skip to content

Institute of Astronomy

 

Euclid Quick Data Release (Q1). The first catalogue of strong-lensing galaxy clusters

Thu, 20/03/2025 - 10:21
arXiv:2503.15330v1 Announce Type: new Abstract: We present the first catalogue of strong lensing galaxy clusters identified in the Euclid Quick Release 1 observations (covering $63.1\,\mathrm{deg^2}$). This catalogue is the result of the visual inspection of 1260 cluster fields. Each galaxy cluster was ranked with a probability, $\mathcal{P}_{\mathrm{lens}}$, based on the number and plausibility of the identified strong lensing features. Specifically, we identified 83 gravitational lenses with $\mathcal{P}_{\mathrm{lens}}>0.5$, of which 14 have $\mathcal{P}_{\mathrm{lens}}=1$, and clearly exhibiting secure strong lensing features, such as giant tangential and radial arcs, and multiple images. Considering the measured number density of lensing galaxy clusters, approximately $0.3\,\mathrm{deg}^{-2}$ for $\mathcal{P}_{\mathrm{lens}}>0.9$, we predict that \Euclid\ will likely see more than 4500 strong lensing clusters over the course of the mission. Notably, only three of the identified cluster-scale lenses had been previously observed from space. Thus, \Euclid has provided the first high-resolution imaging for the remaining $80$ galaxy cluster lenses, including those with the highest probability. The identified strong lensing features will be used for training deep-learning models for identifying gravitational arcs and multiple images automatically in \Euclid observations. This study confirms the huge potential of \Euclid for finding new strong lensing clusters, enabling exciting new discoveries on the nature of dark matter and dark energy and the study of the high-redshift Universe.

Euclid Quick Data Release (Q1). An investigation of optically faint, red objects in the Euclid Deep Fields

Thu, 20/03/2025 - 10:18
arXiv:2503.15322v1 Announce Type: new Abstract: Our understanding of cosmic star-formation at $z>3$ used to largely rely on rest-frame UV observations. However, these observations overlook dusty and massive sources, resulting in an incomplete census of early star-forming galaxies. Recently, infrared data from Spitzer and the James Webb Space Telescope (JWST) have revealed a hidden population at $z\sim$3-6 with extreme red colours. Taking advantage of the overlap between imaging in the Euclid Deep Fields (EDFs), covering $\sim$ 60 deg$^2$, and ancillary Spitzer observations, we identified 27000 extremely red objects with $H_E-{\rm IRAC}2>2.25$ (dubbed HIEROs) down to a $10\sigma$ completeness magnitude limit of IRAC2 $=$ 22.5 AB. After a visual inspection to discard artefacts and objects with troubling photometry, we ended up with a final sample of 3900 candidates. We retrieved the physical parameter estimates for these objects from the SED-fitting tool CIGALE. Our results confirm that HIERO galaxies may populate the high-mass end of the stellar mass function at $z>3$, with some reaching extreme stellar masses ($M_*>10^{11}M_\odot$) and exhibiting high dust attenuation ($A_V>3$). However, we consider stellar mass estimates unreliable for $z>3.5$, favouring a lower-z solution. The challenges faced by SED-fitting tools in characterising these objects highlight the need for further studies, incorporating shorter-wavelength and spectroscopic data. Euclid spectra will help resolve degeneracies and better constrain the physical properties of the brightest galaxies. Given the extreme nature of this population, characterising these sources is crucial for understanding galaxy evolution. This work demonstrates Euclid's potential to provide statistical samples of rare, massive, dust-obscured galaxies at $z>3$, which will be prime targets for JWST, ALMA, and ELT.

