On the Double: Two Luminous Flares from the Nearby Tidal Disruption Event ASASSN-22ci (AT2022dbl) and Connections to Repeating TDE Candidates
A data-driven approach for star formation parameterization using symbolic regression
A data-driven approach for star formation parameterization using symbolic regression
Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra
Star formation and accretion rates within 500 pc as traced by Gaia DR3 XP spectra
Euclid preparation. The impact of redshift interlopers on the two-point correlation function analysis
Euclid preparation. The impact of redshift interlopers on the two-point correlation function analysis
Failed Soviet probe will soon crash to Earth – and we don't know where
NASA Telescopes Tune Into a Black Hole Prelude, Fugue
NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).
This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes.This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.
WR 124 Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.
SS 433 Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.
Centarus A Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.
For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/
These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
To learn more about NASA’s space telescopes, visit:
https://science.nasa.gov/universe
Read more from NASA’s Chandra X-ray ObservatoryLearn more about the Chandra X-ray Observatory and its mission here:
Visual DescriptionThis release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.
The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.
The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.
The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.
News Media ContactMegan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
- Chandra X-Ray Observatory
- Black Holes
- Galaxies, Stars, & Black Holes
- IXPE (Imaging X-ray Polarimetry Explorer)
- Marshall Astrophysics
- Marshall Science Research & Projects
- Marshall Space Flight Center
Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
Article 3 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic CrashesLee esta nota de prensa en español aquí. For the first time, astronomers have probed…
Article 2 days ago Keep Exploring Discover More Topics From NASA Chandra X-ray Observatory Black HolesMoon dust 'rarer than gold' arrives in UK from China
Tue 20 May 11:15: A 21-cm Cosmologist’s Journey: From Cambridge to North America and Back Again
In this talk, I’ll take you on a whistle-stop tour of my journey in 21-cm cosmology – from my PhD days in Cambridge to fellowship and research scientist positions in the USA and Canada. I’ll discuss the significance of 21-cm cosmology in understanding the Universe’s first billion years and describe key projects I’ve worked on, including the SKA , HERA, EDGES , and REACH . Along the way, I’ll share some personal highlights from my time in North America, including adventures in national parks and snow sports.
- Speaker: Dr. Peter Sims (University of Cambridge)
- Tuesday 20 May 2025, 11:15-12:00
- Venue: Martin Ryle Seminar Room, Kavli Institute.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Fri 11 Jul 11:30: Title to be confirmed
Abstract not available
- Speaker: Anne Verhamme (University of Geneva)
- Friday 11 July 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.
Wed 14 May 13:40: Gravitational Phase-Space Turbulence: the Small-Scale Limit of the Cold-Dark-Matter Power-Spectrum
The matter power spectrum is one of the fundamental quantities in the study of large-scale structure in cosmology. In this talk, I will describe its small-scale asymptotic limit, and give a theoretical argument to the effect that, for cold dark matter, P(k) has a universal asymptotic scaling with the wave-number k, for k >> k_nl, viz. P(k) ~ k^(-3). I will explain how gravitational collapse drives a turbulent phase-space flow of the quadratic Casimir invariant, where the linear and non-linear time scales are balanced, and how this balance dictates the k dependence of the power spectrum. The coldness of the dark-matter distribution function — its non-vanishing only on a 3-dimensional sub-manifold of phase-space — underpins the analysis. I will show Vlasov-Poisson simulations that support the theory, and if time permits, also describe a stationary-phase technique for deriving an equivalent result.
- Speaker: Barry Ginat / University of Oxford
- Wednesday 14 May 2025, 13:40-14:05
- Venue: The Hoyle Lecture Theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: .
Wed 14 May 13:40: Gravitational Phase-Space Turbulence: the Small-Scale Limit of the Cold-Dark-Matter Power-Spectrum
The matter power spectrum is one of the fundamental quantities in the study of large-scale structure in cosmology. In this talk, I will describe its small-scale asymptotic limit, and give a theoretical argument to the effect that, for cold dark matter, P(k) has a universal asymptotic scaling with the wave-number k, for k >> k_nl, viz. P(k) ~ k^(-3). I will explain how gravitational collapse drives a turbulent phase-space flow of the quadratic Casimir invariant, where the linear and non-linear time scales are balanced, and how this balance dictates the k dependence of the power spectrum. The coldness of the dark-matter distribution function — its non-vanishing only on a 3-dimensional sub-manifold of phase-space — underpins the analysis. I will show Vlasov-Poisson simulations that support the theory, and if time permits, also describe a stationary-phase technique for deriving an equivalent result.
