skip to content

Institute of Astronomy

 

A black hole in a near-pristine galaxy 700 million years after the Big Bang

Cosmology and Fundamental physics - Fri, 30/05/2025 - 10:53
arXiv:2505.22567v2 Announce Type: replace Abstract: The recent discovery of a large number of massive black holes within the first two billion years after the Big Bang, as well as their peculiar properties, have been largely unexpected based on the extrapolation of the properties of luminous quasars. These findings have prompted the development of several theoretical models for the early formation and growth of black holes, which are, however, difficult to differentiate. We report the metallicity measurement around a gravitationally lensed massive black hole at redshift 7.04, hosted in a galaxy with very low dynamical mass. The weakness of the [OIII]5007 emission line relative to the narrow Hbeta emission indicates an extremely low chemical enrichment, less than 0.01 solar. We argue that such properties cannot be uncommon among accreting black holes around this early cosmic epoch. Explaining such a low chemical enrichment in a system that has developed a massive black hole is challenging for most theories. Models assuming heavy black hole seeds (such as Direct Collapse Black Holes) or super-Eddington accretion scenarios struggle to explain the observations, although they can potentially reproduce the observed properties in rare cases. Models invoking "primordial black holes" (i.e. putative black holes formed shortly after the Big Bang) may potentially explain the low chemical enrichment associated with this black hole.

A black hole in a near-pristine galaxy 700 million years after the Big Bang

Galaxy Evolution and AGN - Fri, 30/05/2025 - 10:53
arXiv:2505.22567v2 Announce Type: replace Abstract: The recent discovery of a large number of massive black holes within the first two billion years after the Big Bang, as well as their peculiar properties, have been largely unexpected based on the extrapolation of the properties of luminous quasars. These findings have prompted the development of several theoretical models for the early formation and growth of black holes, which are, however, difficult to differentiate. We report the metallicity measurement around a gravitationally lensed massive black hole at redshift 7.04, hosted in a galaxy with very low dynamical mass. The weakness of the [OIII]5007 emission line relative to the narrow Hbeta emission indicates an extremely low chemical enrichment, less than 0.01 solar. We argue that such properties cannot be uncommon among accreting black holes around this early cosmic epoch. Explaining such a low chemical enrichment in a system that has developed a massive black hole is challenging for most theories. Models assuming heavy black hole seeds (such as Direct Collapse Black Holes) or super-Eddington accretion scenarios struggle to explain the observations, although they can potentially reproduce the observed properties in rare cases. Models invoking "primordial black holes" (i.e. putative black holes formed shortly after the Big Bang) may potentially explain the low chemical enrichment associated with this black hole.

A black hole in a near-pristine galaxy 700 million years after the Big Bang

Recent IoA Publications - Fri, 30/05/2025 - 10:53
arXiv:2505.22567v2 Announce Type: replace Abstract: The recent discovery of a large number of massive black holes within the first two billion years after the Big Bang, as well as their peculiar properties, have been largely unexpected based on the extrapolation of the properties of luminous quasars. These findings have prompted the development of several theoretical models for the early formation and growth of black holes, which are, however, difficult to differentiate. We report the metallicity measurement around a gravitationally lensed massive black hole at redshift 7.04, hosted in a galaxy with very low dynamical mass. The weakness of the [OIII]5007 emission line relative to the narrow Hbeta emission indicates an extremely low chemical enrichment, less than 0.01 solar. We argue that such properties cannot be uncommon among accreting black holes around this early cosmic epoch. Explaining such a low chemical enrichment in a system that has developed a massive black hole is challenging for most theories. Models assuming heavy black hole seeds (such as Direct Collapse Black Holes) or super-Eddington accretion scenarios struggle to explain the observations, although they can potentially reproduce the observed properties in rare cases. Models invoking "primordial black holes" (i.e. putative black holes formed shortly after the Big Bang) may potentially explain the low chemical enrichment associated with this black hole.

