Euclid: Quick Data Release (Q1) -- A census of dwarf galaxies across a range of distances and environments
arXiv:2503.15335v1 Announce Type: new
Abstract: The Euclid Q1 fields were selected for calibration purposes in cosmology and are therefore relatively devoid of nearby galaxies. However, this is precisely what makes them interesting fields in which to search for dwarf galaxies in local density environments. We take advantage of the unprecedented depth, spatial resolution, and field of view of the Euclid Quick Release (Q1) to build a census of dwarf galaxies in these regions. We have identified dwarfs in a representative sample of 25 contiguous tiles in the Euclid Deep Field North (EDF-N), covering an area of 14.25 sq. deg. The dwarf candidates were identified using a semi-automatic detection method, based on properties measured by the Euclid pipeline and listed in the MER catalogue. A selection cut in surface brightness and magnitude was used to produce an initial dwarf candidate catalogue, followed by a cut in morphology and colour. This catalogue was visually classified to produce a final sample of dwarf candidates, including their morphology, number of nuclei, globular cluster (GC) richness, and presence of a blue compact centre. We identified 2674 dwarf candidates, corresponding to 188 dwarfs per sq. deg. The visual classification of the dwarfs reveals a slightly uneven morphological mix of 58% ellipticals and 42% irregulars, with very few potentially GC-rich (1.0%) and nucleated (4.0%) candidates but a noticeable fraction (6.9%) of dwarfs with blue compact centres. The distance distribution of 388 (15%) of the dwarfs with spectroscopic redshifts peaks at about 400 Mpc. Their stellar mass distribution confirms that our selection effectively identifies dwarfs while minimising contamination. The most prominent dwarf overdensities are dominated by dEs, while dIs are more evenly distributed. This work highlights Euclid's remarkable ability to detect and characterise dwarf galaxies across diverse masses, distances, and environments.
Euclid: Quick Data Release (Q1) -- A census of dwarf galaxies across a range of distances and environments
arXiv:2503.15335v1 Announce Type: new
Abstract: The Euclid Q1 fields were selected for calibration purposes in cosmology and are therefore relatively devoid of nearby galaxies. However, this is precisely what makes them interesting fields in which to search for dwarf galaxies in local density environments. We take advantage of the unprecedented depth, spatial resolution, and field of view of the Euclid Quick Release (Q1) to build a census of dwarf galaxies in these regions. We have identified dwarfs in a representative sample of 25 contiguous tiles in the Euclid Deep Field North (EDF-N), covering an area of 14.25 sq. deg. The dwarf candidates were identified using a semi-automatic detection method, based on properties measured by the Euclid pipeline and listed in the MER catalogue. A selection cut in surface brightness and magnitude was used to produce an initial dwarf candidate catalogue, followed by a cut in morphology and colour. This catalogue was visually classified to produce a final sample of dwarf candidates, including their morphology, number of nuclei, globular cluster (GC) richness, and presence of a blue compact centre. We identified 2674 dwarf candidates, corresponding to 188 dwarfs per sq. deg. The visual classification of the dwarfs reveals a slightly uneven morphological mix of 58% ellipticals and 42% irregulars, with very few potentially GC-rich (1.0%) and nucleated (4.0%) candidates but a noticeable fraction (6.9%) of dwarfs with blue compact centres. The distance distribution of 388 (15%) of the dwarfs with spectroscopic redshifts peaks at about 400 Mpc. Their stellar mass distribution confirms that our selection effectively identifies dwarfs while minimising contamination. The most prominent dwarf overdensities are dominated by dEs, while dIs are more evenly distributed. This work highlights Euclid's remarkable ability to detect and characterise dwarf galaxies across diverse masses, distances, and environments.
Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates
arXiv:2503.15327v1 Announce Type: new
Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.
Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates
arXiv:2503.15327v1 Announce Type: new
Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.
Euclid Quick Data Release (Q1). The Strong Lensing Discovery Engine D -- Double-source-plane lens candidates
arXiv:2503.15327v1 Announce Type: new
Abstract: Strong gravitational lensing systems with multiple source planes are powerful tools for probing the density profiles and dark matter substructure of the galaxies. The ratio of Einstein radii is related to the dark energy equation of state through the cosmological scaling factor $\beta$. However, galaxy-scale double-source-plane lenses (DSPLs) are extremely rare. In this paper, we report the discovery of four new galaxy-scale double-source-plane lens candidates in the Euclid Quick Release 1 (Q1) data. These systems were initially identified through a combination of machine learning lens-finding models and subsequent visual inspection from citizens and experts. We apply the widely-used {\tt LensPop} lens forecasting model to predict that the full \Euclid survey will discover 1700 DSPLs, which scales to $6 \pm 3$ DSPLs in 63 deg$^2$, the area of Q1. The number of discoveries in this work is broadly consistent with this forecast. We present lens models for each DSPL and infer their $\beta$ values. Our initial Q1 sample demonstrates the promise of \Euclid to discover such rare objects.