Euclid Quick Data Release (Q1). The active galaxies of Euclid

Thu, 20/03/2025 - 10:17
arXiv:2503.15320v1 Announce Type: new Abstract: We present a catalogue of candidate active galactic nuclei (AGN) in the $Euclid$ Quick Release (Q1) fields. For each $Euclid$ source we collect multi-wavelength photometry and spectroscopy information from Galaxy Evolution Explorer (GALEX), $Gaia$, Dark Energy Survey (DES), Wise-field Infrared Survey Explorer (WISE), $Spitzer$, Dark Energy Survey (DESI), and Sloan Digital Sky Survey (SDSS), including spectroscopic redshift from public compilations. We investigate the AGN contents of the Q1 fields by applying selection criteria using $Euclid$ colours and WISE-AllWISE cuts finding respectively 292,222 and 65,131 candidates. We also create a high-purity QSO catalogue based on $Gaia$ DR3 information containing 1971 candidates. Furthermore, we utilise the collected spectroscopic information from DESI to perform broad-line and narrow-line AGN selections, leading to a total of 4392 AGN candidates in the Q1 field. We investigate and refine the Q1 probabilistic random forest QSO population, selecting a total of 180,666 candidates. Additionally, we perform SED fitting on a subset of sources with available $z_{\text{spec}}$, and by utilizing the derived AGN fraction, we identify a total of 7766 AGN candidates. We discuss purity and completeness of the selections and define two new colour selection criteria ($JH$_$I_{\text{E}}Y$ and $I_{\text{E}}H$_$gz$) to improve on purity, finding 313,714 and 267,513 candidates respectively in the Q1 data. We find a total of 229,779 AGN candidates equivalent to an AGN surface density of 3641 deg$^{-2}$ for $18

Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web

Thu, 20/03/2025 - 10:08
arXiv:2503.15333v1 Announce Type: new Abstract: Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 $\mathrm{deg}^2$) at $0.5 10^{10} M_\odot$) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of S\'ersic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey.

Euclid Quick Data Release (Q1) The Strong Lensing Discovery Engine B -- Early strong lens candidates from visual inspection of high velocity dispersion galaxies

Thu, 20/03/2025 - 10:05
arXiv:2503.15325v1 Announce Type: new Abstract: We present a search for strong gravitational lenses in Euclid imaging with high stellar velocity dispersion ($\sigma_\nu > 180$ km/s) reported by SDSS and DESI. We performed expert visual inspection and classification of $11\,660$ \Euclid images. We discovered 38 grade A and 40 grade B candidate lenses, consistent with an expected sample of $\sim$32. Palomar spectroscopy confirmed 5 lens systems, while DESI spectra confirmed one, provided ambiguous results for another, and help to discard one. The \Euclid automated lens modeler modelled 53 candidates, confirming 38 as lenses, failing to model 9, and ruling out 6 grade B candidates. For the remaining 25 candidates we could not gather additional information. More importantly, our expert-classified non-lenses provide an excellent training set for machine learning lens classifiers. We create high-fidelity simulations of \Euclid lenses by painting realistic lensed sources behind the expert tagged (non-lens) luminous red galaxies. This training set is the foundation stone for the \Euclid galaxy-galaxy strong lensing discovery engine.

Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images

Thu, 20/03/2025 - 10:04
arXiv:2503.15321v1 Announce Type: new Abstract: Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]

Euclid Quick Data Release (Q1). Extending the quest for little red dots to z<4

Thu, 20/03/2025 - 10:00
arXiv:2503.15323v1 Announce Type: new Abstract: Recent James Webb Space Telescope (JWST) observations have revealed a population of sources with a compact morphology and a `v-shaped' continuum, namely blue at rest-frame $\lambda<4000$A and red at longer wavelengths. The nature of these sources, called `little red dots' (LRDs), is still debated, since it is unclear if they host active galactic nuclei (AGN) and their number seems to drastically drop at z<4. We utilise the 63 $deg^2$ covered by the quick Euclid Quick Data Release (Q1) to extend the search for LRDs to brighter magnitudes and to lower z than what has been possible with JWST to have a broader view of the evolution of this peculiar galaxy population. The selection is done by fitting the available photometric data (Euclid, Spitzer/IRAC, and ground-based griz data) with two power laws, to retrieve the rest-frame optical and UV slopes consistently over a large redshift range (i.e, z<7.6). We exclude extended objects and possible line emitters, and perform a visual inspection to remove imaging artefacts. The final selection includes 3341 LRD candidates from z=0.33 to z=3.6, with 29 detected in IRAC. Their rest-frame UV luminosity function, in contrast with previous JWST studies, shows that the number density of LRD candidates increases from high-z down to z=1.5-2.5 and decreases at even lower z. Less evolution is apparent focusing on the subsample of more robust LRD candidates having IRAC detections, which is affected by low statistics and limited by the IRAC resolution. The comparison with previous quasar UV luminosity functions shows that LRDs are not the dominant AGN population at z<4. Follow-up studies of these LRD candidates are key to confirm their nature, probe their physical properties and check for their compatibility with JWST sources, since the different spatial resolution and wavelength coverage of Euclid and JWST could select different samples of compact sources.

