skip to content

Institute of Astronomy

 

Euclid Quick Data Release (Q1) The Strong Lensing Discovery Engine B -- Early strong lens candidates from visual inspection of high velocity dispersion galaxies

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:05
arXiv:2503.15325v1 Announce Type: new Abstract: We present a search for strong gravitational lenses in Euclid imaging with high stellar velocity dispersion ($\sigma_\nu > 180$ km/s) reported by SDSS and DESI. We performed expert visual inspection and classification of $11\,660$ \Euclid images. We discovered 38 grade A and 40 grade B candidate lenses, consistent with an expected sample of $\sim$32. Palomar spectroscopy confirmed 5 lens systems, while DESI spectra confirmed one, provided ambiguous results for another, and help to discard one. The \Euclid automated lens modeler modelled 53 candidates, confirming 38 as lenses, failing to model 9, and ruling out 6 grade B candidates. For the remaining 25 candidates we could not gather additional information. More importantly, our expert-classified non-lenses provide an excellent training set for machine learning lens classifiers. We create high-fidelity simulations of \Euclid lenses by painting realistic lensed sources behind the expert tagged (non-lens) luminous red galaxies. This training set is the foundation stone for the \Euclid galaxy-galaxy strong lensing discovery engine.

Euclid Quick Data Release (Q1) The Strong Lensing Discovery Engine B -- Early strong lens candidates from visual inspection of high velocity dispersion galaxies

Recent IoA Publications - Thu, 20/03/2025 - 10:05
arXiv:2503.15325v1 Announce Type: new Abstract: We present a search for strong gravitational lenses in Euclid imaging with high stellar velocity dispersion ($\sigma_\nu > 180$ km/s) reported by SDSS and DESI. We performed expert visual inspection and classification of $11\,660$ \Euclid images. We discovered 38 grade A and 40 grade B candidate lenses, consistent with an expected sample of $\sim$32. Palomar spectroscopy confirmed 5 lens systems, while DESI spectra confirmed one, provided ambiguous results for another, and help to discard one. The \Euclid automated lens modeler modelled 53 candidates, confirming 38 as lenses, failing to model 9, and ruling out 6 grade B candidates. For the remaining 25 candidates we could not gather additional information. More importantly, our expert-classified non-lenses provide an excellent training set for machine learning lens classifiers. We create high-fidelity simulations of \Euclid lenses by painting realistic lensed sources behind the expert tagged (non-lens) luminous red galaxies. This training set is the foundation stone for the \Euclid galaxy-galaxy strong lensing discovery engine.

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:04
arXiv:2503.15321v1 Announce Type: new Abstract: Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Recent IoA Publications - Thu, 20/03/2025 - 10:04
arXiv:2503.15321v1 Announce Type: new Abstract: Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]

Combined Euclid and Spitzer galaxy density catalogues at $z$>1.3 and detection of significant Euclid passive galaxy overdensities in Spitzer overdense regions

Cosmology and Fundamental physics - Thu, 20/03/2025 - 10:00
arXiv:2503.15331v1 Announce Type: new Abstract: Euclid will detect tens of thousands of clusters and protoclusters at z>1.3. With a total coverage of 63.1deg^2, the Euclid Quick Data Release 1 (Q1) is large enough to detect tens of clusters and hundreds of protoclusters at these early epochs. The Q1 photometric redshift catalogue enables us to detect clusters out to z < 1.5; however, infrared imaging from Spitzer extends this limit to higher redshifts by using high local projected densities of Spitzer-selected galaxies as signposts for cluster and protocluster candidates. We use Spitzer imaging of the Euclid Deep Fields (EDFs) to derive densities for a sample of Spitzer-selected galaxies at redshifts z > 1.3, building Spitzer IRAC1 and IRAC2 photometric catalogues that are 95% complete at a magnitude limit of IRAC2=22.2, 22.6, and 22.8 for the EDF-S, EDF-F, and EDF-N, respectively. We apply two complementary methods to calculate galaxy densities: (1) aperture and surface density; and (2) the Nth-nearest-neighbour method. When considering a sample selected at a magnitude limit of IRAC2 < 22.2, at which all three EDFs are 95% complete, our surface density distributions are consistent among the three EDFs and with the SpUDS blank field survey. We also considered a deeper sample (IRAC2 < 22.8), finding that 2% and 3% of the surface densities in the North and Fornax fields are 3 sigma higher than the average field distribution and similar to densities found in the CARLA cluster survey. Our surface densities are also consistent with predictions from the GAEA semi-analytical model. Using combined Euclid and ground-based i-band photometry we show that our highest Spitzer-selected galaxy overdence regions, found at z~1.5, also host high densities of passive galaxies. This means that we measure densities consistent with those found in clusters and protoclusters at z>1.3.

