skip to content

Institute of Astronomy

 

Euclid Quick Data Release (Q1). The first catalogue of strong-lensing galaxy clusters

Recent IoA Publications - Thu, 20/03/2025 - 10:21
arXiv:2503.15330v1 Announce Type: new Abstract: We present the first catalogue of strong lensing galaxy clusters identified in the Euclid Quick Release 1 observations (covering $63.1\,\mathrm{deg^2}$). This catalogue is the result of the visual inspection of 1260 cluster fields. Each galaxy cluster was ranked with a probability, $\mathcal{P}_{\mathrm{lens}}$, based on the number and plausibility of the identified strong lensing features. Specifically, we identified 83 gravitational lenses with $\mathcal{P}_{\mathrm{lens}}>0.5$, of which 14 have $\mathcal{P}_{\mathrm{lens}}=1$, and clearly exhibiting secure strong lensing features, such as giant tangential and radial arcs, and multiple images. Considering the measured number density of lensing galaxy clusters, approximately $0.3\,\mathrm{deg}^{-2}$ for $\mathcal{P}_{\mathrm{lens}}>0.9$, we predict that \Euclid\ will likely see more than 4500 strong lensing clusters over the course of the mission. Notably, only three of the identified cluster-scale lenses had been previously observed from space. Thus, \Euclid has provided the first high-resolution imaging for the remaining $80$ galaxy cluster lenses, including those with the highest probability. The identified strong lensing features will be used for training deep-learning models for identifying gravitational arcs and multiple images automatically in \Euclid observations. This study confirms the huge potential of \Euclid for finding new strong lensing clusters, enabling exciting new discoveries on the nature of dark matter and dark energy and the study of the high-redshift Universe.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine E -- Ensemble classification of strong gravitational lenses: lessons for Data Release 1

Instrumentation and Surveys - Thu, 20/03/2025 - 10:20
arXiv:2503.15328v1 Announce Type: new Abstract: The Euclid Wide Survey (EWS) is expected to identify of order $100\,000$ galaxy-galaxy strong lenses across $14\,000$deg$^2$. The Euclid Quick Data Release (Q1) of $63.1$deg$^2$ Euclid images provides an excellent opportunity to test our lens-finding ability, and to verify the anticipated lens frequency in the EWS. Following the Q1 data release, eight machine learning networks from five teams were applied to approximately one million images. This was followed by a citizen science inspection of a subset of around $100\,000$ images, of which $65\%$ received high network scores, with the remainder randomly selected. The top scoring outputs were inspected by experts to establish confident (grade A), likely (grade B), possible (grade C), and unlikely lenses. In this paper we combine the citizen science and machine learning classifiers into an ensemble, demonstrating that a combined approach can produce a purer and more complete sample than the original individual classifiers. Using the expert-graded subset as ground truth, we find that this ensemble can provide a purity of $52\pm2\%$ (grade A/B lenses) with $50\%$ completeness (for context, due to the rarity of lenses a random classifier would have a purity of $0.05\%$). We discuss future lessons for the first major Euclid data release (DR1), where the big-data challenges will become more significant and will require analysing more than $\sim300$ million galaxies, and thus time investment of both experts and citizens must be carefully managed.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine E -- Ensemble classification of strong gravitational lenses: lessons for Data Release 1