Euclid Quick Data Release (Q1) First study of red quasars selection

Thu, 20/03/2025 - 09:57
arXiv:2503.15319v1 Announce Type: new Abstract: Red quasars constitute an important but elusive phase in the evolution of supermassive black holes, where dust obscuration can significantly alter their observed properties. They have broad emission lines, like other quasars, but their optical continuum emission is significantly reddened, which is why they were traditionally identified based on near- and mid-infrared selection criteria. This work showcases the capability of the \Euclid space telescope to find a large sample of red quasars, using \Euclid near infrared (NIR) photometry. We first conduct a forecast analysis, comparing a synthetic catalogue of red QSOs with COSMOS2020. Using template fitting, we reconstruct \Euclid-like photometry for the COSMOS sources and identify a sample of candidates in a multidimensional colour-colour space achieving $98\%$ completeness for mock red QSOs with $30\%$ contaminants. To refine our selection function, we implement a probabilistic Random Forest classifier, and use UMAP visualisation to disentangle non-linear features in colour-space, reaching $98\%$ completeness and $88\%$ purity. A preliminary analysis of the candidates in the \Euclid Deep Field Fornax (EDF-F) shows that, compared to VISTA+DECAm-based colour selection criteria, \Euclid's superior depth, resolution and optical-to-NIR coverage improves the identification of the reddest, most obscured sources. Notably, the \Euclid exquisite resolution in the $I_E$ filter unveils the presence of a candidate dual quasar system, highlighting the potential for this mission to contribute to future studies on the population of dual AGN. The resulting catalogue of candidates, including more the 150 000 sources, provides a first census of red quasars in \Euclid Q1 and sets the groundwork for future studies in the Euclid Wide Survey (EWS), including spectral follow-up analyses and host morphology characterisation.

Euclid: Quick Data Release (Q1) -- A census of dwarf galaxies across a range of distances and environments

Thu, 20/03/2025 - 09:55
arXiv:2503.15335v1 Announce Type: new Abstract: The Euclid Q1 fields were selected for calibration purposes in cosmology and are therefore relatively devoid of nearby galaxies. However, this is precisely what makes them interesting fields in which to search for dwarf galaxies in local density environments. We take advantage of the unprecedented depth, spatial resolution, and field of view of the Euclid Quick Release (Q1) to build a census of dwarf galaxies in these regions. We have identified dwarfs in a representative sample of 25 contiguous tiles in the Euclid Deep Field North (EDF-N), covering an area of 14.25 sq. deg. The dwarf candidates were identified using a semi-automatic detection method, based on properties measured by the Euclid pipeline and listed in the MER catalogue. A selection cut in surface brightness and magnitude was used to produce an initial dwarf candidate catalogue, followed by a cut in morphology and colour. This catalogue was visually classified to produce a final sample of dwarf candidates, including their morphology, number of nuclei, globular cluster (GC) richness, and presence of a blue compact centre. We identified 2674 dwarf candidates, corresponding to 188 dwarfs per sq. deg. The visual classification of the dwarfs reveals a slightly uneven morphological mix of 58% ellipticals and 42% irregulars, with very few potentially GC-rich (1.0%) and nucleated (4.0%) candidates but a noticeable fraction (6.9%) of dwarfs with blue compact centres. The distance distribution of 388 (15%) of the dwarfs with spectroscopic redshifts peaks at about 400 Mpc. Their stellar mass distribution confirms that our selection effectively identifies dwarfs while minimising contamination. The most prominent dwarf overdensities are dominated by dEs, while dIs are more evenly distributed. This work highlights Euclid's remarkable ability to detect and characterise dwarf galaxies across diverse masses, distances, and environments.