Combined Euclid and Spitzer galaxy density catalogues at $z$>1.3 and detection of significant Euclid passive galaxy overdensities in Spitzer overdense regions

Recent IoA Publications - Thu, 20/03/2025 - 10:00
arXiv:2503.15331v1 Announce Type: new Abstract: Euclid will detect tens of thousands of clusters and protoclusters at z>1.3. With a total coverage of 63.1deg^2, the Euclid Quick Data Release 1 (Q1) is large enough to detect tens of clusters and hundreds of protoclusters at these early epochs. The Q1 photometric redshift catalogue enables us to detect clusters out to z < 1.5; however, infrared imaging from Spitzer extends this limit to higher redshifts by using high local projected densities of Spitzer-selected galaxies as signposts for cluster and protocluster candidates. We use Spitzer imaging of the Euclid Deep Fields (EDFs) to derive densities for a sample of Spitzer-selected galaxies at redshifts z > 1.3, building Spitzer IRAC1 and IRAC2 photometric catalogues that are 95% complete at a magnitude limit of IRAC2=22.2, 22.6, and 22.8 for the EDF-S, EDF-F, and EDF-N, respectively. We apply two complementary methods to calculate galaxy densities: (1) aperture and surface density; and (2) the Nth-nearest-neighbour method. When considering a sample selected at a magnitude limit of IRAC2 < 22.2, at which all three EDFs are 95% complete, our surface density distributions are consistent among the three EDFs and with the SpUDS blank field survey. We also considered a deeper sample (IRAC2 < 22.8), finding that 2% and 3% of the surface densities in the North and Fornax fields are 3 sigma higher than the average field distribution and similar to densities found in the CARLA cluster survey. Our surface densities are also consistent with predictions from the GAEA semi-analytical model. Using combined Euclid and ground-based i-band photometry we show that our highest Spitzer-selected galaxy overdence regions, found at z~1.5, also host high densities of passive galaxies. This means that we measure densities consistent with those found in clusters and protoclusters at z>1.3.

Euclid Quick Data Release (Q1). Extending the quest for little red dots to z<4

Galaxy Evolution and AGN - Thu, 20/03/2025 - 10:00
arXiv:2503.15323v1 Announce Type: new Abstract: Recent James Webb Space Telescope (JWST) observations have revealed a population of sources with a compact morphology and a `v-shaped' continuum, namely blue at rest-frame $\lambda<4000$A and red at longer wavelengths. The nature of these sources, called `little red dots' (LRDs), is still debated, since it is unclear if they host active galactic nuclei (AGN) and their number seems to drastically drop at z<4. We utilise the 63 $deg^2$ covered by the quick Euclid Quick Data Release (Q1) to extend the search for LRDs to brighter magnitudes and to lower z than what has been possible with JWST to have a broader view of the evolution of this peculiar galaxy population. The selection is done by fitting the available photometric data (Euclid, Spitzer/IRAC, and ground-based griz data) with two power laws, to retrieve the rest-frame optical and UV slopes consistently over a large redshift range (i.e, z<7.6). We exclude extended objects and possible line emitters, and perform a visual inspection to remove imaging artefacts. The final selection includes 3341 LRD candidates from z=0.33 to z=3.6, with 29 detected in IRAC. Their rest-frame UV luminosity function, in contrast with previous JWST studies, shows that the number density of LRD candidates increases from high-z down to z=1.5-2.5 and decreases at even lower z. Less evolution is apparent focusing on the subsample of more robust LRD candidates having IRAC detections, which is affected by low statistics and limited by the IRAC resolution. The comparison with previous quasar UV luminosity functions shows that LRDs are not the dominant AGN population at z<4. Follow-up studies of these LRD candidates are key to confirm their nature, probe their physical properties and check for their compatibility with JWST sources, since the different spatial resolution and wavelength coverage of Euclid and JWST could select different samples of compact sources.