The Pristine Inner Galaxy Survey (PIGS) XI: Revealing the chemical evolution of the interacting Sagittarius dwarf galaxy

Galaxy Evolution and AGN - Fri, 30/05/2025 - 10:41
arXiv:2412.06896v2 Announce Type: replace Abstract: The Sagittarius dwarf spheroidal galaxy (Sgr dSph) is a satellite orbiting the Milky Way that has experienced multiple stripping events due to tidal interactions with our Galaxy. Its accretion history led to a distinct stellar overdensity, the remnant of the core of the progenitor. We present a complete chemical analysis of 111 giant stars in the core of Sgr to investigate the chemical evolution and enrichment history of this satellite. Employing the metallicity-sensitive Ca H&K photometry from the Pristine Inner Galaxy Survey, we selected stars that span a wide metallicity range and obtained high-resolution spectra with the ESO FLAMES/GIRAFFE multiobject spectrograph. For the stellar sample covering $-2.13 < \rm{[Fe/H] < -0.35}$, we derived abundances for up to 14 chemical elements with average uncertainties of $\sim 0.09$ dex and a set of stellar ages that allowed us to build an age-metallicity relation (AMR) for the entire sample. With the most comprehensive set of chemical species measured for the core of Sgr (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ba, La, and Eu), we studied several [X/Fe] ratios. Most trends align with Galactic chemical trends, but notable differences emerge in the heavy $n$-capture elements, which offer independent insights into the star formation history of a stellar population. The deficiency in $\alpha$ elements relative to the Milky Way suggests a slower, less efficient early star formation history, similar to other massive satellites. $S$-process element patterns indicate significant enrichment from asymptotic giant branch stars over time. The AMR and chemical ratios point to an extended star formation history, with a rapid early phase in the first Gyr, followed by declining activity and later star-forming episodes. These findings are consistent with Sgr hosting multiple stellar populations, from young ($\sim 4$ Gyr) to old, metal-poor stars ($\sim 10$ Gyr).

The Pristine Inner Galaxy Survey (PIGS) XI: Revealing the chemical evolution of the interacting Sagittarius dwarf galaxy

Recent IoA Publications - Fri, 30/05/2025 - 10:41
arXiv:2412.06896v2 Announce Type: replace Abstract: The Sagittarius dwarf spheroidal galaxy (Sgr dSph) is a satellite orbiting the Milky Way that has experienced multiple stripping events due to tidal interactions with our Galaxy. Its accretion history led to a distinct stellar overdensity, the remnant of the core of the progenitor. We present a complete chemical analysis of 111 giant stars in the core of Sgr to investigate the chemical evolution and enrichment history of this satellite. Employing the metallicity-sensitive Ca H&K photometry from the Pristine Inner Galaxy Survey, we selected stars that span a wide metallicity range and obtained high-resolution spectra with the ESO FLAMES/GIRAFFE multiobject spectrograph. For the stellar sample covering $-2.13 < \rm{[Fe/H] < -0.35}$, we derived abundances for up to 14 chemical elements with average uncertainties of $\sim 0.09$ dex and a set of stellar ages that allowed us to build an age-metallicity relation (AMR) for the entire sample. With the most comprehensive set of chemical species measured for the core of Sgr (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ba, La, and Eu), we studied several [X/Fe] ratios. Most trends align with Galactic chemical trends, but notable differences emerge in the heavy $n$-capture elements, which offer independent insights into the star formation history of a stellar population. The deficiency in $\alpha$ elements relative to the Milky Way suggests a slower, less efficient early star formation history, similar to other massive satellites. $S$-process element patterns indicate significant enrichment from asymptotic giant branch stars over time. The AMR and chemical ratios point to an extended star formation history, with a rapid early phase in the first Gyr, followed by declining activity and later star-forming episodes. These findings are consistent with Sgr hosting multiple stellar populations, from young ($\sim 4$ Gyr) to old, metal-poor stars ($\sim 10$ Gyr).

