Wed 12 Mar 13:15: Accessibility in Astronomy: HTML papers on arXiv, alternative text, and beyond
Astronomy is a heavily visual science. Outreach and education typically rely on beautiful images of the sky, and the communication of research findings in papers and talks revolves around figures. These visual media, while beautiful and effective for many audiences, have historically excluded blind and low vision people from engaging with astronomy. How can we work together towards science that is more inclusive of blind people and people with disabilities more broadly? In this talk, I will discuss accessibility in astronomy, particularly for the blind and low vision community. Topics will include the new HTML paper format on arXiv, writing alternative (alt) text for figures, and some best practices for organizing and attending conferences. Some general background on disability and assistive technology will also be discussed.
- Speaker: Sarah Kane, IoA
- Wednesday 12 March 2025, 13:15-13:35
- Venue: The Hoyle Lecture Theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
Mon 17 Mar 13:00: Astrophysical gravitational wave background: from theoretical modelling to detection prospects
When looking at a population of astrophysical gravitational wave sources we can either decide to focus on those sources that are particularly bright, and build a catalogue, or characterise collectively the superposition of all signals from all sources from the onset of stellar activity until today. This stochastic background of gravitational radiation is an interesting observable as it can allow us to extract astrophysical information that cannot be extracted from the study of individual events. In this talk, I will give an overview of different astrophysical populations expected to generate a stochastic background in the frequency band of current and future gravitational wave detectors. I will then review the state of the art of background modeling and illustrate future detection prospects.
- Speaker: Giulia Cusin (Institut d'Astrophysique de Paris)
- Monday 17 March 2025, 13:00-14:00
- Venue: CMS, Pav. B, CTC Common Room (B1.19) [Potter Room].
- Series: Cosmology Lunch; organiser: Louis Legrand.
Lunar eclipse to grace pre-dawn sky
NASA Launches Missions to Study Sun, Universe’s Beginning
NASA’s newest astrophysics observatory, SPHEREx, is on its way to study the origins of our universe and the history of galaxies, and to search for the ingredients of life in our galaxy. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx lifted off at 8:10 p.m. PDT on March 11 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
Riding with SPHEREx aboard the Falcon 9 were four small satellites that make up the agency’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study how the Sun’s outer atmosphere becomes the solar wind.
“Everything in NASA science is interconnected, and sending both SPHEREx and PUNCH up on a single rocket doubles the opportunities to do incredible science in space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Congratulations to both mission teams as they explore the cosmos from far-out galaxies to our neighborhood star. I am excited to see the data returned in the years to come.”
Ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages SPHEREx, established communications with the space observatory at 9:31 p.m. PDT. The observatory will begin its two-year prime mission after a roughly one-month checkout period, during which engineers and scientists will make sure the spacecraft is working properly.
“The fact our amazing SPHEREx team kept this mission on track even as the Southern California wildfires swept through our community is a testament to their remarkable commitment to deepening humanity’s understanding of our universe,” said Laurie Leshin, director, NASA JPL. “We now eagerly await the scientific breakthroughs from SPHEREx’s all-sky survey — including insights into how the universe began and where the ingredients of life reside.”
The PUNCH satellites successfully separated about 53 minutes after launch, and ground controllers have established communication with all four PUNCH spacecraft. Now, PUNCH begins a 90-day commissioning period where the four satellites will enter the correct orbital formation, and the instruments will be calibrated as a single “virtual instrument” before the scientists start to analyze images of the solar wind.
The two missions are designed to operate in a low Earth, Sun-synchronous orbit over the day-night line (also known as the terminator) so the Sun always remains in the same position relative to the spacecraft. This is essential for SPHEREx to keep its telescope shielded from the Sun’s light and heat (both would inhibit its observations) and for PUNCH to have a clear view in all directions around the Sun.
To achieve its wide-ranging science goals, SPHEREx will create a 3D map of the entire celestial sky every six months, providing a wide perspective to complement the work of space telescopes that observe smaller sections of the sky in more detail, such as NASA’s James Webb Space Telescope and Hubble Space Telescope.
The mission will use a technique called spectroscopy to measure the distance to 450 million galaxies in the nearby universe. Their large-scale distribution was subtly influenced by an event that took place almost 14 billion years ago known as inflation, which caused the universe to expand in size a trillion-trillionfold in a fraction of a second after the big bang. The mission also will measure the total collective glow of all the galaxies in the universe, providing new insights about how galaxies have formed and evolved over cosmic time.
