Euclid preparation: TBD. Cosmic Dawn Survey: evolution of the galaxy stellar mass function across 0.2<z<6.5 measured over 10 square degrees
arXiv:2504.17867v1 Announce Type: new
Abstract: The Cosmic Dawn Survey Pre-launch (PL) catalogues cover an effective 10.13 deg$^{2}$ area with uniform deep Spitzer/IRAC data ($m\sim25$ mag, 5$\sigma$), the largest area covered to these depths in the infrared. These data are used to gain new insight into the growth of stellar mass across cosmic history by characterising the evolution of the galaxy stellar mass function (GSMF) through $0.2 < z \leq 6.5$. The total volume (0.62 Gpc$^{3}$) represents a tenfold increase compared to previous works that have explored $z > 3$ and significantly reduces cosmic variance, yielding strong constraints on the abundance of massive galaxies. Results are generally consistent with the literature but now provide firm estimates of number density where only upper limits were previously available. Contrasting the GSMF with the dark matter halo mass function suggests that massive galaxies ($M \gtrsim10^{11}$ M$_{\odot}$) at $z > 3.5$ required integrated star-formation efficiencies of $M/(M_{\rm h}f_{\rm b}) \gtrsim$ 0.25--0.5, in excess of the commonly-held view of ``universal peak efficiency" from studies on the stellar-to-halo mass relation (SHMR). Such increased efficiencies imply an evolving peak in the SHMR at $z > 3.5$ which can be maintained if feedback mechanisms from active galactic nuclei and stellar processes are ineffective at early times. In addition, a significant fraction of the most massive quiescent galaxies are observed to be in place already by $z\sim 2.5$--3. The apparent lack in change of their number density by $z\sim 0.2$ is consistent with relatively little mass growth from mergers. Utilising the unique volume, evidence for an environmental dependence of the galaxy stellar mass function is found all the way through $z\sim 3.5$ for the first time, though a more careful characterisation of the density field is ultimately required for confirmation.
Stirring the cosmic pot: how black hole feedback shapes the matter power spectrum in the Fable simulations
arXiv:2407.18349v2 Announce Type: replace
Abstract: Understanding the impact of baryonic physics on cosmic structure formation is crucial for accurate cosmological predictions, especially as we usher in the era of large galaxy surveys with the Rubin Observatory as well as the Euclid and Roman Space Telescopes. A key process that can redistribute matter across a large range of scales is feedback from accreting supermassive black holes. How exactly these active galactic nuclei (AGN) operate from sub-parsec to Mega-parsec scales however remains largely unknown. To understand this, we investigate how different AGN feedback models in the Fable simulation suite affect the cosmic evolution of the matter power spectrum (MPS).
Our analysis reveals that AGN feedback significantly suppresses clustering at scales $k \sim 10\,h\,cMpc^{-1}$, with the strongest effect at redshift $z = 0$ causing a reduction of $\sim 10\%$ with respect to the dark matter-only simulation. This is due to the efficient feedback in both radio (low Eddington ratio) and quasar (high Eddington ratio) modes in our fiducial Fable model. We find that variations of the quasar and radio mode feedback with respect to the fiducial Fable model have distinct effects on the MPS redshift evolution, with the radio mode being more effective on larger scales and later epochs. Furthermore, MPS suppression is dominated by AGN feedback effects inside haloes at $z = 0$, while for $z \gtrsim 1$ the matter distribution both inside and outside of haloes shapes the MPS suppression. Hence, future observations probing earlier cosmic times beyond $z \sim 1$ will be instrumental in constraining the nature of AGN feedback.
The Pristine survey: XXVII. The extremely metal-poor stream C-19 stretches over more than 100 degrees
arXiv:2502.09710v4 Announce Type: replace
Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $10.9^{+2.1}_{-1.5}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.