Recent IoA Publications - Thu, 20/03/2025 - 10:20
arXiv:2503.15328v1 Announce Type: new Abstract: The Euclid Wide Survey (EWS) is expected to identify of order $100\,000$ galaxy-galaxy strong lenses across $14\,000$deg$^2$. The Euclid Quick Data Release (Q1) of $63.1$deg$^2$ Euclid images provides an excellent opportunity to test our lens-finding ability, and to verify the anticipated lens frequency in the EWS. Following the Q1 data release, eight machine learning networks from five teams were applied to approximately one million images. This was followed by a citizen science inspection of a subset of around $100\,000$ images, of which $65\%$ received high network scores, with the remainder randomly selected. The top scoring outputs were inspected by experts to establish confident (grade A), likely (grade B), possible (grade C), and unlikely lenses. In this paper we combine the citizen science and machine learning classifiers into an ensemble, demonstrating that a combined approach can produce a purer and more complete sample than the original individual classifiers. Using the expert-graded subset as ground truth, we find that this ensemble can provide a purity of $52\pm2\%$ (grade A/B lenses) with $50\%$ completeness (for context, due to the rarity of lenses a random classifier would have a purity of $0.05\%$). We discuss future lessons for the first major Euclid data release (DR1), where the big-data challenges will become more significant and will require analysing more than $\sim300$ million galaxies, and thus time investment of both experts and citizens must be carefully managed.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine C -- Finding lenses with machine learning

Instrumentation and Surveys - Thu, 20/03/2025 - 10:20
arXiv:2503.15326v1 Announce Type: new Abstract: Strong gravitational lensing has the potential to provide a powerful probe of astrophysics and cosmology, but fewer than 1000 strong lenses have been confirmed previously. With \ang{;;0.16} resolution covering a third of the sky, the \Euclid telescope will revolutionise strong lens finding, with \num{170000} lenses forecasted to be discovered amongst its 1.5 billion galaxies. We present an analysis of the performance of five machine-learning models at finding strong gravitational lenses in the quick release of \Euclid data (Q1), covering 63\,deg$^{2}$. The models are validated with citizen scientists and expert visual inspection. We focus on the best performing network: a fine-tuned version of the \texttt{Zoobot} pretrained model, originally trained to classify galaxy morphologies in heterogeneous astronomical imaging surveys. Of the one million Q1 objects that \texttt{Zoobot} was tasked to find strong lenses within, the top 1000 ranked objects contained 122 grade A lenses (almost certain lenses), and 41 grade B lenses (probable lenses). A deeper search with the five networks combined with visual inspection discovered 250 (247) grade A (B) lenses, of which 224 (182) are ranked in the top \num{20000} by \texttt{Zoobot}. When extrapolated to the full \Euclid survey, the highest ranked one million images will contain \num{75000} grade A or B strong gravitational lenses.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine C -- Finding lenses with machine learning

Recent IoA Publications - Thu, 20/03/2025 - 10:20
arXiv:2503.15326v1 Announce Type: new Abstract: Strong gravitational lensing has the potential to provide a powerful probe of astrophysics and cosmology, but fewer than 1000 strong lenses have been confirmed previously. With \ang{;;0.16} resolution covering a third of the sky, the \Euclid telescope will revolutionise strong lens finding, with \num{170000} lenses forecasted to be discovered amongst its 1.5 billion galaxies. We present an analysis of the performance of five machine-learning models at finding strong gravitational lenses in the quick release of \Euclid data (Q1), covering 63\,deg$^{2}$. The models are validated with citizen scientists and expert visual inspection. We focus on the best performing network: a fine-tuned version of the \texttt{Zoobot} pretrained model, originally trained to classify galaxy morphologies in heterogeneous astronomical imaging surveys. Of the one million Q1 objects that \texttt{Zoobot} was tasked to find strong lenses within, the top 1000 ranked objects contained 122 grade A lenses (almost certain lenses), and 41 grade B lenses (probable lenses). A deeper search with the five networks combined with visual inspection discovered 250 (247) grade A (B) lenses, of which 224 (182) are ranked in the top \num{20000} by \texttt{Zoobot}. When extrapolated to the full \Euclid survey, the highest ranked one million images will contain \num{75000} grade A or B strong gravitational lenses.