Euclid: Early Release Observations of ram-pressure stripping in the Perseus cluster. Detection of parsec scale star formation with in the low surface brightness stripped tails of UGC 2665 and MCG +07-07-070

Stars and stellar evolution - Fri, 30/05/2025 - 10:32
arXiv:2505.23342v1 Announce Type: new Abstract: Euclid is delivering optical and near-infrared imaging data over 14,000 deg$^2$ on the sky at spatial resolution and surface brightness levels that can be used to understand the morphological transformation of galaxies within groups and clusters. Using the Early Release Observations (ERO) of the Perseus cluster, we demonstrate the capability offered by Euclid in studying the nature of perturbations for galaxies in clusters. Filamentary structures are observed along the discs of two spiral galaxies with no extended diffuse emission expected from tidal interactions at surface brightness levels of $\sim$ $30\,{\rm mag}\,{\rm arcsec}^{-2}$. The detected features exhibit a good correspondence in morphology between optical and near-infrared wavelengths, with a surface brightness of $\sim$ $25\,{\rm mag}\,{\rm arcsec}^{-2}$, and the knots within the features have sizes of $\sim$ 100 pc, as observed through $I_E$ imaging. Using the Euclid, CFHT, UVIT, and LOFAR $144\,{\rm MHz}$ radio continuum observations, we conduct a detailed analysis to understand the origin of the detected features. We constructed the \textit{Euclid} $I_E-Y_E$, $Y_E-H_E$, and CFHT $u - r$, $g - i$ colour-colour plane and showed that these features contain recent star formation events, which are also indicated by their H$\alpha$ and NUV emissions. Euclid colours alone are insufficient for studying stellar population ages in unresolved star-forming regions, which require multi-wavelength optical imaging data. The morphological shape, orientation, and mean age of the stellar population, combined with the presence of extended radio continuum cometary tails can be consistently explained if these features have been formed during a recent ram-pressure stripping event. This result further confirms the exceptional qualities of Euclid in the study of galaxy evolution in dense environments.

Euclid: Early Release Observations of ram-pressure stripping in the Perseus cluster. Detection of parsec scale star formation with in the low surface brightness stripped tails of UGC 2665 and MCG +07-07-070

Recent IoA Publications - Fri, 30/05/2025 - 10:32
arXiv:2505.23342v1 Announce Type: new Abstract: Euclid is delivering optical and near-infrared imaging data over 14,000 deg$^2$ on the sky at spatial resolution and surface brightness levels that can be used to understand the morphological transformation of galaxies within groups and clusters. Using the Early Release Observations (ERO) of the Perseus cluster, we demonstrate the capability offered by Euclid in studying the nature of perturbations for galaxies in clusters. Filamentary structures are observed along the discs of two spiral galaxies with no extended diffuse emission expected from tidal interactions at surface brightness levels of $\sim$ $30\,{\rm mag}\,{\rm arcsec}^{-2}$. The detected features exhibit a good correspondence in morphology between optical and near-infrared wavelengths, with a surface brightness of $\sim$ $25\,{\rm mag}\,{\rm arcsec}^{-2}$, and the knots within the features have sizes of $\sim$ 100 pc, as observed through $I_E$ imaging. Using the Euclid, CFHT, UVIT, and LOFAR $144\,{\rm MHz}$ radio continuum observations, we conduct a detailed analysis to understand the origin of the detected features. We constructed the \textit{Euclid} $I_E-Y_E$, $Y_E-H_E$, and CFHT $u - r$, $g - i$ colour-colour plane and showed that these features contain recent star formation events, which are also indicated by their H$\alpha$ and NUV emissions. Euclid colours alone are insufficient for studying stellar population ages in unresolved star-forming regions, which require multi-wavelength optical imaging data. The morphological shape, orientation, and mean age of the stellar population, combined with the presence of extended radio continuum cometary tails can be consistently explained if these features have been formed during a recent ram-pressure stripping event. This result further confirms the exceptional qualities of Euclid in the study of galaxy evolution in dense environments.