Premature supermassive black hole mergers in cosmological simulations of structure formation
arXiv:2504.17549v1 Announce Type: new
Abstract: The co-evolution of massive black holes (BHs) and their host galaxies is well-established within the hierarchical galaxy formation paradigm. Large-scale cosmological simulations are an ideal tool to study the repeated BH mergers, accretion and feedback that conspire to regulate this process. While such simulations are of fundamental importance for understanding the complex and intertwined relationship between BHs and their hosts, they are plagued with numerical inaccuracies at the scale of individual BH orbits. To quantify this issue, taking advantage of the $(100 \, h^{-1}\,\text{cMpc})^3$ FABLE simulation box, we track all individual BH mergers and the corresponding host galaxy mergers as a function of cosmic time. We demonstrate that BH mergers frequently occur prematurely, well before the corresponding merger of the host galaxies is complete, and that BHs are sometimes erroneously displaced from their hosts during close galaxy encounters. Correcting for these artefacts results in substantial macrophysical delays, spanning over several Gyrs, which are additional to any microphysical delays arising from unresolved BH binary hardening processes. We find that once the macrophysical delays are accounted for, high-mass BH merger events are suppressed, affecting the predictions for the BH population that may be observable with LISA and pulsar timing arrays. Furthermore, including these macrophysical delays leads to an increase in the number of observable dual active galactic nuclei, especially at lower redshifts, with respect to FABLE. Our results highlight the pressing need for more accurate modelling of BH dynamics in cosmological simulations of galaxy formation as we prepare for the multi-messenger era.
Radiometer Calibration using Machine Learning
arXiv:2504.16791v1 Announce Type: new
Abstract: Radiometers are crucial instruments in radio astronomy, forming the primary component of nearly all radio telescopes. They measure the intensity of electromagnetic radiation, converting this radiation into electrical signals. A radiometer's primary components are an antenna and a Low Noise Amplifier (LNA), which is the core of the ``receiver'' chain. Instrumental effects introduced by the receiver are typically corrected or removed during calibration. However, impedance mismatches between the antenna and receiver can introduce unwanted signal reflections and distortions. Traditional calibration methods, such as Dicke switching, alternate the receiver input between the antenna and a well-characterised reference source to mitigate errors by comparison. Recent advances in Machine Learning (ML) offer promising alternatives. Neural networks, which are trained using known signal sources, provide a powerful means to model and calibrate complex systems where traditional analytical approaches struggle. These methods are especially relevant for detecting the faint sky-averaged 21-cm signal from atomic hydrogen at high redshifts. This is one of the main challenges in observational Cosmology today. Here, for the first time, we introduce and test a machine learning-based calibration framework capable of achieving the precision required for radiometric experiments aiming to detect the 21-cm line.
Synergising semi-analytical models and hydrodynamical simulations to interpret JWST data from the first billion years
arXiv:2502.02647v2 Announce Type: replace
Abstract: The field of high redshift galaxy formation has been revolutionised by JWST, which is yielding unprecedented insights on galaxy assembly at early times. Our key aim is to study the physical mechanisms that can explain the unexpected abundance of bright galaxies at $z \geq 11$, as well as their metal enrichment and spectral properties. We also use recent data to determine the key sources of reionisation. To do so, we implement cold gas fractions and star formation efficiencies derived from the SPHINX20 high-resolution radiation-hydrodynamics simulation into DELPHI, a semi-analytic model that tracks the assembly of dark matter halos and their baryonic components from $z \sim 4.5-40$. In addition, we explore two different methodologies to boost galaxy luminosities at $z \geq 11$: a stellar initial mass function (IMF) that becomes increasingly top-heavy with decreasing metallicity and increasing redshift (eIMF model), and star formation efficiencies that increase with increasing redshift (eSFE model). Our key findings are: (i) both the eIMF and eSFE models can explain the abundance of bright galaxies at $z \geq 11$; (ii) dust attenuation plays an important role for the bright-end of the UV LF at $z \leq 11$; (iii) the mass-metallicity relation is in place as early as $z \sim 17$ in all models although its slope is model-dependent; (iv) within the spread of both models and observations, all of our models are in good agreement with current estimates of $\beta$ slopes at $z \sim 5-17$ and Balmer break strengths at $z \sim 6-10$; (v) in the eIMF model, galaxies at $z\geq12$ or with $\rm{M_{UV}}\geq-18$ show values of $\xi_{\rm{ion}} \sim 10^{25.55}~{\rm [Hz~erg^{-1}]}$, twice larger than in other models; (vi) star formation in galaxies below $10^{9}\rm{M_{\odot}}$ is the key driver of reionisation, providing the bulk ($\sim 85\%$) of ionising photons down to its midpoint at $z \sim 7$.
