skip to content

Institute of Astronomy

 

The evolution and delivery of rocky extra-solar materials to white dwarfs

Fri, 26/04/2024 - 12:42
arXiv:2401.08767v2 Announce Type: replace Abstract: Understanding stellar evolution and its effect on planetary systems is crucial for correctly interpreting the chemical constraints of exo-planetary material that can be given to us by white dwarfs. This article will describe how asteroids, moons, and comets, as well as boulders, pebbles and dust, evolve into eventual targets for chemical spectroscopy, and how planets and companion stars play a vital role in reshaping system architectures for this purpose.

From stars to diverse mantles, melts, crusts and atmospheres of rocky exoplanets

Fri, 26/04/2024 - 11:44
arXiv:2404.15427v1 Announce Type: new Abstract: This review is focused on describing the logic by which we make predictions of exoplanetary compositions and mineralogies, and how these processes could lead to compositional diversity among rocky exoplanets. We use these predictions to determine the sensitivity of present-day and future observations to detecting compositional differences between rocky exoplanets and the four terrestrial planets. First, we review data on stellar abundances and infer how changes in composition may manifest themselves in the expected bulk compositions of rocky exoplanets (section 2). Converting this information in mass-radius relationships requires calculation of the stable mineral assemblages at a given temperature-pressure-composition (T-P-X), an exercise we describe in section 3. Should the planet be hot enough to engender partial melting of the mantle, then these liquids are likely to rise to the surface and erupt to form planetary crusts; the possible compositional and mineralogical variability of which we examine in section 4. Finally, the expected spectroscopic responses of such crusts are examined in section 5.

The chemistry of extra-solar materials from white dwarf planetary systems

Fri, 26/04/2024 - 11:44
arXiv:2404.15425v1 Announce Type: new Abstract: White dwarf planetary systems provide a unique way to measure the bulk composition of exoplanetary material. Extrasolar asteroids/comets/moons which have survived the evolution of their host star can end up in the atmosphere of the white dwarf. Asteroids and boulders appear to be the most common pollutants, where we use the term "asteroids" to refer to the parent body that is polluting the atmosphere. The presence of the planetary material is detected via absorption lines of heavy elements. White dwarfs with these absorption features are called "polluted" white dwarfs. Polluted white dwarfs were expected to be rare objects because white dwarfs have high surface gravities, therefore, these heavy elements will settle out of the white dwarf's atmospheres in a short amount of time (Paquette et al. 1986). However, high-resolution spectroscopic surveys found that 25-50% of white dwarfs are polluted (Zuckerman et al. 2003, 2010; Koester et al. 2014). The mechanism responsible for making a polluted white dwarf must be common and efficient. There is strong theoretical and observational evidence that white dwarfs are accreting from planetary material. There are different mechanisms that can deliver exoplanetary material into the Roche lobe of the white dwarf. Debris disks, transits from disintegrating bodies, and intact planets have all been detected around white dwarfs (e.g., Jura et al. 2007; Vanderburg et al. 2015, 2020). This chapter will describe how the chemical autopsies are conducted, and what is learnt about exoplanetary material from polluted white dwarfs.

Rapidly-rotating Population III stellar models as a source of primary nitrogen

Fri, 26/04/2024 - 11:22
arXiv:2404.16512v1 Announce Type: new Abstract: The first stars might have been fast rotators. This would have important consequences for their radiative, mechanical and chemical feedback. We discuss the impact of fast initial rotation on the evolution of massive Population III models and on their nitrogen and oxygen stellar yields. We explore the evolution of Population III stars with initial masses in the range of 9Msol

Reconstructing Cosmic History: JWST-Extended Mapping of the Hubble Flow from z$ \sim $0 to z$ \sim$7.5 with HII Galaxies

