skip to content

Institute of Astronomy

 

Sculpted by Luminous Stars

Tue, 15/04/2025 - 10:24
ESA/Hubble and NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble)

This new image, released on April 4, 2025, showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and the Hubble Space Telescope have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.

Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.

Learn more about NGC 346 and the nebula it has shaped.

Image credit: ESA/Hubble and NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble)

How to spot Haumea, one of the solar system's strangest objects

Mon, 14/04/2025 - 11:24

Pluto isn’t the only dwarf planet in our solar system's outer reaches. Now is an ideal time to look for the egg-shaped Haumea, says Abigail Beall

Hubble Captures a Star’s Swan Song

Fri, 11/04/2025 - 14:26
Explore Hubble

2 min read

Hubble Captures a Star’s Swan Song This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll

The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).

Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.

This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share Details Last Updated Apr 11, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


The Death Throes of Stars

From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


Exploring the Birth of Stars

Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


Hubble’s Nebulae

Top quarks spotted at mega-detector could reveal clues to early Universe

Fri, 11/04/2025 - 14:25

Nature, Published online: 10 April 2025; doi:10.1038/d41586-025-01075-2

Heaviest known elementary particles and their antimatter counterparts are detected after nuclear smash-ups at the Large Hadron Collider.

Evidence of star cluster migration and merger in dwarf galaxies

Thu, 10/04/2025 - 09:54

Nature, Published online: 09 April 2025; doi:10.1038/s41586-025-08783-9

High-resolution images from the Hubble Space Telescope show evidence of star cluster migration and merger in dwarf galaxies.

Water abundance in the lunar farside mantle

Thu, 10/04/2025 - 09:54

Nature, Published online: 09 April 2025; doi:10.1038/s41586-025-08870-x

An estimate of water abundance in the lunar mantle indicates that the farside mantle is potentially drier than its nearside counterpart.

NASA’s Juno Back to Normal Operations After Entering Safe Mode

Thu, 10/04/2025 - 09:48

3 min read

NASA’s Juno Back to Normal Operations After Entering Safe Mode NASA’s Juno flies above Jupiter’s Great Red Spot in this artist’s concept. NASA/JPL-Caltech

The spacecraft was making its 71st close approach to Jupiter when it unexpectedly entered into a precautionary status.

Data received from NASA’s Juno mission indicates the solar-powered spacecraft went into safe mode twice on April 4 while the spacecraft was flying by Jupiter. Safe mode is a precautionary status that a spacecraft enters when it detects an anomaly. Nonessential functions are suspended, and the spacecraft focuses on essential tasks like communication and power management. Upon entering safe mode, Juno’s science instruments were powered down, as designed, for the remainder of the flyby.

The mission operations team has reestablished high-rate data transmission with Juno, and the spacecraft is currently conducting flight software diagnostics.The team will work in the ensuing days to transmit the engineering and science data collected before and after the safe-mode events to Earth.

Juno first entered safe mode at 5:17 a.m. EDT, about an hour before its 71st close passage of Jupiter — called perijove. It went into safe mode again 45 minutes after perijove. During both safe-mode events, the spacecraft performed exactly as designed, rebooting its computer, turning off nonessential functions, and pointing its antenna toward Earth for communication.

Of all the planets in our solar system, Jupiter is home to the most hostile environment, with the radiation belts closest to the planet being the most intense. Early indications suggest the two Perijove 71 safe-mode events occurred as the spacecraft flew through these belts. To block high-energy particles from impacting sensitive electronics and mitigate the harmful effects of the radiation, Juno features a titanium radiation vault.

Including the Perijove 71 events, Juno has unexpectedly entered spacecraft-induced safe mode four times since arriving at Jupiter in July 2016: first, in 2016 during its second orbit, then in 2022 during its 39th orbit. In all four cases, the spacecraft performed as expected and recovered full capability.

Juno’s next perijove will occur on May 7 and include a flyby of the Jovian moon Io at a distance of about 55,300 miles (89,000 kilometers).