BlackTHUNDER strikes twice: rest-frame Balmer-line absorption and high Eddington accretion rate in a Little Red Dot at $z=7.04$

Wed, 19/03/2025 - 19:10
arXiv:2503.11752v1 Announce Type: new Abstract: JWST spectroscopy has revealed a population of compact objects at redshifts $z=2$-9 with `v'-shaped spectral energy distributions, broad permitted lines, and, often, hydrogen Balmer absorption. Among these `Little Red Dots' (LRDs), Abell2744-QSO1 at $z=7.04$ has been confirmed to have time-variable equivalent width (EW) in its broad emission lines, confirming its AGN nature. We extend the analysis of NIRSpec/IFS data from the BlackTHUNDER survey to the H$\alpha$ line. The broad-line profile in Abell2744-QSO1 is manifestly non-Gaussian, requiring at least two Gaussian components with full width at half maximum FWHM=$450\pm50$ and $1800\pm100$ km s$^{-1}$. Crucially, we also detect a narrow-line Gaussian component, and strong H$\alpha$ absorption (EW relative to the continuum $\approx 30^{+15}_{-9}$ A), confirming a connection between the strong Balmer break and line absorption. The absorber is at rest with respect to broad H$\alpha$, suggesting that the gas cannot be interpreted as an inflow or outflow, forming instead a long-lived structure. Its velocity dispersion is $\sigma_{abs} = 100\pm10$ km s$^{-1}$, consistent with the value inferred from the analysis of the Balmer break. Based on H$\alpha$, we infer a black hole mass of log(M$_{BH}$/M$_\odot$)=6.3-6.7, 0.9-1.3 dex smaller than previous estimates based on H$\beta$. The Eddington ratio is 0.7-1.6. Combining the high signal-to-noise ratio of the narrow H$\alpha$ line with the spectral resolution R=3,700 of the G395H grating, we infer a narrow-line dispersion $\sigma_n = 22^{+5}_{-6}$ km s$^{-1}$, which places a stringent constraint on the black-hole-to-dynamical-mass ratio of this system to be M$_{BH}$/M$_{dyn}$>0.02-0.4. If M$_{BH}$ is near the low-mass end of our estimates, the SMBH would be accreting at a super-Eddington rate. Alternatively, at the high-M$_{BH}$ end, there would be minimal room for a host galaxy.

Optical+NIR analysis of a newly found Einstein ring at z$\sim$1 from the Kilo-Degree Survey: Dark matter fraction, total and dark matter density slope and IMF

Fri, 14/03/2025 - 10:20
arXiv:2503.10180v1 Announce Type: new Abstract: We report the discovery and spectroscopic confirmation of a new bright blue Einstein ring in the Kilo Degree Survey (KiDS) footprint: the Einstein ``blue eye''. Spectroscopic data from X-Shooter at the Very Large Telescope (VLT) show that the lens is a typical early-type galaxy (ETG) at $z=0.9906$, while the background source is a Ly$\alpha$ emitter at $z=2.823$. The reference lens modeling was performed on a high-resolution $Y-$band adaptive-optics image from HAWK-I at VLT. Assuming a singular isothermal ellipsoid (SIE) total mass density profile, we inferred an Einstein radius $R_{Ein}=10.47 \pm 0.06$ kpc. The average slope of the total mass density inside the Einstein radius, as determined by a joint analysis of lensing and isotropic Jeans equations is $\gamma=2.14^{+0.06}_{-0.07}$, showing no systematic deviation from the slopes of lower redshit galaxies, This can be the evidence of ETGs developing through dry mergers plus moderate dissipationless accretion. Stellar population analysis with 8-band ($gri$ZYJHK$s$) photometries from KiDS and VIKING shows that the total stellar mass of the lens is $M*=(3.95\pm 0.35)\times 10^{11} M_\odot$ (Salpeter Initial Mass Function, IMF), implying a dark matter fraction inside the effective radius to be $f_{\rm DM}=0.307\pm 0.151$. We finally explored the dark matter halo slope and found a strong degeneracy with the dynamic stellar mass. Dark matter adiabatic contraction is needed to explain the posterior distribution of the slope, unless IMF heavier than Salpeter is assumed.