Euclid Quick Data Release (Q1): The Strong Lensing Discovery Engine A -- System overview and lens catalogue

Instrumentation and Surveys - Thu, 20/03/2025 - 10:19
arXiv:2503.15324v1 Announce Type: new Abstract: We present a catalogue of 497 galaxy-galaxy strong lenses in the Euclid Quick Release 1 data (63 deg$^2$). In the initial 0.45\% of Euclid's surveys, we double the total number of known lens candidates with space-based imaging. Our catalogue includes 250 grade A candidates, the vast majority of which (243) were previously unpublished. Euclid's resolution reveals rare lens configurations of scientific value including double-source-plane lenses, edge-on lenses, complete Einstein rings, and quadruply-imaged lenses. We resolve lenses with small Einstein radii ($\theta_{\rm E} < 1''$) in large numbers for the first time. These lenses are found through an initial sweep by deep learning models, followed by Space Warps citizen scientist inspection, expert vetting, and system-by-system modelling. Our search approach scales straightforwardly to Euclid Data Release 1 and, without changes, would yield approximately 7000 high-confidence (grade A or B) lens candidates by late 2026. Further extrapolating to the complete Euclid Wide Survey implies a likely yield of over 100000 high-confidence candidates, transforming strong lensing science.

Euclid Quick Data Release (Q1): The Strong Lensing Discovery Engine A -- System overview and lens catalogue

Recent IoA Publications - Thu, 20/03/2025 - 10:19
arXiv:2503.15324v1 Announce Type: new Abstract: We present a catalogue of 497 galaxy-galaxy strong lenses in the Euclid Quick Release 1 data (63 deg$^2$). In the initial 0.45\% of Euclid's surveys, we double the total number of known lens candidates with space-based imaging. Our catalogue includes 250 grade A candidates, the vast majority of which (243) were previously unpublished. Euclid's resolution reveals rare lens configurations of scientific value including double-source-plane lenses, edge-on lenses, complete Einstein rings, and quadruply-imaged lenses. We resolve lenses with small Einstein radii ($\theta_{\rm E} < 1''$) in large numbers for the first time. These lenses are found through an initial sweep by deep learning models, followed by Space Warps citizen scientist inspection, expert vetting, and system-by-system modelling. Our search approach scales straightforwardly to Euclid Data Release 1 and, without changes, would yield approximately 7000 high-confidence (grade A or B) lens candidates by late 2026. Further extrapolating to the complete Euclid Wide Survey implies a likely yield of over 100000 high-confidence candidates, transforming strong lensing science.

Euclid Quick Data Release (Q1). An investigation of optically faint, red objects in the Euclid Deep Fields

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:18
arXiv:2503.15322v1 Announce Type: new Abstract: Our understanding of cosmic star-formation at $z>3$ used to largely rely on rest-frame UV observations. However, these observations overlook dusty and massive sources, resulting in an incomplete census of early star-forming galaxies. Recently, infrared data from Spitzer and the James Webb Space Telescope (JWST) have revealed a hidden population at $z\sim$3-6 with extreme red colours. Taking advantage of the overlap between imaging in the Euclid Deep Fields (EDFs), covering $\sim$ 60 deg$^2$, and ancillary Spitzer observations, we identified 27000 extremely red objects with $H_E-{\rm IRAC}2>2.25$ (dubbed HIEROs) down to a $10\sigma$ completeness magnitude limit of IRAC2 $=$ 22.5 AB. After a visual inspection to discard artefacts and objects with troubling photometry, we ended up with a final sample of 3900 candidates. We retrieved the physical parameter estimates for these objects from the SED-fitting tool CIGALE. Our results confirm that HIERO galaxies may populate the high-mass end of the stellar mass function at $z>3$, with some reaching extreme stellar masses ($M_*>10^{11}M_\odot$) and exhibiting high dust attenuation ($A_V>3$). However, we consider stellar mass estimates unreliable for $z>3.5$, favouring a lower-z solution. The challenges faced by SED-fitting tools in characterising these objects highlight the need for further studies, incorporating shorter-wavelength and spectroscopic data. Euclid spectra will help resolve degeneracies and better constrain the physical properties of the brightest galaxies. Given the extreme nature of this population, characterising these sources is crucial for understanding galaxy evolution. This work demonstrates Euclid's potential to provide statistical samples of rare, massive, dust-obscured galaxies at $z>3$, which will be prime targets for JWST, ALMA, and ELT.

