The alignment of some megalithic temples in Malta suggests they may have been used to teach sailors how to navigate by the stars
The galaxy MoM-z14 dates back to 280 million years after the big bang, and the prevalence of such early galaxies is puzzling astronomers
Baryon Acoustic Oscillations from a Different Angle
The Dark Energy Spectroscopic Instrument (DESI) has published BAO measurements from one year of data (DR1) in 2024 and 3 years of data
(DR2) in 2025. The DESI collaboration argue that their measurements suggest that dark energy is evolving and that this evidence is stronger using the DR2 data. This result would have major implications for fundamental physics if true. I will present a new way of looking at BAO data which shows that the DR2 data are more consistent with the Planck LCDM cosmology than the DR1 data. The evidence for evolving dark energy from DESI BAO has therefore weakened as the data have improved. I will also discuss the impact of systematic errors if DESI BAO data are combined with Type Ia supernovae. In summary, I find very little evidence to suggest that dark energy is evolving.
KICC Special Seminar
Add to your calendar or Include in your list
arXiv:2505.12505v1 Announce Type: new
Abstract: Recent JWST observations have revealed a growing population of galaxies at $z>4$ with elevated nitrogen-to-oxygen ratios. These "N/O-enhanced" galaxies (NOEGs) exhibit near- to super-solar N/O at sub-solar O/H, clearly deviating from the well-established scaling relation between N/O and O/H observed in local galaxies. The origin of this abundance anomaly is unclear. Interestingly, local globular clusters also exhibit anomalous light-element abundances, whose origin remains debated. In this work, we compare the chemical abundance patterns of 22 known NOEGs at $0\lesssim z\lesssim 12$ -- primarily discovered with JWST -- to those observed in local globular clusters. We find striking similarities in the abundances of C, N, O, Fe, and He between the two populations. The similar abundance patterns support the scenario in which globular cluster stars formed within proto-cluster environments -- similar to those traced by NOEGs -- that were self-enriched. Indeed, the enhancement in N/O in early galaxies appears to be only found in dense stellar environments with $\Sigma _{\star}\gtrsim 10^{2.5}~M_\odot~{\rm pc^{-2}}$, as expected for the progenitors of globular clusters in the Milky Way, and similar to those of star clusters identified in strongly lensed high-redshift galaxies. Furthermore, we find a tentative positive correlation between N/O ratios and stellar mass among NOEGs. The apparent high occurrence rate of NOEGs at high redshift is consistent with the picture of cluster-dominated star formation during the early stages of galaxy evolution. Measuring chemical abundances across diverse stellar environments in high-redshift galaxies will be crucial for elucidating the connection between NOEGs and globular clusters.
arXiv:2505.12505v1 Announce Type: new
Abstract: Recent JWST observations have revealed a growing population of galaxies at $z>4$ with elevated nitrogen-to-oxygen ratios. These "N/O-enhanced" galaxies (NOEGs) exhibit near- to super-solar N/O at sub-solar O/H, clearly deviating from the well-established scaling relation between N/O and O/H observed in local galaxies. The origin of this abundance anomaly is unclear. Interestingly, local globular clusters also exhibit anomalous light-element abundances, whose origin remains debated. In this work, we compare the chemical abundance patterns of 22 known NOEGs at $0\lesssim z\lesssim 12$ -- primarily discovered with JWST -- to those observed in local globular clusters. We find striking similarities in the abundances of C, N, O, Fe, and He between the two populations. The similar abundance patterns support the scenario in which globular cluster stars formed within proto-cluster environments -- similar to those traced by NOEGs -- that were self-enriched. Indeed, the enhancement in N/O in early galaxies appears to be only found in dense stellar environments with $\Sigma _{\star}\gtrsim 10^{2.5}~M_\odot~{\rm pc^{-2}}$, as expected for the progenitors of globular clusters in the Milky Way, and similar to those of star clusters identified in strongly lensed high-redshift galaxies. Furthermore, we find a tentative positive correlation between N/O ratios and stellar mass among NOEGs. The apparent high occurrence rate of NOEGs at high redshift is consistent with the picture of cluster-dominated star formation during the early stages of galaxy evolution. Measuring chemical abundances across diverse stellar environments in high-redshift galaxies will be crucial for elucidating the connection between NOEGs and globular clusters.