Luminosity and stellar mass functions of faint photometric satellites around spectroscopic central galaxies from DESI Year-1 Bright Galaxy Survey

Thu, 06/03/2025 - 10:25
arXiv:2503.03317v1 Announce Type: new Abstract: We measure the luminosity functions (LFs) and stellar mass functions (SMFs) of photometric satellite galaxies around spectroscopically identified isolated central galaxies (ICGs). The photometric satellites are from the DESI Legacy Imaging Surveys (DR9), while the spectroscopic ICGs are selected from the DESI Year-1 BGS sample. We can measure satellite LFs down to $r$-band absolute magnitudes of $M_{r,\mathrm{sat}}\sim-7$, around ICGs as small as $7.1<\log_{10}M_{\ast,\mathrm{ICG}}/\mathrm{M_\odot}<7.8$, with the stellar mass of ICGs measured by the DESI Fastspecfit pipeline. The satellite SMF can be measured down to $\log_{10}M_{\ast,\mathrm{sat}}/\mathrm{M_\odot}\sim 5.5$. Interestingly, we discover that the faint/low-mass end slopes of satellite LFs/SMFs become steeper with the decrease in the stellar masses of host ICGs, with smaller and nearby host ICGs capable of being used to probe their fainter satellites.. The steepest slopes are $-2.298\pm0.656$ and $-$2.888$\pm$0.916 for satellite LF and SMF, respectively. Detailed comparisons are performed between the satellite LFs around ICGs selected from DESI BGS or from the SDSS NYU-VAGC spectroscopic Main galaxies over $7.1<\log_{10}M_{\ast,\mathrm{ICG}}/\mathrm{M_\odot}<11.7$, showing reasonable agreements, but we show that the differences between DESI and SDSS stellar masses for ICGs play a role to affect the results. We also compare measurements based on DESI Fastspecfit and Cigale stellar masses used to bin ICGs, with the latter including the modeling of AGN based on WISE photometry, and we find good agreements in the measured satellite LFs by using either of the DESI stellar mass catalogs.

PAC in DESI. I. Galaxy Stellar Mass Function into the $10^{6}{\rm M}_{\odot}$ Frontier

Wed, 05/03/2025 - 17:05
arXiv:2503.01948v1 Announce Type: new Abstract: The Photometric Objects Around Cosmic Webs (PAC) method integrates cosmological photometric and spectroscopic surveys, offering valuable insights into galaxy formation. PAC measures the excess surface density of photometric objects, $\bar{n}_2w_{\rm{p}}$, with specific physical properties around spectroscopic tracers. In this study, we improve the PAC method to make it more rigorous and eliminate the need for redshift bins. We apply the enhanced PAC method to the DESI Y1 BGS Bright spectroscopic sample and the deep DECaLS photometric sample, obtaining $\bar{n}_2w_{\rm{p}}$ measurements across the complete stellar mass range, from $10^{5.3}{\rm M}_{\odot}$ to $10^{11.5}{\rm M}_{\odot}$ for blue galaxies, and from $10^{6.3}{\rm M}_{\odot}$ to $10^{11.9}{\rm M}_{\odot}$ for red galaxies. We combine $\bar{n}_2w_{\rm{p}}$ with $w_{\rm{p}}$ measurements from the BGS sample, which is not necessarily complete in stellar mass. Assuming that galaxy bias is primarily determined by stellar mass and colour, we derive the galaxy stellar mass functions (GSMFs) down to $10^{5.3}{\rm M}_{\odot}$ for blue galaxies and $10^{6.3}{\rm M}_{\odot}$ for red galaxies, while also setting lower limits for smaller masses. The blue and red GSMFs are well described by single and double Schechter functions, respectively, with low-mass end slopes of $\alpha_{\rm{blue}}=-1.54^{+0.02}_{-0.02}$ and $\alpha_{\rm{red}}=-2.50^{+0.08}_{-0.08}$, resulting in the dominance of red galaxies below $10^{7.6}{\rm M}_{\odot}$. Stage-IV cosmological photometric surveys, capable of reaching 2-3 magnitudes deeper than DECaLS, present an opportunity to explore the entire galaxy population in the local universe with PAC. This advancement allows us to address critical questions regarding the nature of dark matter, the physics of reionization, and the formation of dwarf galaxies.

