skip to content

Institute of Astronomy

 

Tue 15 Apr 11:00: Growing pains: the dining habits of stars, planets and black holes

IoA Institute of Astronomy Talk Lists - Mon, 14/04/2025 - 12:24
Growing pains: the dining habits of stars, planets and black holes

To make planets, stars and supermassive black holes, one must rapidly accrete material onto central objects. But the tiniest tangential motion combined with angular momentum conservation sends material into orbit, rather than accreting. Since work at the IoA in the 1970s we have understood that Nature solves the angular momentum problem by forming accretion discs, but the angular momentum transport mechanism remains unclear. The past 10 years have given us spectacular resolved observations of discs around both young and old stars, bringing fresh clues. In this talk I’ll explain how pairing 3D simulations with observations helps us solve the problem of accretion, revealing how stars and planets form, black holes grow and how accretion powers tidal disruption events.

Add to your calendar or Include in your list

Tue 15 Apr 11:00: Growing pains: the dining habits of stars, planets and black holes

Next Wednesday Seminars - Mon, 14/04/2025 - 12:24
Growing pains: the dining habits of stars, planets and black holes

To make planets, stars and supermassive black holes, one must rapidly accrete material onto central objects. But the tiniest tangential motion combined with angular momentum conservation sends material into orbit, rather than accreting. Since work at the IoA in the 1970s we have understood that Nature solves the angular momentum problem by forming accretion discs, but the angular momentum transport mechanism remains unclear. The past 10 years have given us spectacular resolved observations of discs around both young and old stars, bringing fresh clues. In this talk I’ll explain how pairing 3D simulations with observations helps us solve the problem of accretion, revealing how stars and planets form, black holes grow and how accretion powers tidal disruption events.

Add to your calendar or Include in your list

Categories: Talks

Near-field imaging of local interference in radio interferometric data: Impact on the redshifted 21 cm power spectrum

Instrumentation and Surveys - Mon, 14/04/2025 - 11:45
arXiv:2503.21728v2 Announce Type: replace Abstract: Radio-frequency interference (RFI) is a major systematic limitation in radio astronomy, particularly for science cases requiring high sensitivity, such as 21 cm cosmology. Traditionally, RFI is dealt with by identifying its signature in the dynamic spectra of visibility data and flagging strongly affected regions. However, for RFI sources that do not occupy narrow regions in the time-frequency space, such as persistent local RFI, modeling these sources could be essential to mitigating their impact. This paper introduces two methods for detecting and characterizing local RFI sources from radio interferometric visibilities: matched filtering and maximum a posteriori (MAP) imaging. These algorithms use the spherical wave equation to construct three-dimensional near-field image cubes of RFI intensity from the visibilities. The matched filter algorithm can generate normalized maps by cross-correlating the expected contributions from RFI sources with the observed visibilities, while the MAP method performs a regularized inversion of the visibility equation in the near field. We developed a full polarization simulation framework for RFI and demonstrated the methods on simulated observations of local RFI sources. The stability, speed, and errors introduced by these algorithms were investigated, and, as a demonstration, the algorithms were applied to a subset of NenuFAR observations to perform spatial, spectral, and temporal characterization of two local RFI sources. We used simulations to assess the impact of local RFI on images, the uv plane, and cylindrical power spectra, and to quantify the level of bias introduced by the algorithms in order to understand their implications for the estimated 21 cm power spectrum with radio interferometers. The near-field imaging and simulation codes are publicly available in the Python library nfis.

Near-field imaging of local interference in radio interferometric data: Impact on the redshifted 21 cm power spectrum

Recent IoA Publications - Mon, 14/04/2025 - 11:44
arXiv:2503.21728v2 Announce Type: replace Abstract: Radio-frequency interference (RFI) is a major systematic limitation in radio astronomy, particularly for science cases requiring high sensitivity, such as 21 cm cosmology. Traditionally, RFI is dealt with by identifying its signature in the dynamic spectra of visibility data and flagging strongly affected regions. However, for RFI sources that do not occupy narrow regions in the time-frequency space, such as persistent local RFI, modeling these sources could be essential to mitigating their impact. This paper introduces two methods for detecting and characterizing local RFI sources from radio interferometric visibilities: matched filtering and maximum a posteriori (MAP) imaging. These algorithms use the spherical wave equation to construct three-dimensional near-field image cubes of RFI intensity from the visibilities. The matched filter algorithm can generate normalized maps by cross-correlating the expected contributions from RFI sources with the observed visibilities, while the MAP method performs a regularized inversion of the visibility equation in the near field. We developed a full polarization simulation framework for RFI and demonstrated the methods on simulated observations of local RFI sources. The stability, speed, and errors introduced by these algorithms were investigated, and, as a demonstration, the algorithms were applied to a subset of NenuFAR observations to perform spatial, spectral, and temporal characterization of two local RFI sources. We used simulations to assess the impact of local RFI on images, the uv plane, and cylindrical power spectra, and to quantify the level of bias introduced by the algorithms in order to understand their implications for the estimated 21 cm power spectrum with radio interferometers. The near-field imaging and simulation codes are publicly available in the Python library nfis.