Spectroscopy also can reveal the composition of cosmic objects, and SPHEREx will survey our home galaxy for hidden reservoirs of frozen water ice and other molecules, like carbon dioxide, that are essential to life as we know it.
“Questions like ‘How did we get here?’ and ‘Are we alone?’ have been asked by humans for all of history,” said James Fanson, SPHEREx project manager at JPL. “I think it’s incredible that we are alive at a time when we have the scientific tools to actually start to answer them.”
NASA’s PUNCH will make global, 3D observations of the inner solar system and the Sun’s outer atmosphere, the corona, to learn how its mass and energy become the solar wind, a stream of charged particles blowing outward from the Sun in all directions. The mission will explore the formation and evolution of space weather events such as coronal mass ejections, which can create storms of energetic particle radiation that can endanger spacecraft and astronauts.
“The space between planets is not an empty void. It’s full of turbulent solar wind that washes over Earth,” said Craig DeForest, the mission’s principal investigator, at the Southwest Research Institute. “The PUNCH mission is designed to answer basic questions about how stars like our Sun produce stellar winds, and how they give rise to dangerous space weather events right here on Earth.”
More About SPHEREx, PUNCH
The SPHEREx mission is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Southwest Research Institute (SwRI) leads the PUNCH mission and built the four spacecraft and Wide Field Imager instruments at its headquarters in San Antonio, Texas. The Narrow Field Imager instrument was built by the Naval Research Laboratory in Washington. The mission is operated from SwRI’s offices in Boulder, Colorado, and is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, provided the launch service for SPHEREx and PUNCH.
For more about NASA’s science missions, visit:
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Calla Cofield – SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
The asteroid Bennu is even weirder than we thought
Saturn has 128 new moons – more than the rest of the planets combined
Tue 17 Jun 11:15: Title TBC
Abstract TBC
- Speaker: Prof. Rene Breton (University of Manchester)
- Tuesday 17 June 2025, 11:15-12:00
- Venue: Martin Ryle Seminar Room, Kavli Institute.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Tue 18 Mar 13:00: An Early Heavy Bombardment of the Inner Solar System
The orbital architecture of planets in the Solar System is thought to have been set shortly after its birth. However, ancient asteroid families are highly dispersed, suggesting that perhaps the Solar System remained chaotic until later in its history. Testing this possibility requires precise dating of the collisions that should have generated such families, but planetary surfaces record little to no information from this time. The meteorite record of asteroid collisions represents a separate and more complete archive of Solar System evolution. In this project, we leveraged recent methodological advances to build an extensive record of in-situ meteorite apatite U-Pb ages, sensitive to collisions that induce parent body break-up events. Most asteroid collisions in our record occurred 4480 +/- 20 million years ago. Only highly dispersed asteroid families are potentially co-eval with our U-Pb ages, demonstrating that strong perturbations modifying the orbital eccentricities and inclinations of asteroids were still operating at 4480 Ma. This is unexpected in scenarios where the planets completed their growth and acquired their current orbits in a few Myr within the dispersal of the protoplanetary disk. Our work provides unique evidence that the asteroid belt was still in a state of dynamical chaos 80 Myr after its formation.
- Speaker: Craig Walton (ETH)
- Tuesday 18 March 2025, 13:00-14:00
- Venue: Ryle seminar room + ONLINE - Details to be sent by email.
- Series: Exoplanet Seminars; organiser: Dr Dolev Bashi.
Wed 12 Mar 16:00: Transforming Particle Physics with AI
LHC as one of the most data-intensive scientific endeavors provides the perfect link between fundamental physics research and modern data science. As machine learning is transforming our lives, literally, no aspect of LHC physics is left untouched. This starts with identifying data for classic or optimal analyses and extends to anomaly searches and powerful simulations based on perturbative quantum field theory. I will give a few examples for the transformative power of modern machine learning in particle physics, show how our understanding of uncertainties adds new flavors to machine learning, and explain how generative neural networks allow us to realize our dream of making LHC data available to a broad scientific community.