Refractory phosphorus in the HD 100546 protoplanetary disk
arXiv:2504.14228v1 Announce Type: new
Abstract: The phosphorus budget of planets is intertwined with their formation history and is thought to influence their habitability. The chemical reservoirs and volatile \emph{vs} refractory budget of phosphorus in planet-forming environments have so far eluded empirical characterisation. We employ high-resolution spectra from HST/STIS in the ultraviolet and APEX in the sub-mm to constrain the phosphorus budget in the well-characterized HD\,100546 star and protoplanetary disk system. We measure $\log{(P/H)_{\star}}=-7.50^{+0.23}_{-0.28}$ on the stellar surface, which traces the total inventory of P in accreting gas \emph{and }dust from the inner disk. The inner disk gas, inside of the main dust trap, has $\log{(P/H)_{\rm in}}\lesssim-8.70$, and the outer disk gas $\log{(P/H)_{\rm out}}\lesssim-9.30$. Phosphorus in the disk is carried by a relatively refractory reservoir, consistent with minerals such as apatite or schreibersite, or with ammonium phosphate salts, in terms of sublimation temperature. We discuss the impact this might have on the two protoplanets around HD\,100546. Our results contribute to our understanding of the chemical habitability of planetary systems and lay a foundation for future explorations, especially in the context of JWST and \emph{Ariel} which can study phosphorus in exoplanet atmospheres.
Large Cold Dust Reservoir Revealed in Transitional SN Ib 2014C by James Webb Space Telescope Mid-Infrared Spectroscopy
arXiv:2504.14009v1 Announce Type: new
Abstract: Supernova (SN) 2014C is a rare transitional event that exploded as a hydrogen-poor, helium-rich Type Ib SN and subsequently interacted with a hydrogen-rich circumstellar medium (CSM) a few months post explosion. This unique interacting object provides an opportunity to probe the mass-loss history of a stripped-envelope SN progenitor. Using the James Webb Space Telescope (JWST), we observed SN 2014C with the Mid-InfraRed Instrument Medium Resolution Spectrometer at 3477 days post explosion (rest frame), and the Near-InfraRed Spectrograph Integral Field Unit at 3568 days post explosion, covering 1.7 to 25 $\mu$m. The bolometric luminosity indicates that the SN is still interacting with the same CSM that was observed with the Spitzer Space Telescope 40--1920 days post explosion. JWST spectra and near-contemporaneous optical and near-infrared spectra show strong [Ne II] 12.831 $\mu$m, He 1.083 $\mu$m, H$\alpha$, and forbidden oxygen ([O I] $\lambda$$\lambda$6300, 6364, [O II] $\lambda$$\lambda$7319, 7330, and [O III] $\lambda$$\lambda$4959, 5007) emission lines with asymmetric profiles, suggesting a highly asymmetric CSM. The mid-IR continuum can be explained by ~0.036 $M_\odot$ of carbonaceous dust at ~300 K and ~0.043 $M_\odot$ of silicate dust at $\sim$200 K. The observed dust mass has increased tenfold since the last Spitzer observation 4 yr ago, with evidence suggesting that new grains have condensed in the cold dense shell between the forward and reverse shocks. This dust mass places SN 2014C among the dustiest SNe in the mid-IR and supports the emerging observational trend that SN explosions produce enough dust to explain the observed dust mass at high redshifts.