More About Juno

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org

2025-049

Share Details Last Updated Apr 09, 2025 Related Terms Explore More 2 min read For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation

Article


1 year ago

1 min read Juno Marks 50 Orbits Around Jupiter

NASA’s Juno mission completed its 50th close pass by Jupiter on April 8, 2023. To…



Article


2 years ago

5 min read 10 Things: Two Years of Juno at Jupiter

NASA’s Juno mission arrived at the King of Planets in July 2016. The intrepid robotic…



Article


7 years ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

China researchers propose gravitational-wave observatory

Wed, 09/04/2025 - 10:31
Researchers in China have proposed a novel gravitational-wave observatory to search for cracks in Einstein’s general theory of relativity using four satellites that form a tetrahedral structure in space.

Euclid mission spots Einstein ring

Wed, 09/04/2025 - 10:30
The European Space Agency (ESA) has released a spectacular image of an Einstein ring – a circle of light formed around a galaxy by gravitational lensing.

Building blocks of life seen in samples from the asteroid Bennu

Wed, 09/04/2025 - 10:30
A sample of asteroid dirt brought back to Earth by NASA’s OSIRIS-REx mission contains amino acids, the nucleobases of RNA and DNA as well as brines that could have facilitated the formation of organic molecules.

How long is a day on Uranus? Slightly longer than we thought, it seems

Wed, 09/04/2025 - 10:30

Thanks to the Hubble Space Telescope, we now know that a day on Uranus lasts for 28 seconds longer than previously thought - a difference that could be crucial in planning future missions to the gas giant

Space could emerge from time

Wed, 09/04/2025 - 10:29

An investigation of the changing behaviour of a single quantum bit through time has uncovered a tantalising similarity to the geometry of three-dimensional space

Chance of asteroid hitting Moon increases slightly

Sat, 05/04/2025 - 18:06

Asteroid 2024 YR4 won’t hit Earth but now has a 3.8% chance of striking the Moon.

Hubble Spots Stellar Sculptors in Nearby Galaxy

Fri, 04/04/2025 - 09:53
Explore Hubble 3 Min Read Hubble Spots Stellar Sculptors in Nearby Galaxy This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. Credits: ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble)

As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.

This new image showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and Hubble have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.

This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble)

NGC 346 is in the Small Magellanic Cloud, a satellite galaxy of the Milky Way that lies 200,000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early universe.

NGC 346 is home to more than 2,500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are sculpted by the luminous stars in the cluster.

Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.

The inhabitants of this cluster are stellar sculptors, carving out a bubble within the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace, dispersing the surrounding nebula.

The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot, young stars like those in NGC 346. The presence of this nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble NGC 346 Images and Science Download the image above

NASA’s Hubble Finds Spiraling Stars, Providing Window into Early Universe

Young Stars Sculpt Gas with Powerful Outflows in the Small Magellanic Cloud

Hubble’s Black and White View

Infant Stars in the Small Magellanic Cloud

Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster

Share Details Last Updated Apr 04, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Contact Media

Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov

Bethany Downer
ESA/Hubble Chief Science Communications Officer
bethany.downer@esahubble.org

Related Terms Related Links

 

Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

Exploring the Birth of Stars

Hubble’s 35th Anniversary

Hubble News

Acoustic modes in M67 cluster stars trace deepening convective envelopes

Thu, 03/04/2025 - 10:12

Nature, Published online: 02 April 2025; doi:10.1038/s41586-025-08760-2

Measuring acoustic oscillations in 27 stars within the M67 cluster presents evidence of a rapidly evolving convective zone as stars evolve from subgiants to red giants.