- Speaker: Professor Tilman Plehn - Heidelberg University
- Wednesday 12 March 2025, 16:00-17:00
- Venue: MR3.
- Series: Theoretical Physics Colloquium; organiser: Amanda Stagg.
Improved Halo Model Calibrations for Mixed Dark Matter Models of Ultralight Axions
Improved Halo Model Calibrations for Mixed Dark Matter Models of Ultralight Axions
NASA’s Dawn Sees Crescent Ceres
NASA’s Dawn spacecraft took this image of Ceres’ south polar region on May 17, 2017. Launched on Sept. 27, 2007, Dawn was NASA’s first truly interplanetary spaceship. The mission featured extended stays at two extraterrestrial bodies: giant asteroid Vesta and dwarf planet Ceres, both in the debris-strewn main asteroid belt between Mars and Jupiter.
The spacecraft’s name was meant to present a simple view of the mission’s purpose: to provide information on the dawn of the solar system. The three principal scientific drivers for the mission were to capture the earliest moments in the origin of the solar system, determine the nature of the building blocks from which the terrestrial planets formed, and contrast the formation and evolution of two small planets that followed very different evolutionary paths.
Dawn completed the first order exploration of the inner solar system, addressed NASA’s goal of understanding the origin and evolution of the solar system, and complemented investigations of Mercury, Earth, and Mars. Dawn’s mission ended on Nov. 1, 2018, after two extended missions.
Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Mon 02 Jun 13:00: Title to be confirmed
Abstract not available
- Speaker: Eleonora Di Valentino (University of Sheffield)
- Monday 02 June 2025, 13:00-14:00
- Venue: CMS, Pav. B, CTC Common Room (B1.19) [Potter Room].
- Series: Cosmology Lunch; organiser: Thomas Colas.
Tue 06 May 13:00: Title to be confirmed
Abstract not available
- Speaker: Matthew Johnson (Perimeter Institute and York University)
- Tuesday 06 May 2025, 13:00-14:00
- Venue: CMS, Pav. B, CTC Common Room (B1.19) [Potter Room].
- Series: Cosmology Lunch; organiser: Thomas Colas.
Measuring photo-ionization rate and mean free path of HeII ionizing photons at $2.5 \leq z \leq 3.6$: Evidence for late and rapid HeII reionization Part-II
Hubble Unveils a Glittering View of Sh2-284
- Hubble Home
- Overview
- Impact & Benefits
- Science
- Observatory
- Team
- News
- Multimedia
- More
2 min read
Hubble Unveils a Glittering View of Sh2-284 Hubble’s infrared view of emission nebula Sh2-284 provides a glimpse of the brilliant young stars hidden within clouds of gas and dust. Credit: NASA, ESA, and M. Andersen (European Southern Observatory – Germany); Processing: Gladys Kober (NASA/Catholic University of America)Download this image
A tiny fraction of the stellar nursery known as Sh2-284 is visible in this glittering, star-filled NASA Hubble Space Telescope image. This immense region of gas and dust is the birthing place of stars, which shine among the clouds. Bright clusters of newborn stars glow pink in infrared light, and clouds of gas and dust, resembling puffy cumulus clouds, are dotted with dark knots of denser dust.
This image shows an infrared view from Hubble, giving an excellent view of the stars that might otherwise be obscured by Sh2-284’s clouds. Unlike visible light, infrared wavelengths can travel through clouds of gas and dust, providing a glimpse of the stars forming within the obscuring clouds.
The nebula is shaped by a young central star cluster, Dolidze 25 (not visible in the Hubble image), whose stars range from 1.5 to 13 million years old (our Sun, in contrast, is 4.6 billion years old). The cluster blasts out ionizing winds and radiation, pushing at the gas and dust of the nebula and carving out intricate shapes and pillars, as seen in detail here. This ionizing radiation gives Sh2-284 its classification as an HII region, an emission nebula consisting primarily of ionized hydrogen. An emission nebula like Sh2-284 glows with its own light as stars within or nearby energize its gas with a flood of intense ultraviolet radiation.