Fri, 26/04/2024 - 11:18
arXiv:2404.16261v1 Announce Type: new Abstract: Over twenty years ago, Type Ia Supernovae (SNIa) [arXiv:astro-ph/9805201, arXiv:astro-ph/9812133] observations revealed an accelerating Universe expansion, suggesting a significant dark energy presence, often modelled as a cosmological constant, $\Lambda$. Despite its pivotal role in cosmology, the standard $\Lambda$CDM model remains largely underexplored in the redshift range between distant SNIa and the Cosmic Microwave Background (CMB). This study harnesses the James Webb Space Telescope's advanced capabilities to extend the Hubble flow mapping across an unprecedented redshift range, from $z \approx 0$ to $z \approx 7.5$. Utilising a dataset of 231 HII galaxies and extragalactic HII regions, we employ the $\text{L}-\sigma$ relation, correlating the luminosity of Balmer lines with their velocity dispersion, to define a competitive technique for measuring cosmic distances. This approach maps the Universe's expansion over more than 12 billion years, covering 95\% of its age. Our analysis, using Bayesian inference, constrains the parameter space $\lbrace h, \Omega_m, w_0\rbrace = \lbrace 0.731\pm0.039, 0.302^{+0.12}_{-0.069}, -1.01^{+0.52}_{-0.29}\rbrace $ (statistical) for a flat Universe. These results provide new insights into cosmic evolution and suggest uniformity in the photo-kinematical properties of young massive ionizing clusters in giant HII regions and HII galaxies across most of the Universe's history.

Using Rest-Frame Optical and NIR Data from the RAISIN Survey to Explore the Redshift Evolution of Dust Laws in SN Ia Host Galaxies

Wed, 24/04/2024 - 11:26
arXiv:2402.18624v2 Announce Type: replace Abstract: We use rest-frame optical and near-infrared (NIR) observations of 42 Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project at low-$z$ and 37 from the RAISIN Survey at high-$z$ to investigate correlations between SN Ia host galaxy dust, host mass, and redshift. This is the first time the SN Ia host galaxy dust extinction law at high-$z$ has been estimated using combined optical and rest-frame NIR data ($YJ$-band). We use the BayeSN hierarchical model to leverage the data's wide rest-frame wavelength range (extending to $\sim$1.0-1.2 microns for the RAISIN sample at $0.2\lesssim z\lesssim0.6$). By contrasting the RAISIN and CSP data, we constrain the population distributions of the host dust $R_V$ parameter for both redshift ranges. We place a limit on the difference in population mean $R_V$ between RAISIN and CSP of $-1.16

Gaia DR3 detectability of unresolved binary systems

Tue, 23/04/2024 - 16:04
arXiv:2404.14127v1 Announce Type: new Abstract: Gaia can not individually resolve very close binary systems, however, the collected data can still be used to identify them. A powerful indicator of stellar multiplicity is the sources reported Renormalized Unit Weight Error (ruwe), which effectively captures the astrometric deviations from single-source solutions. We aim to characterise the imprints left on ruwe caused by binarity. By flagging potential binary systems based on ruwe, we aim to characterise which of their properties will contribute the most to their detectability. We develop a model to estimate ruwe values for observations of Gaia sources, based on the biases to the single-source astrometric track arising from the presence of an unseen companion. Then, using the recipes from previous GaiaUnlimited selection functions, we estimate the selection probability of sources with high ruwe, and discuss what binary properties contribute to increasing the sources ruwe. We compute the maximum ruwe value which is compatible with single-source solutions as a function of their location on-sky. We see that binary systems selected as sources with a ruwe higher than this sky-varying threshold have a strong detectability window in their orbital period distribution, which peaks at periods equal to the Gaia observation time baseline. We demonstrate how our sky-varying ruwe threshold provides a more complete sample of binary systems when compared to single sky-averaged values by studying the unresolved binary population in the Gaia Catalogue of Nearby Stars. We provide the code and tools used in this study, as well as the sky-varying ruwe threshold through the GaiaUnlimited Python package

Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry

Mon, 22/04/2024 - 11:35
arXiv:2404.10486v2 Announce Type: replace Abstract: Gravitational waves from black-hole merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 \pm 0.82 M\odot BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way.