Euclid Quick Data Release (Q1). An investigation of optically faint, red objects in the Euclid Deep Fields

Recent IoA Publications - Thu, 20/03/2025 - 10:18
arXiv:2503.15322v1 Announce Type: new Abstract: Our understanding of cosmic star-formation at $z>3$ used to largely rely on rest-frame UV observations. However, these observations overlook dusty and massive sources, resulting in an incomplete census of early star-forming galaxies. Recently, infrared data from Spitzer and the James Webb Space Telescope (JWST) have revealed a hidden population at $z\sim$3-6 with extreme red colours. Taking advantage of the overlap between imaging in the Euclid Deep Fields (EDFs), covering $\sim$ 60 deg$^2$, and ancillary Spitzer observations, we identified 27000 extremely red objects with $H_E-{\rm IRAC}2>2.25$ (dubbed HIEROs) down to a $10\sigma$ completeness magnitude limit of IRAC2 $=$ 22.5 AB. After a visual inspection to discard artefacts and objects with troubling photometry, we ended up with a final sample of 3900 candidates. We retrieved the physical parameter estimates for these objects from the SED-fitting tool CIGALE. Our results confirm that HIERO galaxies may populate the high-mass end of the stellar mass function at $z>3$, with some reaching extreme stellar masses ($M_*>10^{11}M_\odot$) and exhibiting high dust attenuation ($A_V>3$). However, we consider stellar mass estimates unreliable for $z>3.5$, favouring a lower-z solution. The challenges faced by SED-fitting tools in characterising these objects highlight the need for further studies, incorporating shorter-wavelength and spectroscopic data. Euclid spectra will help resolve degeneracies and better constrain the physical properties of the brightest galaxies. Given the extreme nature of this population, characterising these sources is crucial for understanding galaxy evolution. This work demonstrates Euclid's potential to provide statistical samples of rare, massive, dust-obscured galaxies at $z>3$, which will be prime targets for JWST, ALMA, and ELT.

Euclid Quick Data Release (Q1). The active galaxies of Euclid

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:17
arXiv:2503.15320v1 Announce Type: new Abstract: We present a catalogue of candidate active galactic nuclei (AGN) in the $Euclid$ Quick Release (Q1) fields. For each $Euclid$ source we collect multi-wavelength photometry and spectroscopy information from Galaxy Evolution Explorer (GALEX), $Gaia$, Dark Energy Survey (DES), Wise-field Infrared Survey Explorer (WISE), $Spitzer$, Dark Energy Survey (DESI), and Sloan Digital Sky Survey (SDSS), including spectroscopic redshift from public compilations. We investigate the AGN contents of the Q1 fields by applying selection criteria using $Euclid$ colours and WISE-AllWISE cuts finding respectively 292,222 and 65,131 candidates. We also create a high-purity QSO catalogue based on $Gaia$ DR3 information containing 1971 candidates. Furthermore, we utilise the collected spectroscopic information from DESI to perform broad-line and narrow-line AGN selections, leading to a total of 4392 AGN candidates in the Q1 field. We investigate and refine the Q1 probabilistic random forest QSO population, selecting a total of 180,666 candidates. Additionally, we perform SED fitting on a subset of sources with available $z_{\text{spec}}$, and by utilizing the derived AGN fraction, we identify a total of 7766 AGN candidates. We discuss purity and completeness of the selections and define two new colour selection criteria ($JH$_$I_{\text{E}}Y$ and $I_{\text{E}}H$_$gz$) to improve on purity, finding 313,714 and 267,513 candidates respectively in the Q1 data. We find a total of 229,779 AGN candidates equivalent to an AGN surface density of 3641 deg$^{-2}$ for $18