X-ray Clues Reveal Destroyed Planet

Thu, 03/04/2025 - 10:11
In about 5 billion years, our Sun will run out of fuel and expand, possibly engulfing Earth. These end stages of a star’s life can be utterly beautiful – as is the case with this planetary nebula called the Helix Nebula. Astronomers study these objects by looking at all kinds of light.X-ray: NASA/CXC/SAO/Univ Mexico/S. Estrada-Dorado et al.; Ultraviolet: NASA/JPL; Optical: NASA/ESA/STScI (M. Meixner)/NRAO (T.A. Rector); Infrared: ESO/VISTA/J. Emerson; Image Processing: NASA/CXC/SAO/K. Arcand

This image of the Helix Nebula, released on March 4, 2025, shows a potentially destructive white dwarf at the nebula’s center: this star may have destroyed a planet. This has never been seen before – and could explain a mysterious X-ray signal that astronomers have detected from the nebula for over 40 years.

This view combines X-rays from NASA’s Chandra X-ray Observatory (magenta), optical light data from NASA’s Hubble Space Telescope (orange, light blue), infrared data from the European Southern Observatory VISTA telescope (gold, dark blue), and ultraviolet data from GALEX (purple) of the Helix Nebula. Data from Chandra indicates that this white dwarf has destroyed a very closely orbiting planet.

Image credit: X-ray: NASA/CXC/SAO/Univ Mexico/S. Estrada-Dorado et al.; Ultraviolet: NASA/JPL; Optical: NASA/ESA/STScI (M. Meixner)/NRAO (T.A. Rector); Infrared: ESO/VISTA/J. Emerson; Image Processing: NASA/CXC/SAO/K. Arcand

What’s Up: April 2025 Skywatching Tips from NASA

Wed, 02/04/2025 - 09:24
Skywatching
  1. Science
  2. Skywatching
  3. What’s Up: April 2025…
  April (Meteor) Showers and See a City of Stars!

Enjoy observing planets in the morning and evening sky, look for Lyrid meteors, and hunt for the “faint fuzzy” wonder that is the distant and ancient city of stars known as globular cluster M3. 

Skywatching Highlights

All Month – Planet Visibility:

  • Mercury: Visible for a few days in the second half of April, extremely low in the east before sunrise.
  • Venus: Rising low in the east in the hour before dawn.
  • Mars: Bright and easy to view after dark all month. Setting a couple of hours after midnight.
  • Jupiter: Bright and easy to spot in the west after dark, setting a couple of hours after sunset.
  • Saturn: Visible low in the east below Venus, before dawn in the last two weeks of April.

Daily Highlights:

April 1 & 30 – Jupiter & Crescent Moon: Find the charming pair in the west as the sky darkens, setting about 3 hours after sunset.

April 4 & 5 – Mars & Moon: The Moon, around its first quarter phase, appears near Mars in the sky for two nights.

April 24-25 – Grouping of the Moon & Three Planets: Find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms the morning sky. Mercury is also visible below them for those with a clear view to the horizon.

All month – Venus: Earth’s hothouse twin planet has made the shift from an evening object to a morning sight. You’ll notice it rising low in the east before dawn, looking a little higher each morning through the month. 

All month – Mars: Looking bright and reddish in color, Mars is visible high overhead after dark all month. At the start of the month it lies along a line with bright stars Procyon and Pollux, but you’ll notice it moves noticeably over the course of April (~12 degrees or the width of your outstretched fist at arm’s length).

Transcript

What’s Up for April? Planets at dusk and dawn, April showers, and observing a distant city of stars.

Sky chart showing Jupiter and the crescent Moon on April 1. A similar scene repeats on April 30, but with the Moon appearing above Jupiter. NASA/JPL-Caltech

First up, in the evening sky, we begin and end the month with Jupiter and the crescent Moon shining brightly together in the western sky as sunset fades. On both April 1st and 30th, you can find the charming pair about half an hour after sunset, setting about 3 hours later.

Mars is high overhead in the south on April evenings. At the start of the month, it’s directly in between bright stars Procyon and Pollux, but it moves noticeably during the month. You’ll find the first-quarter moon right next to Mars on April 4th and 5th.

Moving to the morning sky, Venus has now made the switch from an evening object to a morning one. You may start to notice it rising low in the east before dawn, looking a little higher each morning through the month.