arXiv:2504.20327v2 Announce Type: replace
Abstract: We report five nearby ($d_{\mathrm{helio}} < 5$ kpc) stellar substructures in the Galactic halo from a subset of 138,661 stars in the Dark Energy Spectroscopic Instrument (DESI) Milky Way Survey Year 1 Data Release. With an unsupervised clustering algorithm, HDBSCAN*, these substructures are independently identified in Integrals of Motion ($E_{\mathrm{tot}}$, $L_{\mathrm z}$, $\log{J_r}$, $\log{J_z}$) space and Galactocentric cylindrical velocity space ($V_{R}$, $V_{\phi}$, $V_{z}$). We associate all identified clusters with known nearby substructures (Helmi streams, M18-Cand10/MMH-1, Sequoia, Antaeus, and ED-2) previously reported in various studies. With metallicities precisely measured by DESI, we confirm that the Helmi streams, M18-Cand10, and ED-2 are chemically distinct from local halo stars. We have characterised the chemodynamic properties of each dynamic group, including their metallicity dispersions, to associate them with their progenitor types (globular cluster or dwarf galaxy). Our approach for searching substructures with HDBSCAN* reliably detects real substructures in the Galactic halo, suggesting that applying the same method can lead to the discovery of new substructures in future DESI data. With more stars from future DESI data releases and improved astrometry from the upcoming Gaia Data Release 4, we will have a more detailed blueprint of the Galactic halo, offering a significant improvement in our understanding of the formation and evolutionary history of the Milky Way Galaxy.
arXiv:2504.20327v2 Announce Type: replace
Abstract: We report five nearby ($d_{\mathrm{helio}} < 5$ kpc) stellar substructures in the Galactic halo from a subset of 138,661 stars in the Dark Energy Spectroscopic Instrument (DESI) Milky Way Survey Year 1 Data Release. With an unsupervised clustering algorithm, HDBSCAN*, these substructures are independently identified in Integrals of Motion ($E_{\mathrm{tot}}$, $L_{\mathrm z}$, $\log{J_r}$, $\log{J_z}$) space and Galactocentric cylindrical velocity space ($V_{R}$, $V_{\phi}$, $V_{z}$). We associate all identified clusters with known nearby substructures (Helmi streams, M18-Cand10/MMH-1, Sequoia, Antaeus, and ED-2) previously reported in various studies. With metallicities precisely measured by DESI, we confirm that the Helmi streams, M18-Cand10, and ED-2 are chemically distinct from local halo stars. We have characterised the chemodynamic properties of each dynamic group, including their metallicity dispersions, to associate them with their progenitor types (globular cluster or dwarf galaxy). Our approach for searching substructures with HDBSCAN* reliably detects real substructures in the Galactic halo, suggesting that applying the same method can lead to the discovery of new substructures in future DESI data. With more stars from future DESI data releases and improved astrometry from the upcoming Gaia Data Release 4, we will have a more detailed blueprint of the Galactic halo, offering a significant improvement in our understanding of the formation and evolutionary history of the Milky Way Galaxy.
arXiv:2504.20327v2 Announce Type: replace
Abstract: We report five nearby ($d_{\mathrm{helio}} < 5$ kpc) stellar substructures in the Galactic halo from a subset of 138,661 stars in the Dark Energy Spectroscopic Instrument (DESI) Milky Way Survey Year 1 Data Release. With an unsupervised clustering algorithm, HDBSCAN*, these substructures are independently identified in Integrals of Motion ($E_{\mathrm{tot}}$, $L_{\mathrm z}$, $\log{J_r}$, $\log{J_z}$) space and Galactocentric cylindrical velocity space ($V_{R}$, $V_{\phi}$, $V_{z}$). We associate all identified clusters with known nearby substructures (Helmi streams, M18-Cand10/MMH-1, Sequoia, Antaeus, and ED-2) previously reported in various studies. With metallicities precisely measured by DESI, we confirm that the Helmi streams, M18-Cand10, and ED-2 are chemically distinct from local halo stars. We have characterised the chemodynamic properties of each dynamic group, including their metallicity dispersions, to associate them with their progenitor types (globular cluster or dwarf galaxy). Our approach for searching substructures with HDBSCAN* reliably detects real substructures in the Galactic halo, suggesting that applying the same method can lead to the discovery of new substructures in future DESI data. With more stars from future DESI data releases and improved astrometry from the upcoming Gaia Data Release 4, we will have a more detailed blueprint of the Galactic halo, offering a significant improvement in our understanding of the formation and evolutionary history of the Milky Way Galaxy.
NASA
Dr. Nancy Grace Roman, NASA’s first Chief of Astronomy and namesake of the Nancy Grace Roman Telescope, briefs astronaut Edwin “Buzz” Aldrin on celestial objects in 1965 in Washington, D.C. Nancy Grace Roman passed away on December 25, 2018, in Germantown, Maryland at the age of 93. May 16, 2025, would have been her 100th birthday.