Euclid Quick Data Release (Q1). The active galaxies of Euclid

Recent IoA Publications - Thu, 20/03/2025 - 10:17
arXiv:2503.15320v1 Announce Type: new Abstract: We present a catalogue of candidate active galactic nuclei (AGN) in the $Euclid$ Quick Release (Q1) fields. For each $Euclid$ source we collect multi-wavelength photometry and spectroscopy information from Galaxy Evolution Explorer (GALEX), $Gaia$, Dark Energy Survey (DES), Wise-field Infrared Survey Explorer (WISE), $Spitzer$, Dark Energy Survey (DESI), and Sloan Digital Sky Survey (SDSS), including spectroscopic redshift from public compilations. We investigate the AGN contents of the Q1 fields by applying selection criteria using $Euclid$ colours and WISE-AllWISE cuts finding respectively 292,222 and 65,131 candidates. We also create a high-purity QSO catalogue based on $Gaia$ DR3 information containing 1971 candidates. Furthermore, we utilise the collected spectroscopic information from DESI to perform broad-line and narrow-line AGN selections, leading to a total of 4392 AGN candidates in the Q1 field. We investigate and refine the Q1 probabilistic random forest QSO population, selecting a total of 180,666 candidates. Additionally, we perform SED fitting on a subset of sources with available $z_{\text{spec}}$, and by utilizing the derived AGN fraction, we identify a total of 7766 AGN candidates. We discuss purity and completeness of the selections and define two new colour selection criteria ($JH$_$I_{\text{E}}Y$ and $I_{\text{E}}H$_$gz$) to improve on purity, finding 313,714 and 267,513 candidates respectively in the Q1 data. We find a total of 229,779 AGN candidates equivalent to an AGN surface density of 3641 deg$^{-2}$ for $18

Data Release 1 of the Dark Energy Spectroscopic Instrument

Cosmology and Fundamental physics - Thu, 20/03/2025 - 10:13
arXiv:2503.14745v1 Announce Type: new Abstract: In 2021 May the Dark Energy Spectroscopic Instrument (DESI) collaboration began a 5-year spectroscopic redshift survey to produce a detailed map of the evolving three-dimensional structure of the universe between $z=0$ and $z\approx4$. DESI's principle scientific objectives are to place precise constraints on the equation of state of dark energy, the gravitationally driven growth of large-scale structure, and the sum of the neutrino masses, and to explore the observational signatures of primordial inflation. We present DESI Data Release 1 (DR1), which consists of all data acquired during the first 13 months of the DESI main survey, as well as a uniform reprocessing of the DESI Survey Validation data which was previously made public in the DESI Early Data Release. The DR1 main survey includes high-confidence redshifts for 18.7M objects, of which 13.1M are spectroscopically classified as galaxies, 1.6M as quasars, and 4M as stars, making DR1 the largest sample of extragalactic redshifts ever assembled. We summarize the DR1 observations, the spectroscopic data-reduction pipeline and data products, large-scale structure catalogs, value-added catalogs, and describe how to access and interact with the data. In addition to fulfilling its core cosmological objectives with unprecedented precision, we expect DR1 to enable a wide range of transformational astrophysical studies and discoveries.

Data Release 1 of the Dark Energy Spectroscopic Instrument

Recent IoA Publications - Thu, 20/03/2025 - 10:13
arXiv:2503.14745v1 Announce Type: new Abstract: In 2021 May the Dark Energy Spectroscopic Instrument (DESI) collaboration began a 5-year spectroscopic redshift survey to produce a detailed map of the evolving three-dimensional structure of the universe between $z=0$ and $z\approx4$. DESI's principle scientific objectives are to place precise constraints on the equation of state of dark energy, the gravitationally driven growth of large-scale structure, and the sum of the neutrino masses, and to explore the observational signatures of primordial inflation. We present DESI Data Release 1 (DR1), which consists of all data acquired during the first 13 months of the DESI main survey, as well as a uniform reprocessing of the DESI Survey Validation data which was previously made public in the DESI Early Data Release. The DR1 main survey includes high-confidence redshifts for 18.7M objects, of which 13.1M are spectroscopically classified as galaxies, 1.6M as quasars, and 4M as stars, making DR1 the largest sample of extragalactic redshifts ever assembled. We summarize the DR1 observations, the spectroscopic data-reduction pipeline and data products, large-scale structure catalogs, value-added catalogs, and describe how to access and interact with the data. In addition to fulfilling its core cosmological objectives with unprecedented precision, we expect DR1 to enable a wide range of transformational astrophysical studies and discoveries.