The ground-based image (top) of M24 shows the location of the Hubble view (bottom). The European Southern Observatory’s visible-light image shows prominent clouds of gas and dust, while the Hubble image’s infrared vision highlights the stars within and behind the clouds. Ground-based image: ESO/VPHAS+ Team; Hubble image: NASA, ESA, and M. Andersen (European Southern Observatory – Germany); Processing: Gladys Kober (NASA/Catholic University of America)Sh2-284 is also a low-metallicity region, which means it is poor in elements heavier than hydrogen and helium. These conditions mimic the early universe, when matter was mostly helium and hydrogen and heavier elements were just beginning to form via nuclear fusion within massive stars. Hubble took these images as part of an effort to examine how low metallicity influences stellar formation and how this would apply to the early universe.
Sh2-284 resides 15,000 light-years away at the end of an outer spiral arm of our Milky Way galaxy, in the constellation Monoceros.
Explore MoreHubble’s Nebulae
Exploring the Birth of Stars
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
- Hubble Space Telescope
- Astrophysics
- Astrophysics Division
- Emission Nebulae
- Goddard Space Flight Center
- Nebulae
- Star-forming Nebulae
- The Universe
Tue 10 Jun 11:15: Title TBC
Abstract TBC
- Speaker: Akeelah Bertram (Cavendish Arts Science Fellow)
- Tuesday 10 June 2025, 11:15-12:00
- Venue: Coffee area, Battcock Centre.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Speeding star offers a rare glimpse of the Milky Way's galactic centre
Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Ahead of launch, NASA’s SPHEREx is enclosed in a payload fairing at Vandenberg Space Force Base on March 2. The observatory is stacked atop the four small satellites that make up the agency’s PUNCH mission.NASA/BAE Systems/Benjamin FryNASA’s latest space observatory is targeting a March 8 liftoff, and the agency’s PUNCH heliophysics mission is sharing a ride. Here’s what to expect during launch and beyond.
In a little over a day, NASA’s SPHEREx space telescope is slated to launch from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. The observatory will map the entire celestial sky four times in two years, creating a 3D map of over 450 million galaxies. In doing so, the mission will provide insight into what happened a fraction of a second after the big bang, in addition to searching interstellar dust for the ingredients of life, and measuring the collective glow from all galaxies, including ones that other telescopes cannot easily detect.
The launch window opens at 7:09:56 p.m. PST on Saturday, March 8, with a target launch time of 7:10:12 p.m. PST. Additional opportunities occur in the following days.
Launching together into low Earth orbit, NASA’s SPHEREx and PUNCH missions will study a range of topics from the early universe to our nearest star. NASA/JPL-CaltechSharing a ride with SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) is NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere), a constellation of four small satellites that will map the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, the constant outflow of material from the Sun.
For the latest on PUNCH, visit the blog:
What SPHEREx Will Do
The SPHEREx observatory detects infrared light — wavelengths slightly longer than what the human eye can see that are emitted by warm objects including stars and galaxies. Using a technique called spectroscopy, SPHEREx will separate the infrared light emitted by hundreds of millions of stars and galaxies into 102 individual colors — the same way a prism splits sunlight into a rainbow. Observing those colors separately can reveal various properties of objects, including their composition and, in the case of galaxies, their distance from Earth. No other all-sky survey has performed spectroscopy in so many wavelengths and on so many sources.
The mission’s all-sky spectroscopic map can be used for a wide variety of science investigations. In particular, SPHEREx has its sights set on a phenomenon called inflation, which caused the universe to expand a trillion-trillionfold in a fraction of a second after the big bang. This nearly instantaneous event left an impression on the large-scale distribution of matter in the universe. The mission will map the distribution of more than 450 million galaxies to improve scientists’ understanding of the physics behind this extreme cosmic event.
SPHEREx Fact SheetAdditionally, the space telescope will measure the total glow from all galaxies, including ones that other telescopes cannot easily detect. When combined with studies of individual galaxies by other telescopes, the measurement of this overall glow will provide a more complete picture of how the light output from galaxies has changed over the universe’s history.
At the same time, spectroscopy will allow SPHEREx to seek out frozen water, carbon dioxide, and other key ingredients for life. The mission will provide an unprecedented survey of the location and abundance of these icy compounds in our galaxy, giving researchers better insight into the interstellar chemistry that set the stage for life.
Launch SequenceBut, first, SPHEREx has to get into space. Prelaunch testing is complete on the spacecraft’s various systems, and it’s been encapsulated in the protective nose cone, or payload fairing, atop the SpaceX Falcon 9 rocket that will get it there from Vandenberg’s Space Launch Complex-4 East.