Prior to joining NASA in 1959, Dr. Roman was a well-respected and influential astronomer, publishing some of the most cited papers in the mid-20th century, one included in a list of 100 most influential papers in 100 years. At the agency, Roman worked to gain science support for space-based observatories. She established NASA’s scientific ballooning and airborne science, oversaw the start of the Great Observatory program with the first decade of Hubble Space Telescope development, and invested early in charge-coupled devices technology development used on Hubble – and now in digital cameras everywhere.
She was also key to the decision to link the development of the Large Space Telescope (that became Hubble) and the Space Transportation System – more commonly known as the Space Shuttle. Finally, after retiring from NASA, Dr. Roman often worked with young students in underserved communities, hoping her story and mentoring could inspire them to join humanity’s quest for knowledge in a STEM field.
Learn more about Dr. Roman.
Text credit: NASA/Jackie Townsend
Image credit: NASA
NASA, ESA, CSA, Ralf Crawford (STScI)
This artist’s concept illustration, released on May 14, 2025, shows a Sun-like star encircled by a disk of dusty debris containing crystalline water ice. Astronomers long expected that frozen water was scattered in systems around stars. By using detailed data known as spectra from NASA’s James Webb Space Telescope, researchers confirmed the presence of crystalline water ice — definitive evidence of what astronomers expected. Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets.
Read more about what this discovery means.
Image credit: NASA, ESA, CSA, Ralf Crawford (STScI)
First Moon samples collected in nearly 50 years and loaned by China for the first time are now in the UK.
Understanding the initial stages of planet-driven gap formation
Gaps and rings are ubiquitous in observations of protoplanetary discs, and their existence may be attributed to (proto-)planets interacting with their natal environments. However, constraining protoplanet masses or ages – or even just confirming that protoplanets are the cause of these substructures – in any given observation requires a clear theoretical understanding of large numbers of different gap processes.
While theoretical and semi-analytical works exist for the viscously dominated end stages of gap evolution, due to the near inviscid nature of protoplanetary discs, time-dependent theories that can account for the nature of the mutual evolution between planet and disc are required to correctly interpret observations.
I will first present on how planets form gaps in the simplest possible case: that of a low mass planet in an two-dimensional inviscid isothermal disc and show new analytical theory that is able to predict the initial stages of gap evolution in this case.
Using both Athena++ numerical simulations and analytical arguments, I will then discuss how this picture is modified in the cases of viscous, thermodynamically active, or three-dimensional discs. I will show that the treatment of disc thermodynamics has significant effects on the planet disc interaction whereas viscosity – at the levels expected in protoplanetary discs – does not have a significant impact at the early stages of gap formation.
Add to your calendar or Include in your list
Exploring the Vertical Shear Instability in starlight-heated protoplanetary disks
In weakly ionized regions of protoplanetary disks, hydrodynamic instabilities likely play a key role in the development of turbulence, the formation of structures, and the transport of angular momentum. Among these, the vertical shear instability (VSI) stands out as a robust mechanism, requiring only baroclinic stratification and short thermal relaxation timescales to operate. In this talk, I will present results from axisymmetric radiation-hydrodynamical simulations of the VSI in passive, irradiated T Tauri disks, focusing on angular momentum redistribution, the emergence of secondary instabilities, and their role in VSI saturation. I will also discuss how dust and molecular cooling shape the regions where the VSI can operate, and compare these results with current observations of protoplanetary disks.
Add to your calendar or Include in your list
Impact of XRB Stochasticity on 21-cm Observables from CD-EoR
Abstract: High Mass X-ray Binaries (HMXBs) are thought to be one of the key contributors to the X-ray background during the Cosmic Dawn (CD) and Epoch of Reionization (EoR). However, in traditional semi-numerical simulations of the CD-EoR, the LX-SFR relation is assumed to be fixed across cosmic time, which may not be accurate, especially for low star-forming regions. To mitigate this problem, we model the total luminosity in a stochastic manner and implement it in our 21-cm simulation from the CD-EoR to see its imprints on the 21-cm signal statistics like the Power Spectrum and 21-cm brightness temperature maps. We find the effects of XRB stochasticity in the small-scale PS (k > 0.9) and in the 21-cm maps that may have the potential for detection via the lunar based observations.