MISTRAL: a model for radiatively efficient AGN winds in cosmological simulations

Galaxy Evolution and AGN - Mon, 14/04/2025 - 11:31
arXiv:2504.08041v1 Announce Type: new Abstract: Feedback from active galactic nuclei (AGN) is crucial for regulating galaxy evolution. Motivated by observations of broad absorption line winds from rapidly accreting supermassive black holes (SMBHs), we introduce the Mistral AGN feedback model, implemented in the Arepo code. Mistral comes in two versions: continuous radial (Mistral-continuous) and stochastic bipolar momentum deposition (Mistral-stochastic). Using the framework of the IllustrisTNG simulations, we explore the effect of Mistral on BH and galaxy properties, through an idealized Milky Way-mass galaxy and cosmological zoom simulations run down to $z=2$. Unlike standard thermal AGN feedback prescriptions, Mistral generates galaxy-scale winds that mimic outflows driven by BH accretion. Mistral-continuous produces short-lived galactic fountains, and is inefficient at regulating the growth of massive galaxies at $z=2$. In contrast, Mistral-stochastic efficiently suppresses star formation in massive galaxies, and reproduces the empirical stellar-to-halo mass and ($z=0$) BH-stellar mass relations. By supporting large-scale ($>50\,\rm kpc$) outflows while simultaneously preventing gas inflows, Mistral-stochastic additionally regulates the cold and hot gas fractions at both galaxy and halo scales. Mistral-stochastic therefore works self-consistently across the halo mass range explored $\left(10^{12}-3\times10^{13}\,\rm M_\odot\right)$, without adopting a SMBH-mass dependent AGN feedback scheme such as the one used in IllustrisTNG. Our model is a promising tool for predicting the impact of radiatively efficient AGN winds on galaxy evolution, and interpreting the growing population of high-redshift galaxies and quasars observed by JWST. This work is part of the "Learning the Universe" collaboration, which aims to infer the physical processes governing the evolution of the Universe.

MISTRAL: a model for radiatively efficient AGN winds in cosmological simulations

Recent IoA Publications - Mon, 14/04/2025 - 11:31
arXiv:2504.08041v1 Announce Type: new Abstract: Feedback from active galactic nuclei (AGN) is crucial for regulating galaxy evolution. Motivated by observations of broad absorption line winds from rapidly accreting supermassive black holes (SMBHs), we introduce the Mistral AGN feedback model, implemented in the Arepo code. Mistral comes in two versions: continuous radial (Mistral-continuous) and stochastic bipolar momentum deposition (Mistral-stochastic). Using the framework of the IllustrisTNG simulations, we explore the effect of Mistral on BH and galaxy properties, through an idealized Milky Way-mass galaxy and cosmological zoom simulations run down to $z=2$. Unlike standard thermal AGN feedback prescriptions, Mistral generates galaxy-scale winds that mimic outflows driven by BH accretion. Mistral-continuous produces short-lived galactic fountains, and is inefficient at regulating the growth of massive galaxies at $z=2$. In contrast, Mistral-stochastic efficiently suppresses star formation in massive galaxies, and reproduces the empirical stellar-to-halo mass and ($z=0$) BH-stellar mass relations. By supporting large-scale ($>50\,\rm kpc$) outflows while simultaneously preventing gas inflows, Mistral-stochastic additionally regulates the cold and hot gas fractions at both galaxy and halo scales. Mistral-stochastic therefore works self-consistently across the halo mass range explored $\left(10^{12}-3\times10^{13}\,\rm M_\odot\right)$, without adopting a SMBH-mass dependent AGN feedback scheme such as the one used in IllustrisTNG. Our model is a promising tool for predicting the impact of radiatively efficient AGN winds on galaxy evolution, and interpreting the growing population of high-redshift galaxies and quasars observed by JWST. This work is part of the "Learning the Universe" collaboration, which aims to infer the physical processes governing the evolution of the Universe.

The Pristine survey: XXVIII. The extremely metal-poor stream C-19 stretches over more than 100 degrees

Galaxy Evolution and AGN - Mon, 14/04/2025 - 11:30
arXiv:2502.09710v2 Announce Type: replace Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $10.9^{+2.1}_{-1.5}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.

