. The striking similarity in flare properties suggests that these flares result from subsequent disruptions of the same star. Each flare rises on a timescale of $\sim$30 days, has a temperature of $\approx$30,000 K, a peak bolometric luminosity of $L_{UV/Opt} = 10^{43.6 - 43.9} \textrm{ erg} \textrm{ s}^{-1}$, and exhibits a blue optical spectrum with broad H, He, and N lines. No X-ray emission is detected during either flare, but X-ray emission with an unabsorbed luminosity of $L_{X} = 3\times10^{41} \textrm{ erg} \textrm{ s}^{-1}$ and $kT = 0.042$ eV is observed between the flares. Pre-discovery survey observations rule out the existence of earlier flares within the past $\approx$6000 days, indicating that the discovery of ASASSN-22ci likely coincides with the first flare. If the observed flare separation of $720 \pm 4.7$ days is the orbital period, the next flare of ASASSN-22ci should occur near MJD 61075 (2026 February 04). Finally, we find that the existing sample of repeating TDE candidates is consistent with Hills capture of a star initially in a binary with a total mass between $\sim$$1 - 4$ M$_{\odot}$ and a separation of $\sim$$0.01 - 0.1$ AU.

A data-driven approach for star formation parameterization using symbolic regression

Stars and stellar evolution - Fri, 09/05/2025 - 11:30
arXiv:2505.04681v1 Announce Type: new Abstract: Star formation (SF) in the interstellar medium (ISM) is fundamental to understanding galaxy evolution and planet formation. However, efforts to develop closed-form analytic expressions that link SF with key influencing physical variables, such as gas density and turbulence, remain challenging. In this work, we leverage recent advancements in machine learning (ML) and use symbolic regression (SR) techniques to produce the first data-driven, ML-discovered analytic expressions for SF using the publicly available FIRE-2 simulation suites. Employing a pipeline based on training the genetic algorithm of SR from an open software package called PySR, in tandem with a custom loss function and a model selection technique which compares candidate equations to analytic approaches to describing SF, we produce symbolic representations of a predictive model for the star formation rate surface density ($\Sigma_\mathrm{SFR}$) averaged over both 10 Myr and 100 Myr based on eight extracted variables from FIRE-2 galaxies. The resulting model that PySR finds best describes SF, on both averaging timescales, features equations that incorporates the surface density of gas, $\Sigma_\mathrm{gas}$, the velocity dispersion of gas $\sigma_{\mathrm{gas,~z}}$ and the surface density of stars $\Sigma_\mathrm{*}$. Furthermore, we find that the equations found for the longer SFR timescale all converge to a scaling-relation-like equation, all of which also closely capture the intrinsic physical scatter of the data within the Kennicutt-Schmidt (KS) plane. This observed convergence to physically interpretable scaling relations at longer SFR timescales demonstrates that our method successfully identifies robust physical relationships rather than fitting to stochastic fluctuations.

A data-driven approach for star formation parameterization using symbolic regression

Recent IoA Publications - Fri, 09/05/2025 - 11:30
arXiv:2505.04681v1 Announce Type: new Abstract: Star formation (SF) in the interstellar medium (ISM) is fundamental to understanding galaxy evolution and planet formation. However, efforts to develop closed-form analytic expressions that link SF with key influencing physical variables, such as gas density and turbulence, remain challenging. In this work, we leverage recent advancements in machine learning (ML) and use symbolic regression (SR) techniques to produce the first data-driven, ML-discovered analytic expressions for SF using the publicly available FIRE-2 simulation suites. Employing a pipeline based on training the genetic algorithm of SR from an open software package called PySR, in tandem with a custom loss function and a model selection technique which compares candidate equations to analytic approaches to describing SF, we produce symbolic representations of a predictive model for the star formation rate surface density ($\Sigma_\mathrm{SFR}$) averaged over both 10 Myr and 100 Myr based on eight extracted variables from FIRE-2 galaxies. The resulting model that PySR finds best describes SF, on both averaging timescales, features equations that incorporates the surface density of gas, $\Sigma_\mathrm{gas}$, the velocity dispersion of gas $\sigma_{\mathrm{gas,~z}}$ and the surface density of stars $\Sigma_\mathrm{*}$. Furthermore, we find that the equations found for the longer SFR timescale all converge to a scaling-relation-like equation, all of which also closely capture the intrinsic physical scatter of the data within the Kennicutt-Schmidt (KS) plane. This observed convergence to physically interpretable scaling relations at longer SFR timescales demonstrates that our method successfully identifies robust physical relationships rather than fitting to stochastic fluctuations.

Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra

Stars and stellar evolution - Fri, 09/05/2025 - 10:58
arXiv:2505.04699v1 Announce Type: new Abstract: Accretion rates from protoplanetary disks onto forming stars are a key ingredient in star formation and protoplanetary disk evolution. Extensive efforts surveying individual star forming regions with spectroscopy and narrow-band photometry have been performed to derive accretion rates on large populations of young stellar objects (YSOs). We use Gaia DR3 XP spectra to perform the first all-sky homogeneous analysis of YSO accretion within 500 pc. We characterise the H$\alpha$ line emission of YSOs by using the H$\alpha$ pseudo-equivalent widths and XP spectra from Gaia DR3. We derive accretion luminosities, mass accretion rates and stellar parameters for 145 975 candidate YSO H$\alpha$ emitters all-sky. We describe filtering strategies to select specific sub-samples of YSOs from this catalogue. We identify a large population of low-accreting YSO candidates untraced by previous surveys. The population of low accreting YSOs is mostly spatially dispersed, away from star forming regions or more clustered environments of star formation. Many YSOs appear disconnected from young populations, reminiscent of 'Peter Pan' YSOs. We find $L_{acc}\propto L_\star^{1.41\pm0.02}$ and $\dot M_{acc}\propto M_\star^{2.4\pm0.1}$ for the purest all-sky sample of YSO candidates. By fitting an exponential to the fraction of accreting stars in clusters of different ages in the Sco-Cen complex, we obtain an accretion timescale of 2.7$\pm$0.4 Myr. The percentage of accretors found by fitting a power-law is 70% at 2 Myr and 2.8% at 10 Myr. With this new catalogue of H$\alpha$ emitters we significantly increase the number of YSO candidates with accretion rate estimations in the local neighbourhood. This allows us to study accretion timescales and the spatial and physical properties of YSO accretion from a large, all-sky, and homogeneous sample for the first time. [abridged]

Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra

Recent IoA Publications - Fri, 09/05/2025 - 10:58
arXiv:2505.04699v1 Announce Type: new Abstract: Accretion rates from protoplanetary disks onto forming stars are a key ingredient in star formation and protoplanetary disk evolution. Extensive efforts surveying individual star forming regions with spectroscopy and narrow-band photometry have been performed to derive accretion rates on large populations of young stellar objects (YSOs). We use Gaia DR3 XP spectra to perform the first all-sky homogeneous analysis of YSO accretion within 500 pc. We characterise the H$\alpha$ line emission of YSOs by using the H$\alpha$ pseudo-equivalent widths and XP spectra from Gaia DR3. We derive accretion luminosities, mass accretion rates and stellar parameters for 145 975 candidate YSO H$\alpha$ emitters all-sky. We describe filtering strategies to select specific sub-samples of YSOs from this catalogue. We identify a large population of low-accreting YSO candidates untraced by previous surveys. The population of low accreting YSOs is mostly spatially dispersed, away from star forming regions or more clustered environments of star formation. Many YSOs appear disconnected from young populations, reminiscent of 'Peter Pan' YSOs. We find $L_{acc}\propto L_\star^{1.41\pm0.02}$ and $\dot M_{acc}\propto M_\star^{2.4\pm0.1}$ for the purest all-sky sample of YSO candidates. By fitting an exponential to the fraction of accreting stars in clusters of different ages in the Sco-Cen complex, we obtain an accretion timescale of 2.7$\pm$0.4 Myr. The percentage of accretors found by fitting a power-law is 70% at 2 Myr and 2.8% at 10 Myr. With this new catalogue of H$\alpha$ emitters we significantly increase the number of YSO candidates with accretion rate estimations in the local neighbourhood. This allows us to study accretion timescales and the spatial and physical properties of YSO accretion from a large, all-sky, and homogeneous sample for the first time. [abridged]

Euclid preparation. The impact of redshift interlopers on the two-point correlation function analysis

Instrumentation and Surveys - Fri, 09/05/2025 - 10:47
arXiv:2505.04688v1 Announce Type: new Abstract: The Euclid survey aims to measure the spectroscopic redshift of emission-line galaxies by identifying the H$\,{\alpha}$ line in their slitless spectra. This method is sensitive to the signal-to-noise ratio of the line, as noise fluctuations or other strong emission lines can be misidentified as H$\,{\alpha}$, depending on redshift. These effects lead to catastrophic redshift errors and the inclusion of interlopers in the sample. We forecast the impact of such redshift errors on galaxy clustering measurements. In particular, we study the effect of interloper contamination on the two-point correlation function (2PCF), the growth rate of structures, and the Alcock-Paczynski (AP) parameters. We analyze 1000 synthetic spectroscopic catalogues, the EuclidLargeMocks, designed to match the area and selection function of the Data Release 1 (DR1) sample. We estimate the 2PCF of the contaminated catalogues, isolating contributions from correctly identified galaxies and from interlopers. We explore different models with increasing complexity to describe the measured 2PCF at fixed cosmology. Finally, we perform a cosmological inference and evaluate the systematic error on the inferred $f\sigma_8$, $\alpha_{\parallel}$ and $\alpha_{\perp}$ values associated with different models. Our results demonstrate that a minimal modelling approach, which only accounts for an attenuation of the clustering signal regardless of the type of contaminants, is sufficient to recover the correct values of $f\sigma_8$, $\alpha_{\parallel}$, and $\alpha_{\perp}$ at DR1. The accuracy and precision of the estimated AP parameters are largely insensitive to the presence of interlopers. The adoption of a minimal model induces a 1%-3% systematic error on the growth rate of structure estimation, depending on the redshift. However, this error remains smaller than the statistical error expected for the Euclid DR1 analysis.

