skip to content

Institute of Astronomy

 

Cool Gas in the Circumgalactic Medium of Massive Post Starburst Galaxies

Recent IoA Publications - Fri, 11/07/2025 - 10:19
arXiv:2506.22287v2 Announce Type: replace Abstract: Observing the interplay between galaxies and their gaseous surroundings is crucial for understanding how galaxies form and evolve, including the roles of long-lived cool gas reservoirs, starburst and AGN driven outflows. We use stacked Mg II absorption lines in the spectra of background quasars to study the cool gas out to 9Mpc from massive quiescent, star-forming and post-starburst galaxies with stellar masses $\log_{10}(M_{\mathrm{gal}}/M_\odot) \gtrsim 11.4$ and $0.4 \lesssim z \lesssim 0.8$ selected from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies. Consistent with previous studies, we observe a decline in absorption strength indicating a decrease in cool gas content with increasing distance from the galaxies, as well as decreasing star formation rate of the galaxies. Beyond 1Mpc, this decline levels off to the same absorption strength in all galaxy types, suggesting a transition from the circumgalactic medium (CGM) to the intergalactic medium (IGM) at approximately the virial radius of the host dark matter haloes. We find that post-starburst galaxies, that have experienced a recent burst of star formation that has rapidly quenched, exhibit significantly stronger Mg II absorption within 1Mpc than star-forming or quiescent galaxies of the same stellar mass. Because post-starburst galaxies are a potentially significant pathway for the formation of quiescent elliptical galaxies, our results have wide reaching implications for understanding the mechanisms involved in quenching star formation in galaxies. We speculate that the excess cool gas absorption out to 1Mpc around post-starburst galaxies is related to their observed high velocity ($\sim$1000\,km/s) cool gas outflows. Thus, strong, short-lived bursts of star formation impact the CGM around galaxies on Mpc distances and Gyr timescales.

Cool Gas in the Circumgalactic Medium of Massive Post Starburst Galaxies

Galaxy Evolution and AGN - Fri, 11/07/2025 - 10:19
arXiv:2506.22287v2 Announce Type: replace Abstract: Observing the interplay between galaxies and their gaseous surroundings is crucial for understanding how galaxies form and evolve, including the roles of long-lived cool gas reservoirs, starburst and AGN driven outflows. We use stacked Mg II absorption lines in the spectra of background quasars to study the cool gas out to 9Mpc from massive quiescent, star-forming and post-starburst galaxies with stellar masses $\log_{10}(M_{\mathrm{gal}}/M_\odot) \gtrsim 11.4$ and $0.4 \lesssim z \lesssim 0.8$ selected from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies. Consistent with previous studies, we observe a decline in absorption strength indicating a decrease in cool gas content with increasing distance from the galaxies, as well as decreasing star formation rate of the galaxies. Beyond 1Mpc, this decline levels off to the same absorption strength in all galaxy types, suggesting a transition from the circumgalactic medium (CGM) to the intergalactic medium (IGM) at approximately the virial radius of the host dark matter haloes. We find that post-starburst galaxies, that have experienced a recent burst of star formation that has rapidly quenched, exhibit significantly stronger Mg II absorption within 1Mpc than star-forming or quiescent galaxies of the same stellar mass. Because post-starburst galaxies are a potentially significant pathway for the formation of quiescent elliptical galaxies, our results have wide reaching implications for understanding the mechanisms involved in quenching star formation in galaxies. We speculate that the excess cool gas absorption out to 1Mpc around post-starburst galaxies is related to their observed high velocity ($\sim$1000\,km/s) cool gas outflows. Thus, strong, short-lived bursts of star formation impact the CGM around galaxies on Mpc distances and Gyr timescales.

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Instrumentation and Surveys - Fri, 11/07/2025 - 10:05
arXiv:2507.07257v1 Announce Type: cross Abstract: We present a multi-agent system for automation of scientific research tasks, cmbagent. The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Recent IoA Publications - Fri, 11/07/2025 - 10:05
arXiv:2507.07257v1 Announce Type: cross Abstract: We present a multi-agent system for automation of scientific research tasks, cmbagent. The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

NASA’s James Webb Space Telescope Inspects Cat’s Paw

Astronomy News - Fri, 11/07/2025 - 09:42
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI

NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.

Take a tour through this section of the Cat’s Paw Nebula.

Image credit: NASA, ESA, CSA, STScI

The cosmos is vast, so how do we measure it?