- Speaker: Barry Ginat / University of Oxford
- Wednesday 14 May 2025, 13:40-14:05
- Venue: The Hoyle Lecture Theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: .
Fri 16 May 13:00: Modified gravity and the atomic world
The existence of dark energy and dark matter hint that there is more to gravity than meets the eye. A wide range of new theories, exhibiting a new scalar particle with a property called screening, indicate small-scale tests as the most promising route towards detection of new particles. Atomic physics is especially promising. I will discuss how pairs of atomic clocks are capable of searching for equivalence-principle violating scalar couplings to Standard Model particles, which hold the potential to detect quintessence, ultralight dark matter, and modified gravity. Similarly, atom interferometry and atomic spectroscopy provide a window to detect new forces associated with new screened scalars as well.
- Speaker: Benjamin Elder, Imperial College London
- Friday 16 May 2025, 13:00-14:00
- Venue: MR20/Zoom: https://cam-ac-uk.zoom.us/j/89585655242?pwd=ur229qk6mRXNG2a1EQVdb7PAdUx2gU.1.
- Series: DAMTP Friday GR Seminar; organiser: Xi Tong.
DAmodel: Hierarchical Bayesian Modelling of DA White Dwarfs for Spectrophotometric Calibration
DAmodel: Hierarchical Bayesian Modelling of DA White Dwarfs for Spectrophotometric Calibration
Mon 09 Jun 14:00: Title to be confirmed
Abstract not available
- Speaker: Elena Khomenko (IAC Tenerife)
- Monday 09 June 2025, 14:00-15:00
- Venue: MR14 DAMTP and online.
- Series: DAMTP Astrophysics Seminars; organiser: Roger Dufresne.
Mon 12 May 14:00: On the role of magnetic fluctuations in low magnetic Prandtl number plasmas
Magnetic fields on small scales are ubiquitous in the universe. For example, the fluctuating magnetic fields in star-forming regions of galaxies are more than twice the strength of the magnetic fields coherent over large scales. On the solar surface, magnetic fields are mostly concentrated in medium and small-scale structures, while the proportion comprising the mean field strength is even lower than in galaxies. The generation mechanisms of the fluctuating magnetic fields are not fully understood. One possibility is the so-called small-scale dynamo (SSD), the other is tangling of the large-scale field structures through turbulence acting on them. In the interstellar medium of galaxies, the resistivity is much lower than the viscosity, such that magnetic instabilities are easier to excite relative to the turbulence. SSD in such high magnetic Prandtl number (Pm, i.e. the ratio between viscosity and resistivity) conditions has therefore been predicted to be easily excited. In the Sun and cool stars, Pm is much lower, namely in the range of 1e-6 to 1e-3. Both theoretically and especially numerically, SSD is more difficult to excite at such very low magnetic Prandtl numbers. Indeed, some recent numerical studies has indicated that the threshold for SSD excitation should systematically increase with decreasing Pm, concluding that SSD would be impossible in the Sun and cool stars.
Accelerating the magnetohydrodynamics solvers with graphics processing units has recently opened an avenue to numerically study low-Pm flows. With these tools we have been able to perform simulations that approach the solar Pm-values, studying both kinematic and non-linear regimes. Contrary to earlier findings, the SSD turns out not only to be possible for Pms down to 0.0031, but even to become increasingly easy to excite for Pm below approximately 0.05. We relate this behaviour to the known hydrodynamic phenomenon, referred to as the bottleneck effect. Extrapolating our results to solar values of Pm indicates that an SSD would be possible under such conditions. The saturation strength of the SSD is of the order of the turbulent kinetic energy independent of the Pm, when the magnetic Reynolds number (Rm) is moderate (up to a few thousands). For higher Rm the saturation strength rapidly diminishes and reaches levels of order of magnitude lower than turbulent kinetic energy, casting a new doubt of the SSD being important in the Sun and stars. Even higher resolution studies, however, would be required to verify this robustly. For such calculations, however, extraordinary resources/quantum computers are required.
- Speaker: Maarit Korpi-Lagg [Helsinki/Espoo]
- Monday 12 May 2025, 14:00-15:00
- Venue: MR14 DAMTP and online.
- Series: DAMTP Astrophysics Seminars; organiser: Mattias Brynjell-Rahkola.