The Pristine survey: XXVIII. The extremely metal-poor stream C-19 stretches over more than 100 degrees

Recent IoA Publications - Mon, 14/04/2025 - 11:30
arXiv:2502.09710v2 Announce Type: replace Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $10.9^{+2.1}_{-1.5}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.

The Luminosity Function and Clustering of H$\alpha$ Emitting Galaxies at $z\approx4-6$ from a Complete NIRCam Grism Redshift Survey

Cosmology and Fundamental physics - Mon, 14/04/2025 - 11:28
arXiv:2504.08028v1 Announce Type: new Abstract: We study the luminosity function (LF) and clustering properties of 888 H$\alpha$ emitters (HAEs) at $3.75 < z < 6$ in the GOODS-N field. The sample, built from JWST CONGRESS and FRESCO NIRCam grism surveys using a novel redshift assignment algorithm, spans $\sim$62 arcmin$^2$ and reaches $L_{\rm H\alpha} \sim 10^{41.2} {\rm erg s^{-1}}$. We identify two prominent filamentary protoclusters at $z \approx 4.41$ and $z \approx 5.19$, hosting 98 and 144 HAEs, respectively. The observed H$\alpha$ LFs show similar shallow faint-end slopes for both protocluster and field galaxies at $z=3.75-5$, and for the protocluster at $z=5-6$ ($\alpha\approx 1.2$ to $-1.3$). In contrast, the field LF at $z=5-6$ is much steeper ($\alpha=-1.87_{-0.23}^{+0.30}$), suggesting that protocluster galaxies at $z > 5$ are more evolved, resembling those at $z=3.75-5$. The observed star formation rate density from H$\alpha$, integrated down to 0.45 ${\rm M_\odot yr^{-1}}$, is $0.050^{+0.002}_{-0.003}$ and $0.046^{+0.006}_{-0.004} M_\odot {\rm yr}^{-1} {\rm Mpc}^{-3}$ at $z=3.75-5$ and $z=5-6$, with protoclusters contributing $\sim$25% and 55%, respectively. This implies that a large fraction of star formation at $z > 4$ occurs in protoclusters. We conduct the first star-formation-rate-limited 3D clustering analysis at $z > 4$. We find the filamentary protocluster geometry flattens the power-law shape of the HAE auto-correlation functions, with slopes much shallower than typically assumed. The auto-correlation function of field HAEs have correlation lengths of $r_0 = 4.61^{+1.00}_{-0.68} h^{-1}{\rm Mpc}$ at $z \approx 4-5$ and $r_0 = 6.23^{+1.68}_{-1.13} h^{-1}{\rm Mpc}$ at $z=5-6$. Comparing the observed correlation functions with the UniverseMachine simulation, we infer the dark matter (sub-)halo masses of HAEs to be $\log (M_h/M_\odot)=11.0-11.2$ at $z\approx 4-6$, with a scatter of 0.4 dex.

The Luminosity Function and Clustering of H$\alpha$ Emitting Galaxies at $z\approx4-6$ from a Complete NIRCam Grism Redshift Survey

Recent IoA Publications - Mon, 14/04/2025 - 11:28
arXiv:2504.08028v1 Announce Type: new Abstract: We study the luminosity function (LF) and clustering properties of 888 H$\alpha$ emitters (HAEs) at $3.75 < z < 6$ in the GOODS-N field. The sample, built from JWST CONGRESS and FRESCO NIRCam grism surveys using a novel redshift assignment algorithm, spans $\sim$62 arcmin$^2$ and reaches $L_{\rm H\alpha} \sim 10^{41.2} {\rm erg s^{-1}}$. We identify two prominent filamentary protoclusters at $z \approx 4.41$ and $z \approx 5.19$, hosting 98 and 144 HAEs, respectively. The observed H$\alpha$ LFs show similar shallow faint-end slopes for both protocluster and field galaxies at $z=3.75-5$, and for the protocluster at $z=5-6$ ($\alpha\approx 1.2$ to $-1.3$). In contrast, the field LF at $z=5-6$ is much steeper ($\alpha=-1.87_{-0.23}^{+0.30}$), suggesting that protocluster galaxies at $z > 5$ are more evolved, resembling those at $z=3.75-5$. The observed star formation rate density from H$\alpha$, integrated down to 0.45 ${\rm M_\odot yr^{-1}}$, is $0.050^{+0.002}_{-0.003}$ and $0.046^{+0.006}_{-0.004} M_\odot {\rm yr}^{-1} {\rm Mpc}^{-3}$ at $z=3.75-5$ and $z=5-6$, with protoclusters contributing $\sim$25% and 55%, respectively. This implies that a large fraction of star formation at $z > 4$ occurs in protoclusters. We conduct the first star-formation-rate-limited 3D clustering analysis at $z > 4$. We find the filamentary protocluster geometry flattens the power-law shape of the HAE auto-correlation functions, with slopes much shallower than typically assumed. The auto-correlation function of field HAEs have correlation lengths of $r_0 = 4.61^{+1.00}_{-0.68} h^{-1}{\rm Mpc}$ at $z \approx 4-5$ and $r_0 = 6.23^{+1.68}_{-1.13} h^{-1}{\rm Mpc}$ at $z=5-6$. Comparing the observed correlation functions with the UniverseMachine simulation, we infer the dark matter (sub-)halo masses of HAEs to be $\log (M_h/M_\odot)=11.0-11.2$ at $z\approx 4-6$, with a scatter of 0.4 dex.