Astronomy News - Fri, 11/07/2025 - 09:41

The awe-inspiring distances of the cosmos are hard to visualise, so how can we be certain we are measuring them correctly? Chanda Prescod-Weinstein explains

Interstellar visitor 3I/ATLAS might be the oldest comet ever seen

Astronomy News - Fri, 11/07/2025 - 09:41

Astronomers tracking an interstellar object flying through the solar system think it comes from a star at least 8 billion years old, almost twice the age of our sun

Astronomers found a completely new type of plasma wave near Jupiter

Astronomy News - Fri, 11/07/2025 - 09:41

Observations from NASA’s Juno spacecraft reveal that Jupiter’s strong magnetic field and the unique properties of its plasma can produce a truly novel kind of extraterrestrial wave near its poles

High-Resolution Optical IFU Spectroscopy of the Complex Galaxy Merger II Zw 096

Recent IoA Publications - Thu, 10/07/2025 - 11:21
arXiv:2507.06339v1 Announce Type: new Abstract: Luminous and Ultra-luminous IR galaxies ((U)LIRGs) are critical for investigating feedback mechanisms due to a combination of intense star formation (SF) episodes and active galactic nuclei (AGN), particularly in the context of complex galaxy interactions. We conduct a detailed analysis of the II ZW 096 merging system using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), combining high-resolution Narrow Field Mode (NFM) and large-area Wide Field Mode (WFM) observations. We mapped the morphology, kinematics, and ionizing radiation of the system's gas by fitting atomic emission lines and the optical continuum. We identify three or more distinct galaxies within II ZW 096, revealing rotational patterns and complex interactions consistent with a collapsing small galaxy group. The kinematics and ionization structures suggest high star formation rates and shock-driven processes, which align with this proposed scenario. Focusing on the D1 compact region, which contributes 40-70% of the system's IR emission, and combining information from archival multi-wavelength observations, we find strong evidence of a heavily obscured AGN powering it. Our analysis of the internal structure, interactions, and merger state of II ZW 096 offers novel insights into the galaxy evolution processes in this dynamic and highly chaotic system

High-Resolution Optical IFU Spectroscopy of the Complex Galaxy Merger II Zw 096

Galaxy Evolution and AGN - Thu, 10/07/2025 - 11:21
arXiv:2507.06339v1 Announce Type: new Abstract: Luminous and Ultra-luminous IR galaxies ((U)LIRGs) are critical for investigating feedback mechanisms due to a combination of intense star formation (SF) episodes and active galactic nuclei (AGN), particularly in the context of complex galaxy interactions. We conduct a detailed analysis of the II ZW 096 merging system using the Multi-Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), combining high-resolution Narrow Field Mode (NFM) and large-area Wide Field Mode (WFM) observations. We mapped the morphology, kinematics, and ionizing radiation of the system's gas by fitting atomic emission lines and the optical continuum. We identify three or more distinct galaxies within II ZW 096, revealing rotational patterns and complex interactions consistent with a collapsing small galaxy group. The kinematics and ionization structures suggest high star formation rates and shock-driven processes, which align with this proposed scenario. Focusing on the D1 compact region, which contributes 40-70% of the system's IR emission, and combining information from archival multi-wavelength observations, we find strong evidence of a heavily obscured AGN powering it. Our analysis of the internal structure, interactions, and merger state of II ZW 096 offers novel insights into the galaxy evolution processes in this dynamic and highly chaotic system

First returned rock samples shine a light on the Moon’s ‘dark side’

Astronomy News - Wed, 09/07/2025 - 17:10

Nature, Published online: 09 July 2025; doi:10.1038/d41586-025-02050-7

Soil samples from the far side of the Moon provide clues about the origin of lunar asymmetry and the effects of ‘mega-basin’ impacts on the evolution of rocky planets

Low Surface Brightness structures from annotated deep CFHT images: effects of the host galaxy's properties and environment

Recent IoA Publications - Wed, 09/07/2025 - 17:05
arXiv:2503.18480v2 Announce Type: replace Abstract: Hierarchical galactic evolution models predict that mergers drive galaxy growth, producing low surface brightness (LSB) tidal features that trace galaxies' late assembly. These faint structures encode information about past mergers and are sensitive to the properties and environment of the host galaxy. We investigated the relationships between LSB features and their hosts in a sample of 475 nearby massive galaxies spanning diverse environments (field, groups, Virgo cluster) using deep optical imaging from the Canada-France-Hawaii Telescope (MATLAS, UNIONS/CFIS, VESTIGE, NGVS). Using Jafar, an online annotation tool, we manually annotated tidal features and extended stellar haloes, including 199 tidal tails and 100 streams. Geometric and photometric measurements were extracted to analyse their dependence on galaxy mass, environment, and internal kinematics. At our surface brightness limit of 29 mag$\,$arcsec$^{-2}$, tidal features and stellar haloes contribute 2% and 10% of total galaxy luminosity, respectively. Tidal features are detected in 36% of galaxies, with none fainter than 27.8 mag$\,$arcsec$^{-2}$. The most massive galaxies are twice as likely to host tidal debris, and for early-type galaxies their halos are twice as luminous as those in lower-mass systems, a trend not observed in late-type galaxies. Although small-scale interactions increase the frequency of tidal features, the large-scale environment does not influence it. An anticorrelation between this frequency and rotational support is found, but may reflect the mass-driven effect. We release our database of annotated features for deep learning applications. Our findings confirm that galaxy mass is the dominant factor influencing tidal feature prevalence, consistent with hierarchical formation models.