Euclid Quick Data Release (Q1). Extending the quest for little red dots to z<4

Instrumentation and Surveys - Thu, 20/03/2025 - 10:00
arXiv:2503.15323v1 Announce Type: new Abstract: Recent James Webb Space Telescope (JWST) observations have revealed a population of sources with a compact morphology and a `v-shaped' continuum, namely blue at rest-frame $\lambda<4000$A and red at longer wavelengths. The nature of these sources, called `little red dots' (LRDs), is still debated, since it is unclear if they host active galactic nuclei (AGN) and their number seems to drastically drop at z<4. We utilise the 63 $deg^2$ covered by the quick Euclid Quick Data Release (Q1) to extend the search for LRDs to brighter magnitudes and to lower z than what has been possible with JWST to have a broader view of the evolution of this peculiar galaxy population. The selection is done by fitting the available photometric data (Euclid, Spitzer/IRAC, and ground-based griz data) with two power laws, to retrieve the rest-frame optical and UV slopes consistently over a large redshift range (i.e, z<7.6). We exclude extended objects and possible line emitters, and perform a visual inspection to remove imaging artefacts. The final selection includes 3341 LRD candidates from z=0.33 to z=3.6, with 29 detected in IRAC. Their rest-frame UV luminosity function, in contrast with previous JWST studies, shows that the number density of LRD candidates increases from high-z down to z=1.5-2.5 and decreases at even lower z. Less evolution is apparent focusing on the subsample of more robust LRD candidates having IRAC detections, which is affected by low statistics and limited by the IRAC resolution. The comparison with previous quasar UV luminosity functions shows that LRDs are not the dominant AGN population at z<4. Follow-up studies of these LRD candidates are key to confirm their nature, probe their physical properties and check for their compatibility with JWST sources, since the different spatial resolution and wavelength coverage of Euclid and JWST could select different samples of compact sources.

Euclid Quick Data Release (Q1). Extending the quest for little red dots to z<4

Recent IoA Publications - Thu, 20/03/2025 - 10:00
arXiv:2503.15323v1 Announce Type: new Abstract: Recent James Webb Space Telescope (JWST) observations have revealed a population of sources with a compact morphology and a `v-shaped' continuum, namely blue at rest-frame $\lambda<4000$A and red at longer wavelengths. The nature of these sources, called `little red dots' (LRDs), is still debated, since it is unclear if they host active galactic nuclei (AGN) and their number seems to drastically drop at z<4. We utilise the 63 $deg^2$ covered by the quick Euclid Quick Data Release (Q1) to extend the search for LRDs to brighter magnitudes and to lower z than what has been possible with JWST to have a broader view of the evolution of this peculiar galaxy population. The selection is done by fitting the available photometric data (Euclid, Spitzer/IRAC, and ground-based griz data) with two power laws, to retrieve the rest-frame optical and UV slopes consistently over a large redshift range (i.e, z<7.6). We exclude extended objects and possible line emitters, and perform a visual inspection to remove imaging artefacts. The final selection includes 3341 LRD candidates from z=0.33 to z=3.6, with 29 detected in IRAC. Their rest-frame UV luminosity function, in contrast with previous JWST studies, shows that the number density of LRD candidates increases from high-z down to z=1.5-2.5 and decreases at even lower z. Less evolution is apparent focusing on the subsample of more robust LRD candidates having IRAC detections, which is affected by low statistics and limited by the IRAC resolution. The comparison with previous quasar UV luminosity functions shows that LRDs are not the dominant AGN population at z<4. Follow-up studies of these LRD candidates are key to confirm their nature, probe their physical properties and check for their compatibility with JWST sources, since the different spatial resolution and wavelength coverage of Euclid and JWST could select different samples of compact sources.