A Supermassive Black Hole in a Diminutive Ultra-compact Dwarf Galaxy Discovered with JWST/NIRSpec+IFU

Tue, 04/03/2025 - 11:35
arXiv:2503.00113v1 Announce Type: new Abstract: The integral-field unit mode of the Near-Infrared Spectrograph (NIRSpec+IFU) mounted on the James Webb Space Telescope has now enabled kinematic studies of smaller and less massive compact stellar systems in which to search for central massive black holes (BHs) than ever before. We present here the first such detection using NIRSpec+IFU in its highest resolution (R~2700) mode. We report a $3\sigma$ detection of a central black hole with mass ${\cal M}_{BH}=2.2\pm1.1\times10^6\,M_\odot$ in UCD736 orbiting within the Virgo galaxy cluster based on Schwarzschild's modeling of the 1D kinematic profile. The presence of such a massive BH strongly argues against a globular cluster origin of this UCD, and rather suggests a tidally stripped formation route from a former $\gtrsim10^9\,M_\odot$ dwarf galaxy host. Two other methods produce results consistent with Schwarzschild's modelling, but can only provide upper-limits on ${\cal M}_{BH}$. This represents the detection of a BH in the most compact ($r_h\approx15\,{\rm pc}$) stellar system to date, with a ${\cal M}_{BH}$ corresponding to ~9 percent of the system's stellar mass, roughly in line with previously reported UCD BH detections and comparable to the BH detected in the compact elliptical galaxy NGC4486B.

Tripling the Census of Dwarf AGN Candidates Using DESI Early Data

Thu, 20/02/2025 - 10:17
arXiv:2411.00091v2 Announce Type: replace Abstract: Using early data from the Dark Energy Spectroscopic Instrument (DESI) survey, we search for AGN signatures in 410,757 line-emitting galaxies. By employing the BPT emission-line ratio diagnostic diagram, we identify AGN in 75,928/296,261 ($\approx$25.6%) high-mass ($\log (M_{\star}/\rm M_{\odot}) >$ 9.5) and 2,444/114,496 ($\approx$2.1%) dwarf ($\log (M_{\star}/\rm M_{\odot}) \leq$ 9.5) galaxies. Of these AGN candidates, 4,181 sources exhibit a broad H$\alpha$ component, allowing us to estimate their BH masses via virial techniques. This study more than triples the census of dwarf AGN and doubles the number of intermediate-mass black hole (IMBH; $M_{BH} \le 10^6~\rm M_{\odot}$) candidates, spanning a broad discovery space in stellar mass (7 $< \log (M_{\star}/M_{\odot}) <$ 12) and redshift (0.001 $< \rm z <$ 0.45). The observed AGN fraction in dwarf galaxies ($\approx$2.1%) is nearly four times higher than prior estimates, primarily due to DESI's smaller fiber size, which enables the detection of lower luminosity dwarf AGN candidates. We also extend the $M_{BH} - M_{\star}$ scaling relation down to $\log (M_{\star}/M_{\odot}) \approx$ 8.5 and $\log (M_{BH}/\rm M_{\odot}) \approx$ 4.4, with our results aligning well with previous low-redshift studies. The large statistical sample of dwarf AGN candidates from current and future DESI releases will be invaluable for enhancing our understanding of galaxy evolution at the low-mass end of the galaxy mass function.