Low Surface Brightness structures from annotated deep CFHT images: effects of the host galaxy's properties and environment

Galaxy Evolution and AGN - Wed, 09/07/2025 - 17:05
arXiv:2503.18480v2 Announce Type: replace Abstract: Hierarchical galactic evolution models predict that mergers drive galaxy growth, producing low surface brightness (LSB) tidal features that trace galaxies' late assembly. These faint structures encode information about past mergers and are sensitive to the properties and environment of the host galaxy. We investigated the relationships between LSB features and their hosts in a sample of 475 nearby massive galaxies spanning diverse environments (field, groups, Virgo cluster) using deep optical imaging from the Canada-France-Hawaii Telescope (MATLAS, UNIONS/CFIS, VESTIGE, NGVS). Using Jafar, an online annotation tool, we manually annotated tidal features and extended stellar haloes, including 199 tidal tails and 100 streams. Geometric and photometric measurements were extracted to analyse their dependence on galaxy mass, environment, and internal kinematics. At our surface brightness limit of 29 mag$\,$arcsec$^{-2}$, tidal features and stellar haloes contribute 2% and 10% of total galaxy luminosity, respectively. Tidal features are detected in 36% of galaxies, with none fainter than 27.8 mag$\,$arcsec$^{-2}$. The most massive galaxies are twice as likely to host tidal debris, and for early-type galaxies their halos are twice as luminous as those in lower-mass systems, a trend not observed in late-type galaxies. Although small-scale interactions increase the frequency of tidal features, the large-scale environment does not influence it. An anticorrelation between this frequency and rotational support is found, but may reflect the mass-driven effect. We release our database of annotated features for deep learning applications. Our findings confirm that galaxy mass is the dominant factor influencing tidal feature prevalence, consistent with hierarchical formation models.

Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra

Recent IoA Publications - Wed, 09/07/2025 - 16:29
arXiv:2505.04699v2 Announce Type: replace Abstract: Accretion rates from protoplanetary disks onto forming stars are a key ingredient in star formation and protoplanetary disk evolution. Extensive efforts surveying individual star forming regions with spectroscopy and narrow-band photometry have been performed to derive accretion rates on large populations of young stellar objects (YSOs). We use Gaia DR3 XP spectra to perform the first all-sky homogeneous analysis of YSO accretion within 500 pc. We characterise the H$\alpha$ line emission of YSOs by using the H$\alpha$ pseudo-equivalent widths and XP spectra from Gaia DR3. We derive accretion luminosities, mass accretion rates and stellar parameters for 145 975 candidate YSO H$\alpha$ emitters all-sky. We describe filtering strategies to select specific sub-samples of YSOs from this catalogue. We identify a large population of low-accreting YSO candidates untraced by previous surveys. The population of low accreting YSOs is mostly spatially dispersed, away from star forming regions or more clustered environments of star formation. Many YSOs appear disconnected from young populations, reminiscent of 'Peter Pan' YSOs. We find $L_{acc}\propto L_\star^{1.41\pm0.02}$ and $\dot M_{acc}\propto M_\star^{2.4\pm0.1}$ for the purest all-sky sample of YSO candidates. By fitting an exponential to the fraction of accreting stars in clusters of different ages in the Sco-Cen complex, we obtain an accretion timescale of 2.7$\pm$0.4 Myr. The percentage of accretors found by fitting a power-law is 70% at 2 Myr and 2.8% at 10 Myr. With this new catalogue of H$\alpha$ emitters we significantly increase the number of YSO candidates with accretion rate estimations in the local neighbourhood. This allows us to study accretion timescales and the spatial and physical properties of YSO accretion from a large, all-sky, and homogeneous sample for the first time. [abridged]

Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra

Stars and stellar evolution - Wed, 09/07/2025 - 16:29
arXiv:2505.04699v2 Announce Type: replace Abstract: Accretion rates from protoplanetary disks onto forming stars are a key ingredient in star formation and protoplanetary disk evolution. Extensive efforts surveying individual star forming regions with spectroscopy and narrow-band photometry have been performed to derive accretion rates on large populations of young stellar objects (YSOs). We use Gaia DR3 XP spectra to perform the first all-sky homogeneous analysis of YSO accretion within 500 pc. We characterise the H$\alpha$ line emission of YSOs by using the H$\alpha$ pseudo-equivalent widths and XP spectra from Gaia DR3. We derive accretion luminosities, mass accretion rates and stellar parameters for 145 975 candidate YSO H$\alpha$ emitters all-sky. We describe filtering strategies to select specific sub-samples of YSOs from this catalogue. We identify a large population of low-accreting YSO candidates untraced by previous surveys. The population of low accreting YSOs is mostly spatially dispersed, away from star forming regions or more clustered environments of star formation. Many YSOs appear disconnected from young populations, reminiscent of 'Peter Pan' YSOs. We find $L_{acc}\propto L_\star^{1.41\pm0.02}$ and $\dot M_{acc}\propto M_\star^{2.4\pm0.1}$ for the purest all-sky sample of YSO candidates. By fitting an exponential to the fraction of accreting stars in clusters of different ages in the Sco-Cen complex, we obtain an accretion timescale of 2.7$\pm$0.4 Myr. The percentage of accretors found by fitting a power-law is 70% at 2 Myr and 2.8% at 10 Myr. With this new catalogue of H$\alpha$ emitters we significantly increase the number of YSO candidates with accretion rate estimations in the local neighbourhood. This allows us to study accretion timescales and the spatial and physical properties of YSO accretion from a large, all-sky, and homogeneous sample for the first time. [abridged]

Direct imaging discovery of a young giant planet orbiting on Solar System scales

Recent IoA Publications - Wed, 09/07/2025 - 16:18
arXiv:2507.06206v1 Announce Type: new Abstract: HD 135344 AB is a young visual binary system that is best known for the protoplanetary disk around the secondary star. The circumstellar environment of the A0-type primary star, on the other hand, is already depleted. HD 135344 A is therefore an ideal target for the exploration of recently formed giant planets because it is not obscured by dust. We searched for and characterized substellar companions to HD 135344 A down to separations of about 10 au. We observed HD 135344 A with VLT/SPHERE in the $H23$ and $K12$ bands and obtained $YJ$ and $YJH$ spectroscopy. In addition, we carried out VLTI/GRAVITY observations for the further astrometric and spectroscopic confirmation of a detected companion. We discovered a close-in young giant planet, HD 135344 Ab, with a mass of about 10 $M_\mathrm{J}$. The multi-epoch astrometry confirms the bound nature based on common parallax and common proper motion. This firmly rules out the scenario of a non-stationary background star. The semi-major axis of the planetary orbit is approximately 15-20 au, and the photometry is consistent with that of a mid L-type object. The inferred atmospheric and bulk parameters further confirm the young and planetary nature of the companion. HD 135344 Ab is one of the youngest directly imaged planets that has fully formed and orbits on Solar System scales. It is a valuable target for studying the early evolution and atmosphere of a giant planet that could have formed in the vicinity of the snowline.

Direct imaging discovery of a young giant planet orbiting on Solar System scales

Planetary systems - Wed, 09/07/2025 - 16:18
arXiv:2507.06206v1 Announce Type: new Abstract: HD 135344 AB is a young visual binary system that is best known for the protoplanetary disk around the secondary star. The circumstellar environment of the A0-type primary star, on the other hand, is already depleted. HD 135344 A is therefore an ideal target for the exploration of recently formed giant planets because it is not obscured by dust. We searched for and characterized substellar companions to HD 135344 A down to separations of about 10 au. We observed HD 135344 A with VLT/SPHERE in the $H23$ and $K12$ bands and obtained $YJ$ and $YJH$ spectroscopy. In addition, we carried out VLTI/GRAVITY observations for the further astrometric and spectroscopic confirmation of a detected companion. We discovered a close-in young giant planet, HD 135344 Ab, with a mass of about 10 $M_\mathrm{J}$. The multi-epoch astrometry confirms the bound nature based on common parallax and common proper motion. This firmly rules out the scenario of a non-stationary background star. The semi-major axis of the planetary orbit is approximately 15-20 au, and the photometry is consistent with that of a mid L-type object. The inferred atmospheric and bulk parameters further confirm the young and planetary nature of the companion. HD 135344 Ab is one of the youngest directly imaged planets that has fully formed and orbits on Solar System scales. It is a valuable target for studying the early evolution and atmosphere of a giant planet that could have formed in the vicinity of the snowline.

Three Decades of Discovery: Celebrating 30 Years of the Undergraduate Astronomy Course at Cambridge

Latest News - Wed, 09/07/2025 - 15:11

In 2025, the University of Cambridge celebrates a significant milestone: the 30th anniversary of the undergraduate astronomy course at the Institute of Astronomy. First introduced in the Michaelmas Term of 1995, the course offers students a unique opportunity to explore the universe through rigorous academic training...