Euclid Quick Data Release (Q1) First study of red quasars selection

Galaxy Evolution and AGN - Thu, 20/03/2025 - 09:57
arXiv:2503.15319v1 Announce Type: new Abstract: Red quasars constitute an important but elusive phase in the evolution of supermassive black holes, where dust obscuration can significantly alter their observed properties. They have broad emission lines, like other quasars, but their optical continuum emission is significantly reddened, which is why they were traditionally identified based on near- and mid-infrared selection criteria. This work showcases the capability of the \Euclid space telescope to find a large sample of red quasars, using \Euclid near infrared (NIR) photometry. We first conduct a forecast analysis, comparing a synthetic catalogue of red QSOs with COSMOS2020. Using template fitting, we reconstruct \Euclid-like photometry for the COSMOS sources and identify a sample of candidates in a multidimensional colour-colour space achieving $98\%$ completeness for mock red QSOs with $30\%$ contaminants. To refine our selection function, we implement a probabilistic Random Forest classifier, and use UMAP visualisation to disentangle non-linear features in colour-space, reaching $98\%$ completeness and $88\%$ purity. A preliminary analysis of the candidates in the \Euclid Deep Field Fornax (EDF-F) shows that, compared to VISTA+DECAm-based colour selection criteria, \Euclid's superior depth, resolution and optical-to-NIR coverage improves the identification of the reddest, most obscured sources. Notably, the \Euclid exquisite resolution in the $I_E$ filter unveils the presence of a candidate dual quasar system, highlighting the potential for this mission to contribute to future studies on the population of dual AGN. The resulting catalogue of candidates, including more the 150 000 sources, provides a first census of red quasars in \Euclid Q1 and sets the groundwork for future studies in the Euclid Wide Survey (EWS), including spectral follow-up analyses and host morphology characterisation.

Euclid Quick Data Release (Q1) First study of red quasars selection

Recent IoA Publications - Thu, 20/03/2025 - 09:57
arXiv:2503.15319v1 Announce Type: new Abstract: Red quasars constitute an important but elusive phase in the evolution of supermassive black holes, where dust obscuration can significantly alter their observed properties. They have broad emission lines, like other quasars, but their optical continuum emission is significantly reddened, which is why they were traditionally identified based on near- and mid-infrared selection criteria. This work showcases the capability of the \Euclid space telescope to find a large sample of red quasars, using \Euclid near infrared (NIR) photometry. We first conduct a forecast analysis, comparing a synthetic catalogue of red QSOs with COSMOS2020. Using template fitting, we reconstruct \Euclid-like photometry for the COSMOS sources and identify a sample of candidates in a multidimensional colour-colour space achieving $98\%$ completeness for mock red QSOs with $30\%$ contaminants. To refine our selection function, we implement a probabilistic Random Forest classifier, and use UMAP visualisation to disentangle non-linear features in colour-space, reaching $98\%$ completeness and $88\%$ purity. A preliminary analysis of the candidates in the \Euclid Deep Field Fornax (EDF-F) shows that, compared to VISTA+DECAm-based colour selection criteria, \Euclid's superior depth, resolution and optical-to-NIR coverage improves the identification of the reddest, most obscured sources. Notably, the \Euclid exquisite resolution in the $I_E$ filter unveils the presence of a candidate dual quasar system, highlighting the potential for this mission to contribute to future studies on the population of dual AGN. The resulting catalogue of candidates, including more the 150 000 sources, provides a first census of red quasars in \Euclid Q1 and sets the groundwork for future studies in the Euclid Wide Survey (EWS), including spectral follow-up analyses and host morphology characterisation.

Euclid: Quick Data Release (Q1) -- A census of dwarf galaxies across a range of distances and environments

Galaxy Evolution and AGN - Thu, 20/03/2025 - 09:55
arXiv:2503.15335v1 Announce Type: new Abstract: The Euclid Q1 fields were selected for calibration purposes in cosmology and are therefore relatively devoid of nearby galaxies. However, this is precisely what makes them interesting fields in which to search for dwarf galaxies in local density environments. We take advantage of the unprecedented depth, spatial resolution, and field of view of the Euclid Quick Release (Q1) to build a census of dwarf galaxies in these regions. We have identified dwarfs in a representative sample of 25 contiguous tiles in the Euclid Deep Field North (EDF-N), covering an area of 14.25 sq. deg. The dwarf candidates were identified using a semi-automatic detection method, based on properties measured by the Euclid pipeline and listed in the MER catalogue. A selection cut in surface brightness and magnitude was used to produce an initial dwarf candidate catalogue, followed by a cut in morphology and colour. This catalogue was visually classified to produce a final sample of dwarf candidates, including their morphology, number of nuclei, globular cluster (GC) richness, and presence of a blue compact centre. We identified 2674 dwarf candidates, corresponding to 188 dwarfs per sq. deg. The visual classification of the dwarfs reveals a slightly uneven morphological mix of 58% ellipticals and 42% irregulars, with very few potentially GC-rich (1.0%) and nucleated (4.0%) candidates but a noticeable fraction (6.9%) of dwarfs with blue compact centres. The distance distribution of 388 (15%) of the dwarfs with spectroscopic redshifts peaks at about 400 Mpc. Their stellar mass distribution confirms that our selection effectively identifies dwarfs while minimising contamination. The most prominent dwarf overdensities are dominated by dEs, while dIs are more evenly distributed. This work highlights Euclid's remarkable ability to detect and characterise dwarf galaxies across diverse masses, distances, and environments.