Dark Energy experiment challenges Einstein's theory of Universe
New research could force a fundamental rethink of the nature of space and time.
Can Earth’s rotation generate power? Physicists divided over controversial claim
Nature, Published online: 19 March 2025; doi:10.1038/d41586-025-00847-0
Experiments suggest that an unusual magnetic material can help harness energy from the planet’s rotation. But not everyone is convinced.Is dark energy getting weaker? Fresh data bolster shock finding
Nature, Published online: 19 March 2025; doi:10.1038/d41586-025-00837-2
Physicists had long assumed that the elusive force has constant strength. But the latest results from a project to map the Universe’s expansion challenge this idea.Dark energy isn't what we thought – and that may transform the cosmos
Our current best theories of the universe suggest that dark energy is making it expand faster and faster, but new observations from the Dark Energy Spectroscopic Instrument suggest this mysterious force is actually growing weaker
Fri 30 May 11:30: Title to be confirmed
Title to be confirmed
Abstract not available
- Speaker: Piero Madau (UCSC)
- Friday 30 May 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.
The Mystery of Alpha and the Isotopes
arXiv:2401.00888v2 Announce Type: replace
Abstract: We report unbiased AI measurements of the fine structure constant $\alpha$ in two proximate absorption regions in the spectrum of the quasar HE0515$-$4414. The data are high resolution, high signal to noise, and laser frequency comb calibrated, obtained using the ESPRESSO spectrograph on the VLT. The high quality of the data and proximity of the regions motivate a differential comparison, exploring the possibility of spatial variations of fundamental constants, as predicted in some theories. We show that if the magnesium isotopic relative abundances are terrestrial, the fine structure constants in these two systems differ at the 7$\sigma$ level. A 3$\sigma$ discrepancy between the two measurements persists even for the extreme non-terrestrial case of 100\% $^{24}$Mg, if shared by both systems. However, if Mg isotopic abundances take independent values in these two proximate systems, one terrestrial, the other with no heavy isotopes, both can be reconciled with a terrestrial $\alpha$, and the discrepancy between the two measurements falls to 2$\sigma$. We cannot rule out other systematics that are unaccounted for in our study that could masquerade as a varying alpha signal. We discuss varying constant and varying isotope interpretations and resolutions to this conundrum for future high precision measurements.
The Mystery of Alpha and the Isotopes
arXiv:2401.00888v2 Announce Type: replace
Abstract: We report unbiased AI measurements of the fine structure constant $\alpha$ in two proximate absorption regions in the spectrum of the quasar HE0515$-$4414. The data are high resolution, high signal to noise, and laser frequency comb calibrated, obtained using the ESPRESSO spectrograph on the VLT. The high quality of the data and proximity of the regions motivate a differential comparison, exploring the possibility of spatial variations of fundamental constants, as predicted in some theories. We show that if the magnesium isotopic relative abundances are terrestrial, the fine structure constants in these two systems differ at the 7$\sigma$ level. A 3$\sigma$ discrepancy between the two measurements persists even for the extreme non-terrestrial case of 100\% $^{24}$Mg, if shared by both systems. However, if Mg isotopic abundances take independent values in these two proximate systems, one terrestrial, the other with no heavy isotopes, both can be reconciled with a terrestrial $\alpha$, and the discrepancy between the two measurements falls to 2$\sigma$. We cannot rule out other systematics that are unaccounted for in our study that could masquerade as a varying alpha signal. We discuss varying constant and varying isotope interpretations and resolutions to this conundrum for future high precision measurements.
BlackTHUNDER strikes twice: rest-frame Balmer-line absorption and high Eddington accretion rate in a Little Red Dot at $z=7.04$
arXiv:2503.11752v1 Announce Type: new
Abstract: JWST spectroscopy has revealed a population of compact objects at redshifts $z=2$-9 with `v'-shaped spectral energy distributions, broad permitted lines, and, often, hydrogen Balmer absorption. Among these `Little Red Dots' (LRDs), Abell2744-QSO1 at $z=7.04$ has been confirmed to have time-variable equivalent width (EW) in its broad emission lines, confirming its AGN nature. We extend the analysis of NIRSpec/IFS data from the BlackTHUNDER survey to the H$\alpha$ line. The broad-line profile in Abell2744-QSO1 is manifestly non-Gaussian, requiring at least two Gaussian components with full width at half maximum FWHM=$450\pm50$ and $1800\pm100$ km s$^{-1}$. Crucially, we also detect a narrow-line Gaussian component, and strong H$\alpha$ absorption (EW relative to the continuum $\approx 30^{+15}_{-9}$ A), confirming a connection between the strong Balmer break and line absorption. The absorber is at rest with respect to broad H$\alpha$, suggesting that the gas cannot be interpreted as an inflow or outflow, forming instead a long-lived structure. Its velocity dispersion is $\sigma_{abs} = 100\pm10$ km s$^{-1}$, consistent with the value inferred from the analysis of the Balmer break. Based on H$\alpha$, we infer a black hole mass of log(M$_{BH}$/M$_\odot$)=6.3-6.7, 0.9-1.3 dex smaller than previous estimates based on H$\beta$. The Eddington ratio is 0.7-1.6. Combining the high signal-to-noise ratio of the narrow H$\alpha$ line with the spectral resolution R=3,700 of the G395H grating, we infer a narrow-line dispersion $\sigma_n = 22^{+5}_{-6}$ km s$^{-1}$, which places a stringent constraint on the black-hole-to-dynamical-mass ratio of this system to be M$_{BH}$/M$_{dyn}$>0.02-0.4. If M$_{BH}$ is near the low-mass end of our estimates, the SMBH would be accreting at a super-Eddington rate. Alternatively, at the high-M$_{BH}$ end, there would be minimal room for a host galaxy.