NASA’s SPHEREx mission will lift off from Space Launch Complex-4 East at Vanden-berg Space Force Base in California aboard a SpaceX Falcon 9 rocket, just as the Sur-face Water and Ocean Topography mission, shown here, did in December 2022. NASA/Keegan BarberA little more than two minutes after the Falcon 9 lifts off, the main engine will cut off. Shortly after, the rocket’s first and second stages will separate, followed by second-stage engine start. The reusable first stage will then begin its automated boost-back burn to the launch site for a propulsive landing.
Once the rocket is out of Earth’s atmosphere, about three minutes after launch, the payload fairing that surrounds the spacecraft will separate into two halves and fall back to Earth, landing in the ocean. Roughly 41 minutes after launch, SPHEREx will separate from the rocket and start its internal systems so that it can point its solar panel to the Sun. After this happens, the spacecraft can establish communications with ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. This milestone, called acquisition of signal, should happen about three minutes after separation.
About 52 minutes after liftoff, PUNCH should separate as well from the Falcon 9.
Both spacecraft will be in a Sun-synchronous low Earth orbit, where their position relative to the Sun remains the same throughout the year. Each approximately 98-minute orbit allows the SPHEREx telescope to view a 360-degree strip of the celestial sky. As Earth’s orbit around the Sun progresses, that strip slowly advances, enabling SPHEREx to image almost the entire sky in six months. For PUNCH, the orbit provides a clear view in all directions around the Sun.
About four days after launch, SPHEREx should eject the protective cover over its telescope lens. The observatory will begin science operations a little over a month after launch, once the telescope has cooled down to its operating temperature and the mission team has completed a series of checks.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, is providing the launch service for SPHEREx and PUNCH.
For more information about the SPHEREx mission, visit:
https://www.jpl.nasa.gov/missions/spherex
More About SPHERExSPHEREx is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Get the SPHEREx Press Kit How to Watch March 8 SPHEREx Launch 6 Things to Know About SPHEREx Why NASA’s SPHEREx Will Make ‘Most Colorful’ Cosmic Map Ever NASA’s SPHEREX Space Telescope Will Seek Life’s Ingredients News Media ContactsKaren Fox / Alise Fisher
NASA Headquarters, Washington
202-358-1600 / 202-358-2546
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Calla Cofield, SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier, PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
2025-033
Share Details Last Updated Mar 07, 2025 Related Terms- SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer)
- Astrophysics
- Exoplanets
- Galaxies
- Heliophysics
- Jet Propulsion Laboratory
- Polarimeter to Unify the Corona and Heliosphere (PUNCH)
- The Big Bang
- The Milky Way
- The Search for Life
- The Sun
- The Universe
This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides…
Article 9 hours ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission Article 2 days ago Keep Exploring Discover Related TopicsMon 10 Mar 14:00: Numerical study of the Tayler-Spruit dynamo: from magnetar formation to magnetic fields in stellar interiors
The Tayler-Spruit dynamo is a subcritical dynamo driven by the Tayler instability in a stably stratified shear flow. This mechanism is of particular interest to astrophysics as the generated strong large-scale magnetic field could explain angular momentum transport during stellar evolution and the formation of very magnetized neutron stars called magnetars. Due to its subcritical nature and stable stratification, this dynamo has remained elusive in numerical simulations until the recent studies of Petitdemange et al. and Barrère et al. I will present the results of 3D numerical simulations of the Tayler-Spruit dynamo and their implications for astrophysical problems. Our results demonstrate the existence of different subcritical branches showing distinct magnetic field geometries and dynamical behaviours, which were not predicted by previous analytical studies. The strongest branch harbours magnetic fields which are consistent with the observation of magnetars with low magnetic dipoles and in global agreement with analytical prescription for angular momentum transport in stellar radiative zones. Thus, beyond capturing an unexpected rich dynamics of the Tayler-Spruit dynamo, our work provides a better understanding of the formation of magnetars and the physics in stellar interiors.
- Speaker: Paul Barrere (Geneva)
- Monday 10 March 2025, 14:00-15:00
- Venue: MR14 DAMTP and online.
- Series: DAMTP Astrophysics Seminars; organiser: Loren E. Held.