How to spot Haumea, one of the solar system's strangest objects

Astronomy News - Mon, 14/04/2025 - 11:24

Pluto isn’t the only dwarf planet in our solar system's outer reaches. Now is an ideal time to look for the egg-shaped Haumea, says Abigail Beall

Disc-planet misalignment from an unstable triple system: IRAS04125

Planetary systems - Fri, 11/04/2025 - 14:34
arXiv:2504.07182v1 Announce Type: new Abstract: The IRAS01425+2902 wide binary system was recently reported to have both a young planet and a puzzling geometric arrangement, where the planet and binary both orbit edge-on, but misaligned by 60 deg to the circumprimary disc. This is the youngest transiting planet yet to be detected but its misalignment to the disc is difficult to explain. In this paper we explore the dissolution of an unstable triple system as a potential mechanism to produce this system. We simulate the effects of an ejection interaction in models using a highly inclined, retrograde flyby centred on the primary star of IRAS01425. The escaping star of ~0.35 solar masses inclines both the disc and binary orbits such that they have a relative misalignment of greater than 60 deg, as inferred from observations. The planet orbit also becomes inclined relative to the disc, and our interpretation predicts that the binary should have a highly eccentric orbit (e > 0.5 from our simulations). We additionally demonstrate that despite the high relative misalignment of the disc it is unlikely to be vulnerable to von Zeipel-Kozai-Lidov oscillations.

Disc-planet misalignment from an unstable triple system: IRAS04125

Recent IoA Publications - Fri, 11/04/2025 - 14:34
arXiv:2504.07182v1 Announce Type: new Abstract: The IRAS01425+2902 wide binary system was recently reported to have both a young planet and a puzzling geometric arrangement, where the planet and binary both orbit edge-on, but misaligned by 60 deg to the circumprimary disc. This is the youngest transiting planet yet to be detected but its misalignment to the disc is difficult to explain. In this paper we explore the dissolution of an unstable triple system as a potential mechanism to produce this system. We simulate the effects of an ejection interaction in models using a highly inclined, retrograde flyby centred on the primary star of IRAS01425. The escaping star of ~0.35 solar masses inclines both the disc and binary orbits such that they have a relative misalignment of greater than 60 deg, as inferred from observations. The planet orbit also becomes inclined relative to the disc, and our interpretation predicts that the binary should have a highly eccentric orbit (e > 0.5 from our simulations). We additionally demonstrate that despite the high relative misalignment of the disc it is unlikely to be vulnerable to von Zeipel-Kozai-Lidov oscillations.

Hubble Captures a Star’s Swan Song

Astronomy News - Fri, 11/04/2025 - 14:26
Explore Hubble

2 min read

Hubble Captures a Star’s Swan Song This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll

The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).

Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.

This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share Details Last Updated Apr 11, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


The Death Throes of Stars

From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


Exploring the Birth of Stars

Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


Hubble’s Nebulae

Top quarks spotted at mega-detector could reveal clues to early Universe

Astronomy News - Fri, 11/04/2025 - 14:25

Nature, Published online: 10 April 2025; doi:10.1038/d41586-025-01075-2

Heaviest known elementary particles and their antimatter counterparts are detected after nuclear smash-ups at the Large Hadron Collider.

Fri 09 May 11:30: How do the most luminous black holes accrete and expel gas?

IoA Institute of Astronomy Talk Lists - Thu, 10/04/2025 - 11:40
How do the most luminous black holes accrete and expel gas?