Tue 01 Jul 11:15: Title TBC

Next External Talks - Fri, 30/05/2025 - 10:31
Title TBC

Abstract TBC

Add to your calendar or Include in your list

Categories: Talks

Diverse dark matter profiles in FIRE dwarfs: black holes, cosmic rays and the cusp-core enigma

Galaxy Evolution and AGN - Fri, 30/05/2025 - 10:24
arXiv:2409.02172v2 Announce Type: replace Abstract: Dwarf galaxies have historically posed challenges to the cold dark matter (CDM) model and, while many of the so-called 'dwarf galaxy problems' have been mitigated by incorporating baryonic processes, the observed diversity of dwarf galaxy rotation curves remains a contentious topic. Meanwhile, the growing observational samples of active galactic nuclei (AGN) in dwarf galaxies have prompted a paradigm shift in our understanding of dwarf galaxy evolution, traditionally thought to be regulated by stellar feedback. In this study, we explore the potential role of AGN feedback in shaping dark matter distributions and increasing the diversity of dwarf galaxy rotation curves, using a new suite of cosmological zoom-in simulations of dwarf galaxies with the FIRE-3 model. Our findings indicate that the presence of active black holes (BHs) in dwarf galaxies can lead to diverse outcomes, ranging from cuspier to more core-like profiles. This variability arises from the dual role of BHs in providing additional feedback and regulating the extent of stellar feedback. Consistent with previous research, we find that AGN feedback is most impactful when cosmic ray (CR) modelling is included, with CRs from any source significantly influencing dark matter profiles. Overall, our results highlight that the interplay between stellar feedback, BHs, and CRs produces a broad spectrum of dark matter density profiles, which align with observed correlations between rotation curve shapes and baryonic dominance. This underscores the importance of including the full range of baryonic processes in dwarf galaxy simulations to address the persistent 'small-scale challenges' to the CDM paradigm.

Diverse dark matter profiles in FIRE dwarfs: black holes, cosmic rays and the cusp-core enigma

Recent IoA Publications - Fri, 30/05/2025 - 10:24
arXiv:2409.02172v2 Announce Type: replace Abstract: Dwarf galaxies have historically posed challenges to the cold dark matter (CDM) model and, while many of the so-called 'dwarf galaxy problems' have been mitigated by incorporating baryonic processes, the observed diversity of dwarf galaxy rotation curves remains a contentious topic. Meanwhile, the growing observational samples of active galactic nuclei (AGN) in dwarf galaxies have prompted a paradigm shift in our understanding of dwarf galaxy evolution, traditionally thought to be regulated by stellar feedback. In this study, we explore the potential role of AGN feedback in shaping dark matter distributions and increasing the diversity of dwarf galaxy rotation curves, using a new suite of cosmological zoom-in simulations of dwarf galaxies with the FIRE-3 model. Our findings indicate that the presence of active black holes (BHs) in dwarf galaxies can lead to diverse outcomes, ranging from cuspier to more core-like profiles. This variability arises from the dual role of BHs in providing additional feedback and regulating the extent of stellar feedback. Consistent with previous research, we find that AGN feedback is most impactful when cosmic ray (CR) modelling is included, with CRs from any source significantly influencing dark matter profiles. Overall, our results highlight that the interplay between stellar feedback, BHs, and CRs produces a broad spectrum of dark matter density profiles, which align with observed correlations between rotation curve shapes and baryonic dominance. This underscores the importance of including the full range of baryonic processes in dwarf galaxy simulations to address the persistent 'small-scale challenges' to the CDM paradigm.

Thu 05 Jun 12:00: Rapid accretion and state changes in strongly magnetised disks

Next External Talks - Fri, 30/05/2025 - 10:10
Rapid accretion and state changes in strongly magnetised disks

Accretion disks power many of the universe’s most luminous phenomena, acting as intermediaries that enable matter to shed angular momentum and accrete onto stars or compact objects. While angular momentum transport in disks has been extensively studied, especially in the context of magneto-rotational turbulence, significant challenges remain. These include reconciling simulation results with observed accretion rates and understanding state transitions in cataclysmic variables, x-ray binaries, and quasars.

