Institute of Astronomy

Astronomy News

Juno probe returns first in-orbit Jupiter photo

13 July 2016 - 9:14am

The American space agency's new Juno mission to Jupiter returns its first imagery since going into orbit around the gas giant last week.

The final image sent by doomed Japanese Hitomi satellite

8 July 2016 - 8:47am

A doomed Japanese satellite managed to capture a spectacular view of a cluster of galaxies 250 million light years away just before it died, scientists reveal.

Powerful processes at work - The Crab Nebula as never seen before [heic1614]

8 July 2016 - 8:46am

This new NASA/ESA Hubble Space Telescope image reveals the beating heart of one of the most visually appealing, and most studied, supernova remnants known – the Crab Nebula. At the centre of this nebula the spinning core of a deceased star breathes life into the gas that surrounds it.

A Surprising Planet with Three Suns

8 July 2016 - 8:45am
A team of astronomers have used the SPHERE instrument on ESO’s Very Large Telescope to image the first planet ever found in a wide orbit inside a triple-star system. The orbit of such a planet had been expected to be unstable, probably resulting in the planet being quickly ejected from the system. But somehow this one survives. This unexpected observation suggests that such systems may actually be more common than previously thought. The results will be published online in the journal Science on 7 July 2016.

Hubble Captures the Beating Heart of the Crab Nebula

8 July 2016 - 8:45am

Get larger image formats

At the center of the Crab Nebula, located in the constellation Taurus, lies a celestial "beating heart" that is an example of extreme physics in space. The tiny object blasts out blistering pulses of radiation 30 times a second with unbelievable clock-like precision. Astronomers soon figured out that it was the crushed core of an exploded star, called a neutron star, which wildly spins like a blender on puree. The burned-out stellar core can do this without flying apart because it is 10 billion times stronger than steel. This incredible density means that the mass of 1.4 suns has been crushed into a solid ball of neutrons no bigger than the width of a large city. This Hubble image captures the region around the neutron star. It is unleashing copious amounts of energy that are pushing on the expanding cloud of debris from the supernova explosion like an animal rattling its cage. This includes wave-like tsunamis of charged particles embedded in deadly magnetic fields.

A Surprising Planet with Three Suns

8 July 2016 - 8:44am

Get larger image formats

A team of astronomers led by the University of Arizona has directly imaged with the SPHERE instrument on ESO's Very Large Telescope the first planet ever found in a wide orbit inside a triple-star system. The orbit of such a planet had been expected to be unstable, probably resulting in the planet being quickly ejected from the system. But somehow this one survives. This observation of the HD 131399 system suggests that such systems may actually be more common than previously thought. The results will be published online in the journal Science on July 7, 2016. The artist's impression shows a view of the triple-star system HD 131399 from the giant planet orbiting the system. The planet is HD 131399Ab and appears at the lower left of the picture.

Time for more 2016: leap second will be added to year’s end

8 July 2016 - 8:44am

Can't get enough of 2016? You're in luck. A gradual change in the Earth's rotation means we need to add an extra second to keep time in order

Dead satellite finds a calm centre at the heart of brightest galaxy cluster in the sky

8 July 2016 - 8:42am

The result, published in the journal Nature, allows the mass of the Perseus Cluster – a swarm of thousands of galaxies that spans two million light years across and is one of the most massive known objects in the universe – to be calculated more accurately than before. Once this technique can be extended to other clusters, it will allow cosmologists to use them as better probes of our models of the Universe’s evolution from the Big Bang to the present time.

Hitomi (originally known as ASTRO-H) is the sixth in a series of Japanese x-ray observatories. Led by the Japan Aerospace Exploration Agency (JAXA), it is a collaboration of over 60 institutes and 200 scientists and engineers from Japan, the US, Canada, and Europe, including from the University of Cambridge. The spacecraft was launched on 17 February 2016 from the Tanegashima Space Center, Japan. However, JAXA announced in April that it was no longer possible to communicate with the satellite.