Sky chart showing the eastern sky 45 minutes before sunrise on April 24, with Venus, Saturn and the crescent Moon forming a grouping low in the sky. Mercury might also be visible for those with a completely clear view to the horizon. NASA/JPL-Caltech

Around April 24th and 25th, you’ll find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms up the morning sky. Those with a clear view to the horizon might also pick out Mercury looking bright, but very low in the sky.

April brings shooting stars as Earth passes through one the streams of comet dust that create our annual meteor showers. The Lyrids are a modest meteor shower that peaks overnight on April 21st and into the morning of the 22nd. You can expect up to 15 meteors per hour near the peak under dark skies.

The Lyrids are best observed from the Northern Hemisphere, but can be seen from south of the equator as well. View them after about 10:30pm local time until dawn, with the best viewing around 5 a.m. The waning crescent moon will rise around 3:30am, but at only 27% full, it shouldn’t interfere too much with your meteor watching. For the best experience, face roughly toward the east, lie down in a safe, dark place away from bright lights, and look straight overhead. Meteors can appear anywhere in the sky, and some Lyrids can leave bright trails that last for a few seconds after they’ve passed.

NASA studies meteors from the ground, in the air, and from orbit to forecast meteor activity and protect spacecraft, and to understand the composition of comets and asteroids throughout our solar system.

Sky chart facing east around 9pm in April 2025 showing the location of globular cluster M3. The chart depicts the cluster’s position relative to the Big Dipper and bright stars Arcturus and Cor Caroli. The Big Dipper star Megrez serves as an indicator for the brightness of Cor Caroli. For easy visibility, M3 is depicted brighter and larger than its actual appearance. NASA/JPL-Caltech

April offers a chance to observe a truly distant wonder – a globular cluster known as “M3.” It’s a vast collection of stars that lies 34,000 light-years from Earth in our galaxy’s outer reaches. Astronomer Charles Messier discovered this object in 1764, while searching for new comets. Realizing it wasn’t one, he added it to his list of interesting objects that were not comets, which today we know as Messier’s catalog.

Through binoculars, Messier 3, or M3, appears as a small, fuzzy, star-like patch of light. With a small telescope, you’ll see a more defined glow with a slightly grainy texture. And with telescopes 8 inches or larger, the cluster begins to resolve into hundreds of individual stars. 

Now, globular clusters contain some of the oldest stars in the universe, often over 10 billion years old. Unlike open clusters like the Pleiades, which sit within the Milky Way’s spiral arms, globular clusters are found in the galaxy’s halo, orbiting far above and below the Milky Way’s disk. Our galaxy has around 150 confirmed globular clusters. M3 itself is probably 11 to 13 billion years old and contains around half a million stars. And it’s relatively easy to spot in April under dark skies with binoculars or a small telescope.

Finding M3 starts with the Big Dipper. Facing east, use the Dipper’s handle to “arc to Arcturus,” the fourth-brightest star in the night sky. From there, look higher in the sky to find the star Cor Caroli located here to the west of the Dipper’s handle. It’s about as bright as this star in the Dipper’s cup. M3 is located roughly a third of the way from Arcturus to Cor Caroli. With binoculars or a finder scope, sweep within this area until you spot a faint, round glow.

M3 is an excellent target for beginners and seasoned observers alike. Whether using binoculars or a telescope, you’ll be rewarded with a view of one of the oldest objects in our galaxy.

The phases of the Moon for April 2025. NASA/JPL-Caltech

Above are the phases of the Moon for April.

Stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

Keep Exploring Discover More Topics From NASA

Skywatching


Planets


Solar System Exploration


Moons

How nothing could destroy the universe

Wed, 02/04/2025 - 09:21

The concept of nothing once sparked a 1000-year-long war, today it might explain dark energy and nothingness even has the potential to destroy the universe, explains physicist Antonio Padilla

Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science

Tue, 01/04/2025 - 10:16
Explore This Section

5 min read

Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science This montage of images taken by the Voyager spacecraft of the planets and four of Jupiter’s moons is set against a false-color picture of the Rosette Nebula with Earth’s moon in the foreground. Archival data from the Voyager missions continue to produce new scientific discoveries. NASA/JPL/ASU

Every NASA mission represents a leap into the unknown, collecting data that pushes the boundaries of human understanding. But the story doesn’t end when the mission concludes. The data carefully preserved in NASA’s archives often finds new purpose decades later, unlocking discoveries that continue to benefit science, technology, and society.