IGM damping wing constraints on the tail end of reionisation from the enlarged XQR-30 sample

Mon, 22/04/2024 - 09:54
arXiv:2404.12585v1 Announce Type: new Abstract: The attenuation of Ly$\alpha$ photons by neutral hydrogen in the intergalactic medium (IGM) at $z\gtrsim5$ continues to be a powerful probe for studying the epoch of reionisation. Given a framework to estimate the intrinsic (true) Ly$\alpha$ emission of high-$z$ sources, one can infer the ionisation state of the IGM during reionisation. In this work, we use the enlarged XQR-30 sample of 42 high-resolution and high-SNR QSO spectra between $5.8\lesssim\,z\lesssim\,6.6$ obtained with VLT/X-Shooter to place constraints on the IGM neutral fraction. This is achieved using our existing Bayesian QSO reconstruction framework which accounts for uncertainties such as the: (i) posterior distribution of predicted intrinsic Ly$\alpha$ emission profiles (obtained via covariance matrix reconstruction of the Ly$\alpha$ and N V emission lines from unattenuated high-ionisation emission line profiles; C IV, Si IV + O IV] and C III]) and (ii) distribution of ionised regions within the IGM using synthetic damping wing profiles drawn from a $1.6^3$ Gpc$^3$ reionisation simulation. Following careful quality control, we used 23 of the 42 available QSOs to obtain constraints/limits on the IGM neutral fraction during the tail-end of reionisation. Our median and 68th percentile constraints on the IGM neutral fraction are: $0.20\substack{+0.14\\-0.12}$ and $0.29\substack{+0.14\\-0.13}$ at $z = 6.15$~and 6.35. Further, we also report 68th percentile upper-limits of $\bar{x}_{\mathrm{H\,{\scriptscriptstyle I}}}

Euclid preparation. Improving cosmological constraints using a new multi-tracer method with the spectroscopic and photometric samples

Fri, 19/04/2024 - 10:45
arXiv:2404.12157v1 Announce Type: new Abstract: Future data provided by the \Euclid mission will allow us to better understand the cosmic history of the Universe. A metric of its performance is the figure-of-merit (FoM) of dark energy, usually estimated with Fisher forecasts. The expected FoM has previously been estimated taking into account the two main probes of \Euclid, namely the three-dimensional clustering of the spectroscopic galaxy sample, and the so-called 3$\times$2\,pt signal from the photometric sample (i.e., the weak lensing signal, the galaxy clustering, and their cross-correlation). So far, these two probes have been treated as independent. In this paper, we introduce a new observable given by the ratio of the (angular) two-point correlation function of galaxies from the two surveys. For identical (normalised) selection functions, this observable is unaffected by sampling noise, and its variance is solely controlled by Poisson noise. We present forecasts for \Euclid where this multi-tracer method is applied and is particularly relevant because the two surveys will cover the same area of the sky. This method allows for the exploitation of the combination of the spectroscopic and photometric samples. When the correlation between this new observable and the other probes is not taken into account, a significant gain is obtained in the FoM, as well as in the constraints on other cosmological parameters. The benefit is more pronounced for a commonly investigated modified gravity model, namely the $\gamma$ parametrisation of the growth factor. However, the correlation between the different probes is found to be significant and hence the actual gain is uncertain. We present various strategies for circumventing this issue and still extract useful information from the new observable.

The Pristine Inner Galaxy Survey (PIGS) VIII: Characterising the orbital properties of the ancient, very metal-poor inner Milky Way

Thu, 18/04/2024 - 12:20
arXiv:2312.03847v2 Announce Type: replace Abstract: The oldest stars in the Milky Way (born in the first few billion years) are expected to have a high density in the inner few kpc, spatially overlapping with the Galactic bulge. We use spectroscopic data from the Pristine Inner Galaxy Survey (PIGS) to study the dynamical properties of ancient, metal-poor inner Galaxy stars. We compute distances using StarHorse, and orbital properties in a barred Galactic potential. With this paper, we release the spectroscopic AAT/PIGS catalogue (13 235 stars). We find that most PIGS stars have orbits typical for a pressure-supported population. The fraction of stars confined to the inner Galaxy decreases with decreasing metallicity, but many very metal-poor stars (VMP, [Fe/H]