Data Release 1 of the Dark Energy Spectroscopic Instrument

Instrumentation and Surveys - Thu, 20/03/2025 - 10:13
arXiv:2503.14745v1 Announce Type: new Abstract: In 2021 May the Dark Energy Spectroscopic Instrument (DESI) collaboration began a 5-year spectroscopic redshift survey to produce a detailed map of the evolving three-dimensional structure of the universe between $z=0$ and $z\approx4$. DESI's principle scientific objectives are to place precise constraints on the equation of state of dark energy, the gravitationally driven growth of large-scale structure, and the sum of the neutrino masses, and to explore the observational signatures of primordial inflation. We present DESI Data Release 1 (DR1), which consists of all data acquired during the first 13 months of the DESI main survey, as well as a uniform reprocessing of the DESI Survey Validation data which was previously made public in the DESI Early Data Release. The DR1 main survey includes high-confidence redshifts for 18.7M objects, of which 13.1M are spectroscopically classified as galaxies, 1.6M as quasars, and 4M as stars, making DR1 the largest sample of extragalactic redshifts ever assembled. We summarize the DR1 observations, the spectroscopic data-reduction pipeline and data products, large-scale structure catalogs, value-added catalogs, and describe how to access and interact with the data. In addition to fulfilling its core cosmological objectives with unprecedented precision, we expect DR1 to enable a wide range of transformational astrophysical studies and discoveries.

DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest

Cosmology and Fundamental physics - Thu, 20/03/2025 - 10:09
arXiv:2503.14739v1 Announce Type: new Abstract: We present the Baryon Acoustic Oscillation (BAO) measurements with the Lyman-alpha (LyA) forest from the second data release (DR2) of the Dark Energy Spectroscopic Instrument (DESI) survey. Our BAO measurements include both the auto-correlation of the LyA forest absorption observed in the spectra of high-redshift quasars and the cross-correlation of the absorption with the quasar positions. The total sample size is approximately a factor of two larger than the DR1 dataset, with forest measurements in over 820,000 quasar spectra and the positions of over 1.2 million quasars. We describe several significant improvements to our analysis in this paper, and two supporting papers describe improvements to the synthetic datasets that we use for validation and how we identify damped LyA absorbers. Our main result is that we have measured the BAO scale with a statistical precision of 1.1% along and 1.3% transverse to the line of sight, for a combined precision of 0.65% on the isotropic BAO scale at $z_{eff} = 2.33$. This excellent precision, combined with recent theoretical studies of the BAO shift due to nonlinear growth, motivated us to include a systematic error term in LyA BAO analysis for the first time. We measure the ratios $D_H(z_{eff})/r_d = 8.632 \pm 0.098 \pm 0.026$ and $D_M(z_{eff})/r_d = 38.99 \pm 0.52 \pm 0.12$, where $D_H = c/H(z)$ is the Hubble distance, $D_M$ is the transverse comoving distance, $r_d$ is the sound horizon at the drag epoch, and we quote both the statistical and the theoretical systematic uncertainty. The companion paper presents the BAO measurements at lower redshifts from the same dataset and the cosmological interpretation.

DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest

Recent IoA Publications - Thu, 20/03/2025 - 10:09
arXiv:2503.14739v1 Announce Type: new Abstract: We present the Baryon Acoustic Oscillation (BAO) measurements with the Lyman-alpha (LyA) forest from the second data release (DR2) of the Dark Energy Spectroscopic Instrument (DESI) survey. Our BAO measurements include both the auto-correlation of the LyA forest absorption observed in the spectra of high-redshift quasars and the cross-correlation of the absorption with the quasar positions. The total sample size is approximately a factor of two larger than the DR1 dataset, with forest measurements in over 820,000 quasar spectra and the positions of over 1.2 million quasars. We describe several significant improvements to our analysis in this paper, and two supporting papers describe improvements to the synthetic datasets that we use for validation and how we identify damped LyA absorbers. Our main result is that we have measured the BAO scale with a statistical precision of 1.1% along and 1.3% transverse to the line of sight, for a combined precision of 0.65% on the isotropic BAO scale at $z_{eff} = 2.33$. This excellent precision, combined with recent theoretical studies of the BAO shift due to nonlinear growth, motivated us to include a systematic error term in LyA BAO analysis for the first time. We measure the ratios $D_H(z_{eff})/r_d = 8.632 \pm 0.098 \pm 0.026$ and $D_M(z_{eff})/r_d = 38.99 \pm 0.52 \pm 0.12$, where $D_H = c/H(z)$ is the Hubble distance, $D_M$ is the transverse comoving distance, $r_d$ is the sound horizon at the drag epoch, and we quote both the statistical and the theoretical systematic uncertainty. The companion paper presents the BAO measurements at lower redshifts from the same dataset and the cosmological interpretation.

Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web

Recent IoA Publications - Thu, 20/03/2025 - 10:08
arXiv:2503.15333v1 Announce Type: new Abstract: Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 $\mathrm{deg}^2$) at $0.5 10^{10} M_\odot$) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of S\'ersic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey.

Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web

Cosmology and Fundamental physics - Thu, 20/03/2025 - 10:08
arXiv:2503.15333v1 Announce Type: new Abstract: Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 $\mathrm{deg}^2$) at $0.5 10^{10} M_\odot$) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of S\'ersic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey.

Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:08
arXiv:2503.15333v1 Announce Type: new Abstract: Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 $\mathrm{deg}^2$) at $0.5 10^{10} M_\odot$) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of S\'ersic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey.

DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints

Recent IoA Publications - Thu, 20/03/2025 - 10:07
arXiv:2503.14738v1 Announce Type: new Abstract: We present baryon acoustic oscillation (BAO) measurements from more than 14 million galaxies and quasars drawn from the Dark Energy Spectroscopic Instrument (DESI) Data Release 2 (DR2), based on three years of operation. For cosmology inference, these galaxy measurements are combined with DESI Lyman-$\alpha$ forest BAO results presented in a companion paper. The DR2 BAO results are consistent with DESI DR1 and SDSS, and their distance-redshift relationship matches those from recent compilations of supernovae (SNe) over the same redshift range. The results are well described by a flat $\Lambda$CDM model, but the parameters preferred by BAO are in mild, $2.3\sigma$ tension with those determined from the cosmic microwave background (CMB), although the DESI results are consistent with the acoustic angular scale $\theta_*$ that is well-measured by Planck. This tension is alleviated by dark energy with a time-evolving equation of state parametrized by $w_0$ and $w_a$, which provides a better fit to the data, with a favored solution in the quadrant with $w_0>-1$ and $w_a<0$. This solution is preferred over $\Lambda$CDM at $3.1\sigma$ for the combination of DESI BAO and CMB data. When also including SNe, the preference for a dynamical dark energy model over $\Lambda$CDM ranges from $2.8-4.2\sigma$ depending on which SNe sample is used. We present evidence from other data combinations which also favor the same behavior at high significance. From the combination of DESI and CMB we derive 95% upper limits on the sum of neutrino masses, finding $\sum m_\nu<0.064$ eV assuming $\Lambda$CDM and $\sum m_\nu<0.16$ eV in the $w_0w_a$ model. Unless there is an unknown systematic error associated with one or more datasets, it is clear that $\Lambda$CDM is being challenged by the combination of DESI BAO with other measurements and that dynamical dark energy offers a possible solution.