On the Impacts of Halo Model Implementations in Sunyaev-Zeldovich Cross-Correlation Analyses

Thu, 20/02/2025 - 10:10
arXiv:2502.13291v1 Announce Type: new Abstract: Statistical studies of the circumgalactic medium (CGM) using Sunyaev-Zeldovich (SZ) observations offer a promising method of studying the gas properties of galaxies and the astrophysics that govern their evolution. Forward modeling profiles from theory and simulations allows them to be refined directly off of data, but there are currently significant differences between the thermal SZ (tSZ) observations of the CGM and the predicted tSZ signal. While these discrepancies could be inherent, they could also be the result of decisions in the forward modeling used to build statistical measures off of theory. In order to see effects of this, we compare an analysis utilizing halo occupancy distributions (HODs) implemented in halo models to simulate the galaxy distribution against a previous studies which weighted their results off of the CMASS galaxy sample, which contains nearly one million galaxies, mainly centrals of group sized halos, selected for relatively uniform stellar mass across redshifts between $0.4

Mapping the Filamentary Nebula of NGC 1275 with Multiwavelength SITELLE Observations

Tue, 11/02/2025 - 08:54
arXiv:2502.05406v1 Announce Type: new Abstract: The filamentary nebula encompassing the central galaxy of the Perseus Cluster, NGC 1275, is a complex structure extending dozens of kiloparsecs from NGC 1275. Decades of previous works have focused on establishing the primary formation and ionization mechanisms in different filaments. These studies have pointed to a lack of star formation in the majority of the filaments, the importance of magnetic fields and turbulence in several regions, and the role of interactions between the intercluster medium (ICM) and the cool gas in the filaments, as well as the role of interaction between the central radio source, 3C84, and the filaments. In this paper, we present multi-filter observations of the entire filamentary system that cover the optical bandpass, using the SITELLE instrument at the Canada-France-Hawai'i Telescope. Here, we use the data analysis software, \href{https://crhea93.github.io/LUCI/index.html}{\texttt{LUCI}}, to produce flux maps of the prominent emission lines present in the filters: \oii{}$\lambda$3726/3729, \oiii{}$\lambda$5007, H$\beta$, \nii{}$\lambda$6548, \nii{}$\lambda$6583, and H$\alpha$. We use these maps to produce BPT and WHAN diagrams to study the ionization mechanisms at play in each distinct region of the filamentary nebula. First, we confirm the absence of \oiii{}$\lambda$5007 in the extended filaments, although we detect this line in the central core, revealing a compact region where photoionization by the AGN might affect local conditions. Our findings corroborate previous claims that the ionization in the extended filaments could be caused by the cooling ICM via collisional excitation and/or mixing. Moreover, they support the conclusion that magnetic fields play an important role in the formation and continued existence of the filaments.

The formation of mini-AGN disks around IMBHs and their dynamical implications

Fri, 07/02/2025 - 10:53
arXiv:2409.13805v2 Announce Type: replace Abstract: This study explores the formation and implications of mini-active galactic nuclei (mAGN) disks around intermediate-mass black holes (IMBHs) embedded in gas-rich globular/nuclear clusters (GCs). We examine the parameter space for stable mAGN disks, considering the influence of IMBH mass, disk radius, and gas density on disk stability. The dynamics of stars and black holes within the mAGN disk are modeled, with a focus on gas-induced migration and gas dynamical friction. These dynamical processes can lead to several potentially observable phenomena, including the alignment of stellar orbits into the disk plane, the enhancement of gravitational wave mergers (particularly IMRIs and EMRIs), and the occurrence of mili/centi-tidal disruption events (mTDEs/cTDEs) with unique observational signatures. We find that gas hardening can significantly accelerate the inspiral of binaries within the disk, potentially leading to a frequency shift in the emitted gravitational waves. Additionally, we explore the possibility of forming accreting IMBH systems from captured binaries within the mAGN disk, potentially resulting in the formation of ultraluminous X-ray sources (ULXs). The observational implications of such accreting systems, including X-ray emission, optical signatures, and transient phenomena, are discussed. Furthermore, we investigate the possibility of large-scale jets emanating from gas-embedded IMBHs in GCs. While several caveats and uncertainties exist, our work highlights the potential for mAGN disks to provide unique insights into IMBH demographics, accretion physics, and the dynamics of GCs.