BlackTHUNDER strikes twice: rest-frame Balmer-line absorption and high Eddington accretion rate in a Little Red Dot at $z=7.04$
arXiv:2503.11752v1 Announce Type: new
Abstract: JWST spectroscopy has revealed a population of compact objects at redshifts $z=2$-9 with `v'-shaped spectral energy distributions, broad permitted lines, and, often, hydrogen Balmer absorption. Among these `Little Red Dots' (LRDs), Abell2744-QSO1 at $z=7.04$ has been confirmed to have time-variable equivalent width (EW) in its broad emission lines, confirming its AGN nature. We extend the analysis of NIRSpec/IFS data from the BlackTHUNDER survey to the H$\alpha$ line. The broad-line profile in Abell2744-QSO1 is manifestly non-Gaussian, requiring at least two Gaussian components with full width at half maximum FWHM=$450\pm50$ and $1800\pm100$ km s$^{-1}$. Crucially, we also detect a narrow-line Gaussian component, and strong H$\alpha$ absorption (EW relative to the continuum $\approx 30^{+15}_{-9}$ A), confirming a connection between the strong Balmer break and line absorption. The absorber is at rest with respect to broad H$\alpha$, suggesting that the gas cannot be interpreted as an inflow or outflow, forming instead a long-lived structure. Its velocity dispersion is $\sigma_{abs} = 100\pm10$ km s$^{-1}$, consistent with the value inferred from the analysis of the Balmer break. Based on H$\alpha$, we infer a black hole mass of log(M$_{BH}$/M$_\odot$)=6.3-6.7, 0.9-1.3 dex smaller than previous estimates based on H$\beta$. The Eddington ratio is 0.7-1.6. Combining the high signal-to-noise ratio of the narrow H$\alpha$ line with the spectral resolution R=3,700 of the G395H grating, we infer a narrow-line dispersion $\sigma_n = 22^{+5}_{-6}$ km s$^{-1}$, which places a stringent constraint on the black-hole-to-dynamical-mass ratio of this system to be M$_{BH}$/M$_{dyn}$>0.02-0.4. If M$_{BH}$ is near the low-mass end of our estimates, the SMBH would be accreting at a super-Eddington rate. Alternatively, at the high-M$_{BH}$ end, there would be minimal room for a host galaxy.
UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey
arXiv:2503.13783v1 Announce Type: new
Abstract: The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain $ugriz$ images of a core survey region of 6250 deg$^2$ of the northern sky. The $10\sigma$ point source depth of the data, as measured within a 2-arcsecond diameter aperture, are $[u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]$\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.
UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey
arXiv:2503.13783v1 Announce Type: new
Abstract: The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain $ugriz$ images of a core survey region of 6250 deg$^2$ of the northern sky. The $10\sigma$ point source depth of the data, as measured within a 2-arcsecond diameter aperture, are $[u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]$\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.
UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey
arXiv:2503.13783v1 Announce Type: new
Abstract: The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain $ugriz$ images of a core survey region of 6250 deg$^2$ of the northern sky. The $10\sigma$ point source depth of the data, as measured within a 2-arcsecond diameter aperture, are $[u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]$\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.
Is our cosmos just a membrane on the edge of a far stranger reality?
String theory may be our best attempt at a theory of everything, except that it can't describe an expanding universe like ours. Now a radical new twist on the idea could finally fix that – but it requires us to completely reimagine reality
Cleaning up space: how satellites and telescopes can live together
Nature, Published online: 18 March 2025; doi:10.1038/d41586-025-00788-8
Satellites connect people around the world but they also interfere with astronomers’ views of the cosmos. There are ways to reduce these tensions.Swarms of satellites are harming astronomy. Here’s how researchers are fighting back
Nature, Published online: 18 March 2025; doi:10.1038/d41586-025-00792-y
SpaceX and other companies plan to launch tens of thousands of satellites, which could mar astronomical observations and pollute the atmosphere.