JWST-JADES. Possible Population III signatures at z=10.6 in the halo of GN-z11

Thu, 18/04/2024 - 12:16
arXiv:2306.00953v3 Announce Type: replace Abstract: Finding the first generation of stars formed out of pristine gas in the early Universe, known as Population III (PopIII) stars, is one of the most important goals of modern astrophysics. Recent models have suggested that PopIII stars may form in pockets of pristine gas in the halo of more evolved galaxies. We present NIRSpec integral field spectroscopy and micro-shutter array spectroscopic observations of the region around GN-z11, an exceptionally luminous galaxy at z=10.6, that reveal a greater than 5 sigma detection of a feature consistent with being HeII1640 emission at the redshift of GN-z11. The very high equivalent width of the putative HeII emission in this clump (log(EW_rest(HeII)/A) = 1.79) and a lack of metal lines can be explained in terms of photoionisation by PopIII stars, while photoionisation by PopII stars is inconsistent with the data. The high equivalent width would also indicate that the putative PopIII stars likely have an initial mass function with an upper cutoff reaching at least 500 Msun. The PopIII bolometric luminosity inferred from the HeII line would be 7 x 10^9 Lsun, which would imply a total stellar mass formed in the burst of about 2 x 10^5 Msun. We find that photoionisation by the active galactic nucleus (AGN) in GN-z11 cannot account for the HeII luminosity observed in the clump but can potentially be responsible for an additional HeII emission observed closer to GN-z11. We also consider the possibility of in situ photoionisation by an accreting direct collapse black hole hosted by the HeII clump. We find that this scenario is less favoured, but it remains a possible alternative interpretation. We also report the detection of a Ly-alpha halo stemming out of GN-z11 and extending out to about 2 kpc as well as resolved funnel-shaped CIII emission likely tracing the ionisation cone of the AGN.

Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry

Thu, 18/04/2024 - 11:54
arXiv:2404.10486v1 Announce Type: new Abstract: Gravitational waves from black-hole merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 \pm 0.82 M\odot BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way.

The outflowing ionised gas of I Zw 1 observed by HST COS

Thu, 18/04/2024 - 11:47
arXiv:2404.10060v1 Announce Type: new Abstract: We present an analysis of the HST COS spectrum of IZw1 aiming to probe the absorbing medium associated with the active galactic nucleus (AGN). We fitted the emission spectrum and performed spectral analysis of the identified absorption features to derive the corresponding ionic column densities and covering fractions of the associated outflows. We employed photoionisation modelling to constrain the total column density and the ionisation parameter of four detected kinematic components. By investigating the implications of the results together with the observed kinematic properties of both emission and absorption features, we derived constraints on the structure and geometry of the absorbing medium in the AGN environment. We find and characterise absorption line systems from outflowing ionised gas in four distinct kinematic components, located at -60, -280, -1950, and -2900 km/s with respect to the source rest frame. While the two slower outflows are consistent with a full covering of the underlying radiation source, the well-constrained doublet line ratios of the faster two, higher column density, outflows suggest partial covering, with a covering fraction of C_f~0.4. The faster outflows show also line-locking in the NV doublet, a signature of acceleration via line absorption. This makes IZw1 possibly the closest object that shows evidence for hosting line-driven winds. The observed -1950 km/s absorption is likely due to the same gas as an X-ray warm absorber. Furthermore, the behaviour in UV and X-ray bands implies that this outflow has a clumpy structure. We find that the highly asymmetric broad emission lines in IZw1, indicative of a collimated, outflowing broad line region, are covered by the absorbing gas. Finally, the strongest UV--X-ray absorber may be connected to some of the blueshifted line emission, indicative of a more spatially extended structure of this ionised medium.