In this talk, I explore how strongly magnetised disks — where azimuthal magnetic fields dominate, with energies exceeding the plasma’s thermal energy — may help resolve these issues. Interest in this regime is motivated by recent “hyper-refined” cosmological simulations, in which such a disk forms self-consistently around a black hole and supports super-Eddington accretion rates. Using local shearing-box simulations, we identify two distinct turbulent states: the previously known “high-β” state with modest accretion stresses (α << 1) and weak magnetic fields, and a new “low-β” state with strong, self-sustaining azimuthal magnetic fields, supersonic turbulence, and rapid accretion (α ≈ 1). The transition between these states is abrupt and occurs when sufficiently strong azimuthal fields are present, allowing the system to sustain a Parker-instability-driven dynamo. While many aspects of this behaviour remain uncertain, it offers a promising pathway to reconcile simulations and observations, with interesting implications for quasars and other rapidly accreting systems.

Add to your calendar or Include in your list

Categories: Talks

A giant telescope shrouded in mystery

Astronomy News - Fri, 30/05/2025 - 10:06
Science, Volume 388, Issue 6750, Page 904-904, May 2025.

Amazing images reveal new details in the sun's atmosphere

Astronomy News - Fri, 30/05/2025 - 10:04

City-sized droplets and twisting streams of plasma have been picked up by incredibly detailed images of the sun’s corona, showing our star as we’ve never seen it before

NASA’s MAVEN Makes First Observation of Atmospheric Sputtering at Mars

Astronomy News - Fri, 30/05/2025 - 10:03

After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.

Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”

Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.

Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.

“It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”

While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.

“It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”

To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.

The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.

The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.

“These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.

The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.

The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.


More information on NASA’s MAVEN mission

By Willow Reed
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder

Media Contacts: 

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Share Details Last Updated May 28, 2025 Related Terms

Tue 03 Jun 11:15: Prebiotic Chemistry, Exoplanets and Stellar Flaring

Next External Talks - Thu, 29/05/2025 - 18:14
Prebiotic Chemistry, Exoplanets and Stellar Flaring

Nitroprusside is an important prebiotic molecule, thought to contribute to reaction pathways that lead to the production of amino acid chains (Mariani et al. [2018]). Nitroprusside can be made from Ferrocyanide photochemically. It has been found that the timescales for this reaction on Early Earth would have been between an order of days to months , making this route of abiotic production very useful in further prebiotic reaction networks and an important factor to consider when discussing the viability of life to evolve on a planet (Rimmer et al. [2021]). Here we investigate this reaction with a focus on constant and time varied radiation, meaning experimental runs involving the sample being subjected to a constant flux of UV light and runs with UV flux changing over time. FlareLab makes use of a broad band UV-Vis Laser Driven Light Source (LDLS), to experimentally simulate stellar irradiation and stellar flaring activity. The reasoning behind investigating flares is based on recent findings that have shown that M-dwarves are prone to flaring (G¨unther et al. [2020]). Flaring for M-dwarves is also shown to be the best way to get enough UV to an exoplanet’s surface for good yield of photochemical products (Ranjan et al. [2017]). With M-dwarves seen as the best stars to look at to detect small rocky planets, it is important to consider how flaring could effect the production of Nitroprusside and if there’s a discrepancy between assuming a constant irradiation of the surface or taking into account flaring.

We show that FlareLab can be used as a means of detecting the production of Nitroprusside in-situ during the irradiation period. We also compare the constant flux and variable flux regimes, and discuss the implications of these findings.

Add to your calendar or Include in your list

Categories: Talks

Thu 12 Jun 11:15: Title TBC

Next External Talks - Thu, 29/05/2025 - 15:42
Title TBC

Abstract TBC

Add to your calendar or Include in your list

Categories: Talks

Wed 04 Jun 13:15: Geometric mixing models as a tool for investigating the ice shell of Europa

IoA Institute of Astronomy Talk Lists - Thu, 29/05/2025 - 10:19
Geometric mixing models as a tool for investigating the ice shell of Europa

The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON , which will search for evidence of liquid water on Europa as an indicator of habitability.

However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.

Add to your calendar or Include in your list

Wed 04 Jun 13:15: Geometric mixing models as a tool for investigating the ice shell of Europa

Next Wednesday Seminars - Thu, 29/05/2025 - 10:19
Geometric mixing models as a tool for investigating the ice shell of Europa

The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON , which will search for evidence of liquid water on Europa as an indicator of habitability.