Euclid preparation. The impact of redshift interlopers on the two-point correlation function analysis

Recent IoA Publications - Fri, 09/05/2025 - 10:47
arXiv:2505.04688v1 Announce Type: new Abstract: The Euclid survey aims to measure the spectroscopic redshift of emission-line galaxies by identifying the H$\,{\alpha}$ line in their slitless spectra. This method is sensitive to the signal-to-noise ratio of the line, as noise fluctuations or other strong emission lines can be misidentified as H$\,{\alpha}$, depending on redshift. These effects lead to catastrophic redshift errors and the inclusion of interlopers in the sample. We forecast the impact of such redshift errors on galaxy clustering measurements. In particular, we study the effect of interloper contamination on the two-point correlation function (2PCF), the growth rate of structures, and the Alcock-Paczynski (AP) parameters. We analyze 1000 synthetic spectroscopic catalogues, the EuclidLargeMocks, designed to match the area and selection function of the Data Release 1 (DR1) sample. We estimate the 2PCF of the contaminated catalogues, isolating contributions from correctly identified galaxies and from interlopers. We explore different models with increasing complexity to describe the measured 2PCF at fixed cosmology. Finally, we perform a cosmological inference and evaluate the systematic error on the inferred $f\sigma_8$, $\alpha_{\parallel}$ and $\alpha_{\perp}$ values associated with different models. Our results demonstrate that a minimal modelling approach, which only accounts for an attenuation of the clustering signal regardless of the type of contaminants, is sufficient to recover the correct values of $f\sigma_8$, $\alpha_{\parallel}$, and $\alpha_{\perp}$ at DR1. The accuracy and precision of the estimated AP parameters are largely insensitive to the presence of interlopers. The adoption of a minimal model induces a 1%-3% systematic error on the growth rate of structure estimation, depending on the redshift. However, this error remains smaller than the statistical error expected for the Euclid DR1 analysis.

Failed Soviet probe will soon crash to Earth – and we don't know where

Astronomy News - Fri, 09/05/2025 - 10:43

Kosmos 482, a Soviet spacecraft that never made it beyond Earth’s orbit on its way to Venus, is due to come crashing down on 9 or 10 May

NASA Telescopes Tune Into a Black Hole Prelude, Fugue

Astronomy News - Fri, 09/05/2025 - 10:42
8 Min Read NASA Telescopes Tune Into a Black Hole Prelude, Fugue The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole.

NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).

This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes.

This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.

WR 124  Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)

The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.

SS 433 Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)

In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.

Centarus A Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)

The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.

For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/

These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.

The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

To learn more about NASA’s space telescopes, visit:

https://science.nasa.gov/universe

Read more from NASA’s Chandra X-ray Observatory

Learn more about the Chandra X-ray Observatory and its mission here:

https://www.nasa.gov/chandra

https://chandra.si.edu

Visual Description

This release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.

The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.

The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.

The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov

Share Details Last Updated May 08, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms Explore More 7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole

Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…

Article 3 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes

Lee esta nota de prensa en español aquí. For the first time, astronomers have probed…

Article 2 days ago Keep Exploring Discover More Topics From NASA Chandra X-ray Observatory

Launched on July 23, 1999, it is the largest and most sophisticated X-ray observatory to date. NASA’s Chandra X-ray Observatory…

Black Holes

Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…

Universe

IXPE

Moon dust 'rarer than gold' arrives in UK from China

Astronomy News - Fri, 09/05/2025 - 10:42

First Moon samples collected in nearly 50 years and loaned by China for the first time are now in the UK.

Tue 20 May 11:15: A 21-cm Cosmologist’s Journey: From Cambridge to North America and Back Again

Next External Talks - Thu, 08/05/2025 - 21:22
A 21-cm Cosmologist’s Journey: From Cambridge to North America and Back Again

In this talk, I’ll take you on a whistle-stop tour of my journey in 21-cm cosmology – from my PhD days in Cambridge to fellowship and research scientist positions in the USA and Canada. I’ll discuss the significance of 21-cm cosmology in understanding the Universe’s first billion years and describe key projects I’ve worked on, including the SKA , HERA, EDGES , and REACH . Along the way, I’ll share some personal highlights from my time in North America, including adventures in national parks and snow sports.

Add to your calendar or Include in your list

Categories: Talks