The Pristine survey: XXVIII. The extremely metal-poor stream C-19 stretches over more than 100 degrees
arXiv:2502.09710v3 Announce Type: replace
Abstract: The discovery of the most metal-poor stream, C-19, provides us with a fossil record of a stellar structure born very soon after the Big Bang. In this work, we search for new C-19 members over the whole sky by combining two complementary stream-searching algorithms, STREAMFINDER and StarGO,, and utilizing low-metallicity star samples from the Pristine survey as well as Gaia BP/RP spectro-photometric catalogues. We confirm twelve new members, spread over more than 100$^\circ$, using velocity and metallicity information from a set of spectroscopic follow-up programs that targeted a quasi-complete sample of our bright candidates ($G \lesssim 16.0$). From the updated set of stream members, we confirm that the stream is wide, with a stream width of $\sim200$ pc, and dynamically hot, with a derived velocity dispersion of $10.9^{+2.1}_{-1.5}$ km/s. The tension remains between these quantities and a purely baryonic scenario in which the relatively low-mass stream (even updated to a few $10^4M_{\odot}$) stems from a globular cluster progenitor, as suggested by its chemical abundances. Some heating mechanism, such as preheating of the cluster in its own dark matter halo or through interactions with halo sub-structures appears necessary to explain the tension. The impact of binaries on the measured dispersion also remains unknown. Detailed elemental abundances of more stream members as well as multi-epoch radial velocities from spectroscopic observations are therefore crucial to fully understand the nature and past history of the most metal-poor stream of the Milky Way.
Euclid preparation. Estimating galaxy physical properties using CatBoost chained regressors with attention
arXiv:2504.13020v1 Announce Type: new
Abstract: Euclid will image ~14000 deg^2 of the extragalactic sky at visible and NIR wavelengths, providing a dataset of unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. In the vast majority of cases the main source of information will come from broad-band images and data products thereof. Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical properties of galaxies using broad-band photometry from Euclid, optionally including ground-based optical photometry also. To address this need, we present a novel method to estimate the redshift, stellar mass, star-formation rate, specific star-formation rate, E(B-V), and age of galaxies, using mock Euclid and ground-based photometry. The main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees, together with chained regression and an intelligent, automatic optimization of the training data. The pipeline also includes a computationally-efficient method to estimate prediction uncertainties, and, in the absence of ground-truth labels, provides accurate predictions for metrics of model performance up to z~2. We apply our pipeline to several datasets consisting of mock Euclid broad-band photometry and mock ground-based ugriz photometry, to evaluate the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the Euclid Wide Survey. The quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modeling approach. We find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the importance of combining Euclid data with ancillary ground-based optical data. (Abridged)
The connection between high-redshift galaxies and Lyman ${\alpha}$ transmission in the Sherwood-Relics simulations of patchy reionisation
arXiv:2502.02983v2 Announce Type: replace
Abstract: Recent work has suggested that, during reionisation, spatial variations in the ionising radiation field should produce enhanced Ly ${\alpha}$ forest transmission at distances of tens of comoving Mpc from high-redshift galaxies. We demonstrate that the Sherwood-Relics suite of hybrid radiation-hydrodynamical simulations are qualitatively consistent with this interpretation. The shape of the galaxy--Ly ${\alpha}$ transmission cross-correlation is sensitive to both the mass of the haloes hosting the galaxies and the volume averaged fraction of neutral hydrogen in the IGM, $\bar{x}_{\rm HI}$. The reported excess Ly ${\alpha}$ forest transmission on scales r ~ 10 cMpc at $\langle z \rangle \approx 5.2$ -- as measured using C IV absorbers as proxies for high-redshift galaxies -- is quantitatively reproduced by Sherwood-Relics at z = 6 if we assume the galaxies that produce ionising photons are hosted in haloes with mass $M_{\rm h}\geq 10^{10}~h^{-1}\,{\rm M}_\odot$. However, this redshift mismatch is equivalent to requiring $\bar{x}_{\rm HI}\sim 0.1$ at $z\simeq 5.2$, which is inconsistent with the observed Ly ${\alpha}$ forest effective optical depth distribution. We suggest this tension may be partly resolved if the minimum C IV absorber host halo mass at z > 5 is larger than $M_{\rm h}=10^{10}~h^{-1}\,{\rm M}_\odot$. After reionisation completes, relic IGM temperature fluctuations will continue to influence the shape of the cross-correlation on scales of a few comoving Mpc at $4 \leq z \leq 5$. Constraining the redshift evolution of the cross-correlation over this period may therefore provide further insight into the timing of reionisation.