Characterisation of the TOI-421 planetary system using CHEOPS, TESS, and archival radial velocity data

Thu, 18/04/2024 - 11:03
arXiv:2404.11074v1 Announce Type: new Abstract: The TOI-421 planetary system contains two sub-Neptune-type planets and is a prime target to study the formation and evolution of planets and their atmospheres. The inner planet is especially interesting as the existence of a hydrogen-dominated atmosphere at its orbital separation cannot be explained by current formation models without previous orbital migration. We jointly analysed photometric data of three TESS sectors and six CHEOPS visits as well as 156 radial velocity data points to retrieve improved planetary parameters. We also searched for TTVs and modelled the interior structure of the planets. Finally, we simulated the evolution of the primordial H-He atmospheres of the planets using two different modelling frameworks. We determine the planetary radii and masses of TOI-421 b and c to be $R_{\rm b} = 2.64 \pm 0.08 \, R_{\oplus}$, $M_{\rm b} = 6.7 \pm 0.6 \, M_{\oplus}$, $R_{\rm c} = 5.09 \pm 0.07 \, R_{\oplus}$, and $M_{\rm c} = 14.1 \pm 1.4 \, M_{\oplus}$. We do not detect any statistically significant TTV signals. Assuming the presence of a hydrogen-dominated atmosphere, the interior structure modelling results in both planets having extensive envelopes. While the modelling of the atmospheric evolution predicts for TOI-421 b to have lost any primordial atmosphere that it could have accreted at its current orbital position, TOI-421 c could have started out with an initial atmospheric mass fraction somewhere between 10 and 35%. We conclude that the low observed mean density of TOI-421 b can only be explained by either a bias in the measured planetary parameters (e.g. driven by high-altitude clouds) and/or in the context of orbital migration. We also find that the results of atmospheric evolution models are strongly dependent on the employed planetary structure model.

Mapping the anisotropic Galactic stellar halo with Blue Horizontal Branch stars

Tue, 16/04/2024 - 12:35
arXiv:2404.09825v1 Announce Type: new Abstract: We use Legacy Survey photometric data to probe the stellar halo in multiple directions of the sky using a probabilistic methodology to identify Blue Horizontal Branch (BHB) stars. The measured average radial density profile follows a double power law in the range $ 5

The turbulent variability of accretion discs observed at high energies

Tue, 16/04/2024 - 12:29
arXiv:2404.09564v1 Announce Type: new Abstract: We use numerical stochastic-viscous hydrodynamic simulations and new analytical results from thin disc theory to probe the turbulent variability of accretion flows, as observed at high energies. We show that the act of observing accretion discs in the Wien tail exponentially enhances small-scale temperature variability in the flow, which in a real disc will be driven by magnetohydrodynamic turbulence, to large amplitude luminosity fluctuations (as predicted analytically). In particular, we demonstrate that discs with more spatially coherent turbulence (as might be expected of thicker discs), and relativistic discs observed at larger inclinations, show significantly enhancement in their Wien-tail variability. We believe this is the first analysis of relativistic viewing-angle effects on turbulent variability in the literature. Using these results we argue that tidal disruption events represent particularly interesting systems with which to study accretion flow variability, and may in fact be the best astrophysical probes of small scale disc turbulence. This is a result of a typical tidal disruption event disc being naturally observed in the Wien-tail and likely having a somewhat thicker disc and cleaner X-ray spectrum than other sources. We argue for dedicated X-ray observational campaigns of tidal disruption events, with the aim of studying accretion flow variability.

Astrometric detection of a Neptune-mass candidate planet in the nearest M-dwarf binary system GJ65 with VLTI/GRAVITY