Euclid: Quick Data Release (Q1) -- A census of dwarf galaxies across a range of distances and environments

Recent IoA Publications - Thu, 20/03/2025 - 09:55
arXiv:2503.15335v1 Announce Type: new Abstract: The Euclid Q1 fields were selected for calibration purposes in cosmology and are therefore relatively devoid of nearby galaxies. However, this is precisely what makes them interesting fields in which to search for dwarf galaxies in local density environments. We take advantage of the unprecedented depth, spatial resolution, and field of view of the Euclid Quick Release (Q1) to build a census of dwarf galaxies in these regions. We have identified dwarfs in a representative sample of 25 contiguous tiles in the Euclid Deep Field North (EDF-N), covering an area of 14.25 sq. deg. The dwarf candidates were identified using a semi-automatic detection method, based on properties measured by the Euclid pipeline and listed in the MER catalogue. A selection cut in surface brightness and magnitude was used to produce an initial dwarf candidate catalogue, followed by a cut in morphology and colour. This catalogue was visually classified to produce a final sample of dwarf candidates, including their morphology, number of nuclei, globular cluster (GC) richness, and presence of a blue compact centre. We identified 2674 dwarf candidates, corresponding to 188 dwarfs per sq. deg. The visual classification of the dwarfs reveals a slightly uneven morphological mix of 58% ellipticals and 42% irregulars, with very few potentially GC-rich (1.0%) and nucleated (4.0%) candidates but a noticeable fraction (6.9%) of dwarfs with blue compact centres. The distance distribution of 388 (15%) of the dwarfs with spectroscopic redshifts peaks at about 400 Mpc. Their stellar mass distribution confirms that our selection effectively identifies dwarfs while minimising contamination. The most prominent dwarf overdensities are dominated by dEs, while dIs are more evenly distributed. This work highlights Euclid's remarkable ability to detect and characterise dwarf galaxies across diverse masses, distances, and environments.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates

Instrumentation and Surveys - Thu, 20/03/2025 - 09:52
arXiv:2503.15327v1 Announce Type: new Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates

Cosmology and Fundamental physics - Thu, 20/03/2025 - 09:52
arXiv:2503.15327v1 Announce Type: new Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.

Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates

Recent IoA Publications - Thu, 20/03/2025 - 09:52
arXiv:2503.15327v1 Announce Type: new Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.

Dark Energy experiment challenges Einstein's theory of Universe

Astronomy News - Thu, 20/03/2025 - 09:50

New research could force a fundamental rethink of the nature of space and time.

Can Earth’s rotation generate power? Physicists divided over controversial claim

Astronomy News - Thu, 20/03/2025 - 09:49

Nature, Published online: 19 March 2025; doi:10.1038/d41586-025-00847-0

Experiments suggest that an unusual magnetic material can help harness energy from the planet’s rotation. But not everyone is convinced.

Is dark energy getting weaker? Fresh data bolster shock finding

Astronomy News - Thu, 20/03/2025 - 09:49

Nature, Published online: 19 March 2025; doi:10.1038/d41586-025-00837-2

Physicists had long assumed that the elusive force has constant strength. But the latest results from a project to map the Universe’s expansion challenge this idea.

Dark energy isn't what we thought – and that may transform the cosmos

Astronomy News - Thu, 20/03/2025 - 09:49

Our current best theories of the universe suggest that dark energy is making it expand faster and faster, but new observations from the Dark Energy Spectroscopic Instrument suggest this mysterious force is actually growing weaker