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brown dwarfs
arXiv:2504.12209v1 Announce Type: new
Abstract: One notable example of exoplanet diversity is the population of circumbinary planets, which orbit around both stars of a binary star system. There are so far only 16 known circumbinary exoplanets, all of which lie in the same orbital plane as the host binary. Suggestions exist that circumbinary planets could also exist on orbits highly inclined to the binary, close to 90$^{\circ}$, polar orbits. No such planets have been found yet but polar circumbinary gas and debris discs have been observed and if these were to form planets then those would be left on a polar orbit. We report strong evidence for a polar circumbinary exoplanet, which orbits a close pair of brown dwarfs which are on an eccentric orbit. We use radial-velocities to measure a retrograde apsidal precession for the binary, and show that this can only be attributed to the presence of a polar planet.
Planetary albedo is limited by the above-cloud atmosphere: Implications for sub-Neptune climate
arXiv:2504.12030v1 Announce Type: new
Abstract: Energy limits that delineate the `habitable zone' for exoplanets depend on a given exoplanet's net planetary albedo (or `Bond albedo'). We here demonstrate that the planetary albedo of an observed exoplanet is limited by the above-cloud atmosphere - the region of the atmosphere that is probed in remote observation. We derive an analytic model to explore how the maximum planetary albedo depends on the above-cloud optical depth and scattering versus absorbing properties, even in the limit of a perfectly reflective grey cloud layer. We apply this framework to sub-Neptune K2-18b, for which a high planetary albedo has recently been invoked to argue for the possibility of maintaining a liquid water ocean surface, despite K2-18b receiving an energy flux from its host star that places it inside of its estimated `habitable zone' inner edge. We use a numerical multiple-scattering line-by-line radiative transfer model to retrieve the albedo of K2-18b based on the observational constraints from the above-cloud atmosphere. Our results demonstrate that K2-18b's observed transmission spectrum already restricts its possible planetary albedo to values below the threshold required to be potentially habitable, with the data favouring a median planetary albedo of 0.17-0.18. Our results thus reveal that currently characteriseable sub-Neptunes are likely to be magma-ocean or gas-dwarf worlds. The methods that we present are generally applicable to constrain the planetary albedo of any exoplanet with measurements of its observable atmosphere, enabling the quantification of potential exoplanet habitability with current observational capabilities.
New Constraints on DMS and DMDS in the Atmosphere of K2-18 b from JWST MIRI
arXiv:2504.12267v1 Announce Type: new
Abstract: The sub-Neptune frontier has opened a new window into the rich diversity of planetary environments beyond the solar system. The possibility of hycean worlds, with planet-wide oceans and H$_2$-rich atmospheres, significantly expands and accelerates the search for habitable environments elsewhere. Recent JWST transmission spectroscopy of the candidate hycean world K2-18 b in the near-infrared led to the first detections of carbon-bearing molecules CH$_4$ and CO$_2$ in its atmosphere, with a composition consistent with predictions for hycean conditions. The observations also provided a tentative hint of dimethyl sulfide (DMS), a possible biosignature gas, but the inference was of low statistical significance. We report a mid-infrared transmission spectrum of K2-18 b obtained using the JWST MIRI LRS instrument in the ~6-12 $\mu$m range. The spectrum shows distinct features and is inconsistent with a featureless spectrum at 3.4-$\sigma$ significance compared to our canonical model. We find that the spectrum cannot be explained by most molecules predicted for K2-18 b with the exception of DMS and dimethyl disulfide (DMDS), also a potential biosignature gas. We report new independent evidence for DMS and/or DMDS in the atmosphere at 3-$\sigma$ significance, with high abundance ($\gtrsim$10 ppmv) of at least one of the two molecules. More observations are needed to increase the robustness of the findings and resolve the degeneracy between DMS and DMDS. The results also highlight the need for additional experimental and theoretical work to determine accurate cross sections of important biosignature gases and identify potential abiotic sources. We discuss the implications of the present findings for the possibility of biological activity on K2-18 b.