Tue, 16/04/2024 - 12:16
arXiv:2404.08746v1 Announce Type: new Abstract: The detection of low-mass planets orbiting the nearest stars is a central stake of exoplanetary science, as they can be directly characterized much more easily than their distant counterparts. Here, we present the results of our long-term astrometric observations of the nearest binary M-dwarf Gliese 65 AB (GJ65), located at a distance of only 2.67 pc. We monitored the relative astrometry of the two components from 2016 to 2023 with the VLTI/GRAVITY interferometric instrument. We derived highly accurate orbital parameters for the stellar system, along with the dynamical masses of the two red dwarfs. The GRAVITY measurements exhibit a mean accuracy per epoch of 50-60 microarcseconds in 1.5h of observing time using the 1.8m Auxiliary Telescopes. The residuals of the two-body orbital fit enable us to search for the presence of companions orbiting one of the two stars (S-type orbit) through the reflex motion they imprint on the differential A-B astrometry. We detected a Neptune-mass candidate companion with an orbital period of p = 156 +/- 1 d and a mass of m = 36 +/- 7 Mearth. The best-fit orbit is within the dynamical stability region of the stellar pair. It has a low eccentricity, e = 0.1 - 0.3, and the planetary orbit plane has a moderate-to-high inclination of i > 30{\deg} with respect to the stellar pair, with further observations required to confirm these values. These observations demonstrate the capability of interferometric astrometry to reach microarcsecond accuracy in the narrow-angle regime for planet detection by reflex motion from the ground. This capability offers new perspectives and potential synergies with Gaia in the pursuit of low-mass exoplanets in the solar neighborhood.

Distinguishing the impact and signature of black holes from different origins in early cosmic history

Mon, 15/04/2024 - 11:21
arXiv:2310.01763v2 Announce Type: replace Abstract: We use semi-analytical models to study the effects of primordial black hole (PBH) accretion on the cosmic radiation background during the epoch of reionization ($z\gtrsim 6$). We consider PBHs floating in the intergalactic medium (IGM), and located inside haloes, where star formation can occur. For stars with a mass $\gtrsim 25 \rm\ M_{\odot}$, formed in suitable host haloes, we assume they quickly burn out and form stellar remnant black holes (SRBHs). Since SRBHs also accrete material from their surroundings, we consider them to have similar radiation feedback as PBHs in the halo environment. To estimate the background radiation level more accurately, we take into account the impact of PBHs on structure formation, allowing an improved modeling of the halo mass function. We consider the radiation feedback from a broad suite of black holes: PBHs, SRBHs, high-mass X-ray binaries (HMXBs), and supermassive black holes (SMBHs). We find that at $z\gtrsim 30$, the radiation background energy density is generated by PBHs accreting in the IGM, whereas at lower redshifts, the accretion feedback power from haloes dominates. We also analyze the total power density by modeling the accretion spectral energy distribution (SED), and break it down into select wavebands. In the UV band, we find that for $f_{\rm PBH} \lesssim 10^{-3}$, the H-ionizing and Lyman-$\alpha$ fluxes from PBH accretion feedback do not violate existing constraints on the timing of reionization, and on the effective Wouthuysen-Field coupling of the 21-cm spin temperature of neutral hydrogen to the kinetic temperature of the IGM. However, in the X-ray band, with the same abundance, PBHs contribute significantly and could account for the unresolved part of the cosmic X-ray background.

Atmospheric characterisation and tighter constraints on the orbital misalignment of WASP-94 A b with HARPS

Thu, 11/04/2024 - 10:53
arXiv:2404.06550v1 Announce Type: new Abstract: We present high spectral resolution observations of the hot Jupiter WASP-94 A b using the HARPS instrument on ESO's 3.6m telescope in La Silla, Chile. We probed for Na absorption in its atmosphere as well as constrained the previously reported misaligned retrograde orbit using the Rossiter-McLaughlin effect. Additionally, we undertook a combined atmospheric retrieval analysis with previously published low-resolution data. We confirm the retrograde orbit as well as constrain the orbital misalignment with our measurement of a projected spin-orbit obliquity of $\lambda = 123.0 \pm 3.0 ^\circ$. We find a tentative detection of Na absorption in the atmosphere of WASP-94 A b, independent of the treatment of the Rossiter-McLaughlin effect in our analysis (3.6$\sigma$ and 4.4$\sigma$). We combine our HARPS high resolution data with low resolution data from the literature and find that while the posterior distribution of the Na abundance results in a tighter constraint than using a single data set, the detection significance does not improve (3.2$\sigma$), which we attribute to degeneracies between the low and high resolution data.