However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.

Add to your calendar or Include in your list

Categories: Talks

How probable is the Lyman-$\alpha$ damping wing in the spectrum of the redshift z = 5.9896 quasar ULAS J0148+0600?

Stars and stellar evolution - Thu, 29/05/2025 - 10:19
arXiv:2502.03085v2 Announce Type: replace Abstract: The shape of the Ly-$\alpha$ transmission in the near zone of the redshift $z=5.9896$ quasar ULAS J0148$+$0600 (hereafter J0148) is consistent with a damping wing arising from an extended neutral hydrogen island in the diffuse intergalactic medium (IGM). Here we use simulations of late-ending reionisation from Sherwood-Relics to assess the expected incidence of quasars with Ly-$\alpha$ and Ly-$\beta$ absorption similar to the observed J0148 spectrum. We find a late end to reionisation at $z=5.3$ is a necessary requirement for reproducing a Ly-$\alpha$ damping wing consistent with J0148. This occurs in $\sim3$ per cent of our simulated spectra for an IGM neutral fraction $\langle x_{\rm HI}\rangle=0.14$ at $z=6$. However, using standard assumptions for the ionising photon output of J0148, the a priori probability of drawing a simulated quasar spectrum with a Ly-$\alpha$ damping wing profile and Ly-$\alpha$ near zone size that simultaneously match J0148 is very low, $p<10^{-3}$. We speculate this is because the ionising emission from J0148 is variable on timescales $t<10^{5}\rm\,yr$, or alternatively that the Ly-$\alpha$ transmission in the J0148 near zone is impacted by the transverse proximity effect from nearby star-forming galaxies or undetected quasars. We also predict the IGM temperature should be $T\sim 4\times 10^{4}\rm\,K$ within a few proper Mpc of the Ly-$\alpha$ near zone edge due to recent HI and HeII photo-heating. Evidence for enhanced thermal broadening in the Ly-$\alpha$ absorption near the damping wing edge would provide further evidence that the final stages of reionisation are occurring at $z<6$.

How probable is the Lyman-$\alpha$ damping wing in the spectrum of the redshift z = 5.9896 quasar ULAS J0148+0600?

Cosmology and Fundamental physics - Thu, 29/05/2025 - 10:19
arXiv:2502.03085v2 Announce Type: replace Abstract: The shape of the Ly-$\alpha$ transmission in the near zone of the redshift $z=5.9896$ quasar ULAS J0148$+$0600 (hereafter J0148) is consistent with a damping wing arising from an extended neutral hydrogen island in the diffuse intergalactic medium (IGM). Here we use simulations of late-ending reionisation from Sherwood-Relics to assess the expected incidence of quasars with Ly-$\alpha$ and Ly-$\beta$ absorption similar to the observed J0148 spectrum. We find a late end to reionisation at $z=5.3$ is a necessary requirement for reproducing a Ly-$\alpha$ damping wing consistent with J0148. This occurs in $\sim3$ per cent of our simulated spectra for an IGM neutral fraction $\langle x_{\rm HI}\rangle=0.14$ at $z=6$. However, using standard assumptions for the ionising photon output of J0148, the a priori probability of drawing a simulated quasar spectrum with a Ly-$\alpha$ damping wing profile and Ly-$\alpha$ near zone size that simultaneously match J0148 is very low, $p<10^{-3}$. We speculate this is because the ionising emission from J0148 is variable on timescales $t<10^{5}\rm\,yr$, or alternatively that the Ly-$\alpha$ transmission in the J0148 near zone is impacted by the transverse proximity effect from nearby star-forming galaxies or undetected quasars. We also predict the IGM temperature should be $T\sim 4\times 10^{4}\rm\,K$ within a few proper Mpc of the Ly-$\alpha$ near zone edge due to recent HI and HeII photo-heating. Evidence for enhanced thermal broadening in the Ly-$\alpha$ absorption near the damping wing edge would provide further evidence that the final stages of reionisation are occurring at $z<6$.