Add to your calendar or Include in your list
Impact of XRB Stochasticity on 21-cm Observables from CD-EoR
Abstract: High Mass X-ray Binaries (HMXBs) are thought to be one of the key contributors to the X-ray background during the Cosmic Dawn (CD) and Epoch of Reionization (EoR). However, in traditional semi-numerical simulations of the CD-EoR, the LX-SFR relation is assumed to be fixed across cosmic time, which may not be accurate, especially for low star-forming regions. To mitigate this problem, we model the total luminosity in a stochastic manner and implement it in our 21-cm simulation from the CD-EoR to see its imprints on the 21-cm signal statistics like the Power Spectrum and 21-cm brightness temperature maps. We find the effects of XRB stochasticity in the small-scale PS (k > 0.9) and in the 21-cm maps that may have the potential for detection via the lunar based observations.
Add to your calendar or Include in your list
arXiv:2505.11263v1 Announce Type: new
Abstract: JWST has revealed a stunning population of bright galaxies at surprisingly early epochs, $z>10$, where few such sources were expected. Here we present the most distant example of this class yet -- MoM-z14, a luminous ($M_{\rm{UV}}=-20.2$) source in the COSMOS legacy field at $z_{\rm{spec}}=14.44^{+0.02}_{-0.02}$ that expands the observational frontier to a mere 280 million years after the Big Bang. The redshift is confirmed with NIRSpec/prism spectroscopy through a sharp Lyman-$\alpha$ break and $\approx3\sigma$ detections of five rest-UV emission lines. The number density of bright $z_{\rm{spec}}\approx14-15$ sources implied by our "Mirage or Miracle" survey spanning $\approx350$ arcmin$^{2}$ is $>100\times$ larger ($182^{+329}_{-105}\times$) than pre-JWST consensus models. The high EWs of UV lines (${\approx}15{-}35$ \AA) signal a rising star-formation history, with a ${\approx}10\times$ increase in the last 5 Myr ($\rm{SFR_{\rm{5Myr}}}/\rm{SFR_{\rm{50Myr}}}=9.9^{+3.0}_{-5.8}$). The source is extremely compact (circularized $r_{\rm{e}} = 74^{+15}_{-12}$ pc), and yet resolved, suggesting an AGN is not the dominant source of light. The steep UV slope ($\beta=-2.5^{+0.2}_{-0.2}$) implies negligible dust attenuation and a young stellar population. The absence of a strong damping wing may indicate that the immediate surroundings of MoM-z14 are partially ionized at a redshift where virtually every reionization model predicts a $\approx100\%$ neutral fraction. The nitrogen emission and highly super-solar [N/C]$>1$ hint at an abundance pattern similar to local globular clusters that may have once hosted luminous supermassive stars. Since this abundance pattern is also common among the most ancient stars born in the Milky Way, we may be directly witnessing the formation of such stars in dense clusters, connecting galaxy evolution across the entire sweep of cosmic time.
arXiv:2505.11263v1 Announce Type: new
Abstract: JWST has revealed a stunning population of bright galaxies at surprisingly early epochs, $z>10$, where few such sources were expected. Here we present the most distant example of this class yet -- MoM-z14, a luminous ($M_{\rm{UV}}=-20.2$) source in the COSMOS legacy field at $z_{\rm{spec}}=14.44^{+0.02}_{-0.02}$ that expands the observational frontier to a mere 280 million years after the Big Bang. The redshift is confirmed with NIRSpec/prism spectroscopy through a sharp Lyman-$\alpha$ break and $\approx3\sigma$ detections of five rest-UV emission lines. The number density of bright $z_{\rm{spec}}\approx14-15$ sources implied by our "Mirage or Miracle" survey spanning $\approx350$ arcmin$^{2}$ is $>100\times$ larger ($182^{+329}_{-105}\times$) than pre-JWST consensus models. The high EWs of UV lines (${\approx}15{-}35$ \AA) signal a rising star-formation history, with a ${\approx}10\times$ increase in the last 5 Myr ($\rm{SFR_{\rm{5Myr}}}/\rm{SFR_{\rm{50Myr}}}=9.9^{+3.0}_{-5.8}$). The source is extremely compact (circularized $r_{\rm{e}} = 74^{+15}_{-12}$ pc), and yet resolved, suggesting an AGN is not the dominant source of light. The steep UV slope ($\beta=-2.5^{+0.2}_{-0.2}$) implies negligible dust attenuation and a young stellar population. The absence of a strong damping wing may indicate that the immediate surroundings of MoM-z14 are partially ionized at a redshift where virtually every reionization model predicts a $\approx100\%$ neutral fraction. The nitrogen emission and highly super-solar [N/C]$>1$ hint at an abundance pattern similar to local globular clusters that may have once hosted luminous supermassive stars. Since this abundance pattern is also common among the most ancient stars born in the Milky Way, we may be directly witnessing the formation of such stars in dense clusters, connecting galaxy evolution across the entire sweep of cosmic time.