“NASA’s science data is one of our most valuable legacies,” said Kevin Murphy, NASA’s chief science data officer at NASA Headquarters in Washington. “It carries the stories of our missions, the insights of our discoveries, and the potential for future breakthroughs.”

NASA’s science data is one of our most valuable legacies.

Kevin Murphy

Chief Science Data Officer, NASA’s Science Mission Directorate

NASA’s Science Mission Directorate manages an immense amount of data, spanning astrophysics, biological and physical sciences, Earth science, heliophysics, and planetary science. Currently, NASA’s science data holdings exceed 100 petabytes—enough to store 20 billion photos from the average modern smartphone. This volume is expected to grow significantly with new missions.

This vast amount of data enables new discoveries, connecting scientific observations together in meaningful ways. Over 50% of scientific publications rely on archived data, which NASA provides to millions of commercial, government, and scientific users.

NASA’s five science divisions — Astrophysics, Biological and Physical Sciences, Earth Science, Heliophysics, and Planetary Science — store petabytes’ worth of data in their archives that enable scientists to continually make discoveries. NASA

Managing and stewarding such massive volumes of information requires careful planning, robust infrastructure, and innovative strategies to ensure the data is accessible, secure, and sustainable. Continued support for data storage and cutting-edge technology is key to ensuring future generations of researchers can continue to explore using science data from NASA missions. 

Modern technology, such as image processing and artificial intelligence, helps unlock new insights from previous observations. For example, in 1986, NASA’s Voyager 2 spacecraft conducted a historic flyby of Uranus, capturing detailed data on the planet and its environment. Decades later, in the early 2000s, scientists used advanced image processing techniques on this archival data to discover two small moons, Perdita and Cupid, which had gone unnoticed during the initial analysis.

In 2024, researchers revisited this 38-year-old archival data and identified a critical solar wind event that compressed Uranus’s magnetosphere just before the Voyager 2 flyby. This rare event, happening only about four percent of the time, provided unique insights into Uranus’s magnetic field and its interaction with space weather.

The first panel of this artist’s concept depicts how Uranus’s magnetosphere (its protective bubble) was behaving before Voyager 2’s flyby. The second panel shows that an unusual kind of solar weather was happening at the same time as the spacecraft’s flyby, giving scientists a skewed view of Uranus’s magnetosphere. The work enabled by archival Voyager data contributes to scientists’ understanding of this enigmatic planet. NASA/JPL-Caltech

NASA’s Lunar Reconnaissance Orbiter (LRO), launched in 2009, continues to provide data that reshapes our understanding of the Moon. In 2018, scientists analyzing the LRO’s archival data confirmed the presence of water ice in permanently shadowed regions at the Moon’s poles. 

In 2024, new studies out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, showed widespread evidence of water ice within the permanently shadowed regions outside the lunar South Pole, further aiding lunar mission planners. This discovery not only holds implications for lunar exploration but also demonstrates how existing data can yield groundbreaking insights.

Artist rendering of the Lunar Reconnaissance Orbiter (LRO) above the Moon. LRO carries seven instruments that make comprehensive remote sensing observations of the Moon and measurements of the lunar radiation environment. Archival data from LRO continues to help scientists make discoveries about the Moon. NASA/GSFC

NASA’s data archives uncover the secrets of our own planet as well as others. In 2024, archaeologists published a study revealing a “lost” Mayan city in Campeche, Mexico that was previously unknown to the scientific community. The researchers identified the city in archival airborne Earth science data, including a 2013 dataset from NASA Goddard’s LiDAR Hyperspectral & Thermal Imager (G-LiHT) mission.