The gravitational pull of a black hole attracts gas and forms an accretion disk where the interplay between hydromagnetic processes and the warping of space-time releases gravitational energy in the form of radiation, relativistic jets, and winds. Most gas falls into supermassive black holes when the accretion rate approaches the Eddington limit (L=Ledd), at which point radiation pressure overcomes gravity. To date, our knowledge of such `luminous’ black hole accretion disks mostly relies on semi-analytical models, supplemented by a limited set of numerical simulations. In my talk I will discuss new insights gained from state-of-the-art radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion near the Eddington limit such as the formation of a hot corona, disk truncation, and other physical processes driving the spectral evolution of luminous black holes. I will finish my talk by discussing the challenges and opportunities the next-generation of GRMHD simulations will bring in developing a comprehensive understanding of black hole accretion across the luminosity spectrum.

Add to your calendar or Include in your list

FAST Drift Scan Survey for HI Intensity Mapping. II. Stacking-based Beam Construction of the 19-feed Array at $1.4$ GHz

Recent IoA Publications - Thu, 10/04/2025 - 10:27
arXiv:2412.02582v2 Announce Type: replace Abstract: Neutral hydrogen (HI) intensity mapping (IM) presents great promise for future cosmological large-scale structure surveys. However, a major challenge for HIIM cosmological studies is to accurately subtract the foreground contamination. An accurate beam model is crucial for improving the quality of foreground subtraction. In this work, we develop a stacking-based beam reconstruction method utilizing the radio continuum point sources within the drift-scan field. Based on the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we employ two sets of drift-scan survey data and merge the measurements to construct the beam patterns of the 19 FAST L-band feeds. To model the beams, we utilize the Zernike polynomial (ZP), which effectively captures asymmetric features of the main beam and the different side lobes. Due to the symmetric location of the beams, the main features of the beams are closely related to the distance from the center of the feed array, e.g., as the distance increases, side lobes become more pronounced. This modeling pipeline leverages the stable drift-scan data to extract beam patterns while accounting for and excluding the reflector's changing effects. It provides a more accurate measurement beam and a more precise model beam for FAST HIIM cosmology surveys.

FAST drift scan survey for HI intensity mapping: simulation on hunting HI filament with pairwise stacking

Recent IoA Publications - Thu, 10/04/2025 - 10:16
arXiv:2411.03988v2 Announce Type: replace Abstract: Filaments stand as pivotal structures within the cosmic web. However, direct detection of the cold gas content of the filaments remains challenging due to its inherent low brightness temperature. With the TNG hydrodynamical simulations, we demonstrate the effectiveness of isolating faint filament HI signal from the FAST HI intensity mapping (IM) survey through pairwise stacking of galaxies, which yields an average HI filament signal amplitude of $\sim 0.29\ {\mu{\rm K}}$ at $z\simeq 0.1$. However, our simulations reveal a non-negligible contribution from HI-rich galaxies within or near the filaments. Particularly, the faint galaxies dominantly contribute to the extra filament HI signal. Our simulation also shows that the measurement uncertainty is produced by both thermal noise and background variation caused by brightness leakage from surrounding random galaxies. Given a fixed total observation time, a wide-field HI IM survey, which includes a large number of galaxy pairs, can simultaneously reduce thermal noise to below the filament signal level and minimize background variation to a negligible level. Through the end-to-end simulation, this work demonstrates the critical role of the galaxy pairwise stacking method in future filament HI detection, outlining a road map for filament HI detection in the next-generation HI IM surveys.

FAST drift scan survey for HI intensity mapping: simulation on hunting HI filament with pairwise stacking

Cosmology and Fundamental physics - Thu, 10/04/2025 - 10:16
arXiv:2411.03988v2 Announce Type: replace Abstract: Filaments stand as pivotal structures within the cosmic web. However, direct detection of the cold gas content of the filaments remains challenging due to its inherent low brightness temperature. With the TNG hydrodynamical simulations, we demonstrate the effectiveness of isolating faint filament HI signal from the FAST HI intensity mapping (IM) survey through pairwise stacking of galaxies, which yields an average HI filament signal amplitude of $\sim 0.29\ {\mu{\rm K}}$ at $z\simeq 0.1$. However, our simulations reveal a non-negligible contribution from HI-rich galaxies within or near the filaments. Particularly, the faint galaxies dominantly contribute to the extra filament HI signal. Our simulation also shows that the measurement uncertainty is produced by both thermal noise and background variation caused by brightness leakage from surrounding random galaxies. Given a fixed total observation time, a wide-field HI IM survey, which includes a large number of galaxy pairs, can simultaneously reduce thermal noise to below the filament signal level and minimize background variation to a negligible level. Through the end-to-end simulation, this work demonstrates the critical role of the galaxy pairwise stacking method in future filament HI detection, outlining a road map for filament HI detection in the next-generation HI IM surveys.