arXiv:2505.11224v1 Announce Type: new
Abstract: The discovery of hot Jupiters that orbit very close to their host stars has long challenged traditional models of planetary formation and migration. Characterising their atmospheric composition - mainly in the form of the carbon-to-oxygen (C/O) ratio and metallicity - can provide insights into their formation locations and evolution pathways. With JWST we can characterise the atmospheres of these types of planets more precisely than previously possible, primarily because it allows us to determine both their atmospheric oxygen and carbon composition. Here, we present a JWST NIRSpec/G395H transmission spectrum from 2.8-5.1$\mu m$ of WASP-94Ab, an inflated hot Jupiter with a retrograde misaligned orbit around its F-type host star. We find a relatively cloud-free atmosphere, with absorption features of H$_2$O and CO$_2$ at detection significances of $\sim 4\sigma$ and $\sim 11\sigma$, respectively. In addition, we detect tentative evidence of CO absorption at $\sim3\sigma$, as well as hints of sulphur with the detection of H$_2$S at a $\sim 2.5\sigma$ confidence level. Our favoured equilibrium chemistry model determines a C/O ratio of $0.49^{+0.08}_{-0.13}$ for WASP-94Ab's atmosphere, which is substellar compared to the star's C/O ratio of $0.68 \pm 0.10$. The retrieved atmospheric metallicity is similar to the star's metallicity as both are $\sim 2\times$ solar. We find that this sub-stellar C/O ratio and stellar metallicity can be best explained by pebble accretion or planetesimal accretion in combination with large-distance migration of the planet.
arXiv:2505.11224v1 Announce Type: new
Abstract: The discovery of hot Jupiters that orbit very close to their host stars has long challenged traditional models of planetary formation and migration. Characterising their atmospheric composition - mainly in the form of the carbon-to-oxygen (C/O) ratio and metallicity - can provide insights into their formation locations and evolution pathways. With JWST we can characterise the atmospheres of these types of planets more precisely than previously possible, primarily because it allows us to determine both their atmospheric oxygen and carbon composition. Here, we present a JWST NIRSpec/G395H transmission spectrum from 2.8-5.1$\mu m$ of WASP-94Ab, an inflated hot Jupiter with a retrograde misaligned orbit around its F-type host star. We find a relatively cloud-free atmosphere, with absorption features of H$_2$O and CO$_2$ at detection significances of $\sim 4\sigma$ and $\sim 11\sigma$, respectively. In addition, we detect tentative evidence of CO absorption at $\sim3\sigma$, as well as hints of sulphur with the detection of H$_2$S at a $\sim 2.5\sigma$ confidence level. Our favoured equilibrium chemistry model determines a C/O ratio of $0.49^{+0.08}_{-0.13}$ for WASP-94Ab's atmosphere, which is substellar compared to the star's C/O ratio of $0.68 \pm 0.10$. The retrieved atmospheric metallicity is similar to the star's metallicity as both are $\sim 2\times$ solar. We find that this sub-stellar C/O ratio and stellar metallicity can be best explained by pebble accretion or planetesimal accretion in combination with large-distance migration of the planet.
Classical and Quantum Density Functional Theory for Materials Science
This presentation reports on the work carried out during a six-month PhD placement at SECQAI , which focused on the application of both classical and quantum density functional theory (DFT) methods to problems in materials science. Two main research directions were pursued.
The first project aimed to identify desirable material properties for single-photon avalanche diodes (SPADs), devices that are widely used in quantum optics and quantum communication. The approach was to relate key performance metrics such as photon detection efficiency, timing jitter, and dark count rate to underlying material parameters. These dependencies were derived using analytical models and linked to quantities accessible via first-principles calculations. This work forms the basis for the development of high-throughput computational workflows for automated materials screening in SPAD applications.
The second project explored the implementation of plane-wave DFT calculations on quantum hardware using the variational quantum eigensolver (VQE) algorithm. An analysis of the numerical complexity of classical DFT was carried out, and a prototype VQE implementation was developed within the ABINIT simulation package. The project identified the main computational challenges involved and outlined the necessary steps for realizing a quantum advantage in this context.
The presentation will provide an overview of both projects, including theoretical background, methods, and results
Add to your calendar or Include in your list