The Harmonized Landsat and Sentinel-2 (HLS) project provides frequent high-resolution observations of Earth’s surface. Data from HLS has been instrumental in tracking urban growth over time. By analyzing changes in land cover, researchers have used HLS to monitor the expansion of cities and infrastructure development. For example, in rapidly growing metropolitan areas, HLS data has revealed patterns of urban sprawl, helping planners analyze past trends to predict future metropolitan expansion.




1985 2010

NASA’s Goddard Space Flight Center

NASA’s Goddard Space Flight Center 19852010

NASA’s Goddard Space Flight Center NASA’s Goddard Space Flight Center
1985
2010

Before and After

Urban Growth in Ontario, California

1985-2010


CurtainToggle2-Up



Image Details


Thirty-five miles due east of downtown Los Angeles lies the city of Ontario, California. These natural color Landsat 5 images show the massive growth of the city between 1985 and 2010. The airport, found in the southwest portion of the images, added a number of runways, and large warehousing structures now dominate the once rural areas surrounding the airport. In these images, vegetation is green and brown, while urban structures are bright white and gray. A large dry riverbed in the northeast corner is also bright white, but its nonlinear appearance sets it apart visually. Researchers use archival data from Landsat and other satellites to track the growth of cities like Ontario, CA over time.

These discoveries represent only a fraction of what’s possible. NASA is investing in new technologies to harness the full potential of its data archives, including artificial intelligence (AI) foundation models—open-source AI tools designed to extract new findings from existing science data.

“Our vision is to develop at least one AI model for each NASA scientific discipline, turning decades of legacy data into a treasure trove of discovery,” said Murphy. “By embedding NASA expertise into these tools, we ensure that our scientific data continues to drive innovation across science, industry, and society for generations to come.”

Developed under a collaboration between NASA’s Office of the Chief Science Data Officer, IBM, and universities, these AI models are scientifically validated and adaptable to new datasets, making them invaluable for researchers and industries alike.

“It’s like having a virtual assistant that leverages decades of NASA’s knowledge to make smarter, quicker decisions,” said Murphy.

On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory

The team’s Earth science foundation models—the Prithvi Geospatial model and Prithvi Weather model—analyze vast datasets to monitor Earth’s changing landscape, track weather patterns, and support critical decision-making processes.

Building on this success, the team is now developing a foundation model for heliophysics. This model will unlock new insights about the dynamics of solar activity and space weather, which can affect satellite operations, communication systems, and even power grids on Earth. Additionally, a model designed for the Moon is in progress, aiming to enhance our understanding of lunar resources and environments.

This investment in AI not only shortens the “data-to-discovery” timeline but also ensures that NASA’s data archives continue to drive innovation. From uncovering new planets to informing future exploration and supporting industries on Earth, the possibilities are boundless.

By maintaining extensive archives and embracing cutting-edge technologies, the agency ensures that the data collected today will continue to inspire and inform discoveries far into the future. In doing so, NASA’s legacy science data truly remains the gift that keeps on giving.

By Amanda Moon Adams
Communications Lead for the Office of the Chief Science Data Officer

Share Details Last Updated Mar 31, 2025 Related Terms Explore More 3 min read NASA Open Data Turns Science Into Art

Article


1 month ago

3 min read 2023 Entrepreneurs Challenge Winner Skyline Nav AI: Revolutionizing GPS-Independent Navigation with Computer Vision

Article


3 months ago

4 min read NASA Open Science Reveals Sounds of Space

Article


3 months ago

Keep Exploring Discover More Topics From NASA Open Science at NASA

NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


Parker Solar Probe

On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


Artificial Intelligence for Science

NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Quantum eavesdropping could work even from inside a black hole

Tue, 01/04/2025 - 10:15

An eavesdropper hiding inside a black hole could still obtain information about quantum objects on its outside, a finding that reveals how effectively black holes destroy the quantum states near their event horizons