Low dust mass and high star-formation efficiency at $z>12$ from deep ALMA observations

Mon, 03/02/2025 - 10:48
arXiv:2501.19384v1 Announce Type: new Abstract: We investigate the dust mass build-up and star formation efficiency of two galaxies at $z>12$, GHZ2 and GS-z14-0, by combining ALMA and JWST observations with an analytical model that assumes dust at thermal equilibrium. We obtained $3\sigma$ constraints on dust mass of $\log M_{\rm dust}/M_{\odot}<5.0$ and $<5.3$, respectively. These constraints are in tension with a high dust condensation efficiency in stellar ejecta but are consistent with models with a short metal accretion timescale at $z>12$. Given the young stellar ages of these galaxies ($t_{\rm age}\sim10\,{\rm Myrs}$), dust grain growth via accretion may still be ineffective at this stage, though it likely works efficiently to produce significant dust in galaxies at $z\sim7$. The star formation efficiencies, defined as the SFR divided by molecular gas mass, reach $\sim10\,{\rm Gyr}^{-1}$ in a 10\,Myr timescale, aligning with the expected redshift evolution of `starburst' galaxies with efficiencies that are $\sim0.5$--$1\,{\rm dex}$ higher than those in main-sequence galaxies. This starburst phase seems to be common in UV-bright galaxies at $z>12$ and is likely associated with the unique conditions of the early phases of galaxy formation, such as bursty star formation and/or negligible feedback from super-Eddington accretion. Direct observations of molecular gas tracers like [C\,{\sc ii}] will be crucial to further understanding the nature of bright galaxies at $z>12$.

The Southern Photometrical Local Universe Survey (S-PLUS): searching for metal-poor dwarf galaxies

Fri, 31/01/2025 - 10:48
arXiv:2501.18498v1 Announce Type: new Abstract: The metal content of a galaxy's interstellar medium reflects the interplay between different evolutionary processes such as feedback from massive stars and the accretion of gas from the intergalactic medium. Despite the expected abundance of low-luminosity galaxies, the low-mass and low-metallicity regime remains relatively understudied. Since the properties of their interstellar medium resemble those of early galaxies, identifying such objects in the Local Universe is crucial to understand the early stages of galaxy evolution. We used the DR3 catalog of the Southern Photometric Local Universe Survey (S-PLUS) to select low-metallicity dwarf galaxy candidates based on color selection criteria typical of metal-poor, star-forming, low-mass systems. The final sample contains approximately 50 candidates. Spectral energy distribution fitting of the 12 S-PLUS bands reveals that $\sim$ 90\% of the candidates are best fit by models with very low stellar metallicities. We obtained long-slit observations with the Gemini Multi-Object Spectrograph to follow-up a pilot sample and confirm whether these galaxies have low metallicities. We find oxygen abundances in the range $7.35<$ 12 + log(O/H) $< 7.93$ (5\% to 17\% of the solar value), confirming their metal-poor nature. Most targets are outliers in the mass-metallicity relation, i.e. they display a low metal content relative to their observed stellar masses. In some cases, perturbed optical morphologies might give evidence of dwarf-dwarf interactions or mergers. These results suggest that the low oxygen abundances may be associated with an external event causing the accretion of metal-poor gas, which dilutes the oxygen abundance in these systems.