The Cocytos Stream: A Disrupted Globular Cluster from our Last Major Merger?
arXiv:2504.11687v1 Announce Type: new
Abstract: The census of stellar streams and dwarf galaxies in the Milky Way provides direct constraints on galaxy formation models and the nature of dark matter. The DESI Milky Way survey (with a footprint of 14,000$~deg{^2}$ and a depth of $r<19$ mag) delivers the largest sample of distant metal-poor stars compared to previous optical fiber-fed spectroscopic surveys. This makes DESI an ideal survey to search for previously undetected streams and dwarf galaxies. We present a detailed characterization of the Cocytos stream, which was re-discovered using a clustering analysis with a catalog of giants in the DESI year 3 data, supplemented with Magellan/MagE spectroscopy. Our analysis reveals a relatively metal-rich ([Fe/H]$=-1.3$) and thick stream (width$=1.5^\circ$) at a heliocentric distance of $\approx 25$ kpc, with an internal velocity dispersion of 6.5-9 km s$^{-1}$. The stream's metallicity, radial orbit, and proximity to the Virgo stellar overdensities suggest that it is most likely a disrupted globular cluster that came in with the Gaia-Enceladus merger. We also confirm its association with the Pyxis globular cluster. Our result showcases the ability of wide-field spectroscopic surveys to kinematically discover faint disrupted dwarfs and clusters, enabling constraints on the dark matter distribution in the Milky Way.
New dwarf galaxy candidates in the M106, NGC3521, and UGCA127 groups with the Hyper Suprime Camera
arXiv:2504.11608v1 Announce Type: new
Abstract: The local universe is still full of hidden dwarf galaxies to be discovered using deep imaging campaigns. Here we present the third paper in a series to search for low-surface brightness dwarf galaxies around nearby isolated luminous host galaxies with the Subaru Hyper Suprime Camera. Based on visual inspection, we found 11, 0, 4, and 6 dwarf galaxy candidates around M106, NGC2903, NGC3521, and UGCA127, respectively. This adds to the 40 candidates around M104 and 4 candidates around NGC2683 found in the previous papers. Artificial galaxy experiments show that we are complete down to a mean effective surface brightness of 26 mag/arcsec$^2$. The new dwarf galaxy candidates follow known scaling relation in size, surface brightness and luminosity, making them good candidates based on their morphology and photometric properties. We trace the luminosity function of these galaxies down to magnitude of $\approx-$9 in the V band for all galaxies targeted in our survey footprint so far. While the most massive galaxy (M104) has a significant higher abundance of dwarfs, NGC3521, NGC2903, and NGC2683 have a similar luminosity function as the Milky Way. These latter three galaxies also have a similar stellar mass and might be considered Milky Way analogs. UGCA127 is a low-mass galaxy but almost reaches the same number of dwarfs as the Milky Way at our limiting magnitude. We have searched for hints of lopsidedness in the satellite distributions, but found none to be significant. The next step will be to confirm these members through either distance or velocity measurements.
Measurement of the power spectrum turnover scale from the cross-correlation between CMB lensing and Quaia
arXiv:2410.24134v3 Announce Type: replace
Abstract: We use the projected clustering of quasars in the Gaia-unWISE quasar catalog, Quaia, and its cross-correlation with CMB lensing data from Planck, to measure the large-scale turnover of the matter power spectrum, associated with the size of the horizon at the epoch of matter-radiation equality. The turnover is detected with a significance of between $2.3$ and $3.1\sigma$, depending on the method used to quantify it. From this measurement, the equality scale is determined at the $\sim20\%$ level. Using the turnover scale as a standard ruler alone (suppressing information from the large-scale curvature of the power spectrum), in combination with supernova data through an inverse distance ladder approach, we measure the current expansion rate to be $H_0=62.7\pm17.2\,{\rm km}\,{\rm s}^{-1}\,{\rm Mpc}^{-1}$. The addition of information coming from the power spectrum curvature approximately halves the standard ruler uncertainty. Our measurement in combination with calibrated supernovae from Pantheon$+$ and SH0ES constrains the CMB temperature to be $T_{\rm CMB}=3.10^{+0.48}_{-0.36}\,{\rm K}$, independently of CMB data. Alternatively, assuming the value of $T_{\rm CMB}$ from COBE-FIRAS, we can constrain the effective number of relativistic species in the early Universe to be $N_{\rm eff}=3.0^{+5.8}_{-2.9}$.
On the road to the radius valley: distinguishing between gas dwarfs and water worlds with young transiting exoplanets
arXiv:2503.17364v2 Announce Type: replace
Abstract: The detection of young transiting exoplanets represents a new frontier in our understanding of planet formation and evolution. For the population of observed close-in sub-Neptunes, two proposed formation pathways can reproduce their observed masses and radii at $\sim$Gyr ages: the "gas dwarf" hypothesis and the "water world" hypothesis. We show that a sub-Neptune's size at early ages $\lesssim 100$ Myrs is strongly dependent on the bulk mean molecular weight within its envelope. As a result, gas dwarfs and water worlds should diverge in size at early ages since the mean molecular weight of gas dwarf envelopes is predicted to be smaller than that of water worlds. We construct population models under both scenarios that reproduce Kepler demographics in the age range $\sim1-10$ Gyrs. We find tentative evidence that the gas dwarf model is more consistent with the small population of young exoplanets $< 40$ Myrs from TESS. We show that planet radius is relatively insensitive to planet mass for young, puffy sub-Neptunes, meaning that well-characterised masses are not necessarily required to exploit the effects of mean molecular weight at the population level. We confirm the predicted difference in planet size between the models is also true under mixed-envelope scenarios, in which envelopes consist of mixtures of hydrogen and steam. We highlight that transit surveys of young exoplanets should target the youngest observable stellar clusters to exploit the effects of mean molecular weight.
Flat-sky Angular Power Spectra Revisited
arXiv:2307.13768v2 Announce Type: replace
Abstract: We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.
Gaia's brightest very metal-poor (VMP) stars. Metallicity catalogue of a thousand VMP stars from Gaia's radial velocity spectrometer spectra
arXiv:2309.06137v2 Announce Type: replace
Abstract: Context. Gaia DR3 has offered the scientific community a remarkable dataset of approximately one million spectra acquired with the Radial Velocity Spectrometer (RVS) in the Calcium II triplet region, that is well-suited to identify very metal-poor (VMP) stars. However, over 40% of these spectra have no released parameters by Gaia's GSP Spec pipeline in the domain of VMP stars, whereas VMP stars are key tracers of early Galactic evolution. Aims. We aim to provide spectroscopic metallicities for VMP stars using Gaia RVS spectra, thereby producing a catalogue of bright VMP stars distributed over the full sky that can serve as the basis to study early chemical evolution throughout the Galaxy. Methods. We select VMP stars using photometric metallicities from the literature and analyse the Gaia RVS spectra to infer spectroscopic metallicities for these stars. Results. The inferred metallicities agree very well with literature high-resolution metallicities with a median systematic offset of 0.1 dex and standard deviation of $\sim$0.15 dex. The purity of this sample in the VMP regime is $\sim$80% with outliers representing a mere $\sim$3%. Conclusions. We make available an all-sky catalogue of $\sim$1500 stars with reliable spectroscopic metallicities down to [Fe/H]$\sim$-4.0, of which $\sim$1000 are VMP stars. More than 75% of these stars have either no metallicity value in the literature to date or are flagged to be unreliable in their literature metallicity estimates. This catalogue of bright (G<13) VMP stars is three times larger than the current sample of well-studied VMP stars in the literature in this magnitude range, making it ideal for high-resolution spectroscopic follow-up and to study the properties of VMP stars in different parts of our Galaxy.