“Hitomi targeted the Perseus cluster just a week after it arrived in space,” said Matteo Guainazzi, the European Space Agency’s (ESA) Hitomi Resident Astronomer at the Institute of Space and Astronautical Science, Japan. “Perseus is the brightest x-ray galaxy cluster in the sky. It was therefore the best choice to fully demonstrate the power of the Soft X-ray Spectrometer (SXS), an x-ray micro-calorimeter that promised to deliver an unprecedented accuracy in the reconstruction of the energy of the incoming x-ray photons.” Waiting astronomers were not disappointed.

The Hitomi collaboration found that SXS could measure the turbulence in the cluster to a precision of 10 kilometres/second. But it was the absolute velocity of the gas that took them by surprise. It was just 164 ± 10 kilometres/second. The previous best measurement for Perseus was taken with ESA’s XMM-Newton x-ray observatory. Using a different type of spectrometer, it could only constrain the speed to be lower than 500 kilometres/second.

Hitomi’s measurement is therefore much more precise than any similar measurements performed in x-rays so far. “This is due to the outstanding performance and stability of the SXS in space. This demonstrates that the technology of x-ray micro-calorimeters can yield truly transformational results,” said Guainazzi.

The result indicates that the cluster gas has very little turbulent motions within. Turbulent motions in a fluid are part of our everyday life, as airplane passengers, swimmers, or parents filling a bathtub all experience. The study of such chaotic behaviour is also a powerful tool for astronomers to understand the behaviour of celestial objects.

Turbulent energy in Perseus is just four percent of the energy stored in the gas as heat. This is extraordinary considering that the active galaxy NGC 1275 sits at the heart of the cluster. It is pumping jetted energy into its surroundings, creating bubbles of extremely hot gas. It was thought that these bubbles induce turbulence, which keeps the central gas hot.

Hitomi shows that turbulent motion is almost absent from the cluster, and this gives rise to a mystery: what is keeping the cluster’s widespread gas hot?

“This result from Hitomi is telling us that in terms of how cluster cores work, we have to think very carefully about what is going on,” said the paper’s senior author Professor Andy Fabian of Cambridge’s Institute of Astronomy, and part of the Hitomi collaboration.

Fabian is working on the possibility of sound waves as the means of spreading the energy evenly throughout the gas. This is because in a sound wave, energy can be moved while the medium itself remains more or less stationary.

There are wider implications for this work too. Clusters of galaxies are the largest bound structures in the Universe. At the same time, they are also the smallest self-contained ‘boxes’. This means that matter is not flowing in or out of a cluster of galaxies. Instead, they each represent an island in which cosmic evolution has played out and been recorded.

Computer models of the expanding Universe use the distribution of cluster masses as an observational test of whether they are correct. Calculating the mass of a cluster depends upon the ratio of turbulent to quiescent gas. Any way of more accurately measuring turbulence allows better masses to be calculated, and therefore better computer models of the whole Universe to be developed.

Unfortunately, just a few weeks after the Perseus observation, a malfunction in the attitude control system put Hitomi into an uncontrollable spin that resulted in the break up and loss of the satellite.

“It is really disappointing that we have lost Hitomi and can’t go on with the programme that we had to look at many more clusters,” says Fabian.

The next mission that will be capable of fully following up the Hitomi programme is ESA’s Athena, an X-ray observatory scheduled for launch in the 2020s.

“Scientifically and technically, the Hitomi results are an exciting foretaste of Athena,” said David Lumb, ESA's Athena Study Scientist. “The demonstration of a radically new imaging spectrometer instrument concept gives huge confidence for future developments for Athena.”

Athena will have 100 times more collecting area and 100 times more pixels than Hitomi. Among the key scientific objectives of Athena are to investigate the evolution of clusters of galaxies including their interplay with energy injection from supermassive black holes.

“The Hitomi data show the potential that will be unleashed with Athena vastly increased imaging capability and sensitivity,” said Lumb.

Hitomi Collaboration. ‘The quiet intracluster medium in the core of the Perseus cluster.’ Nature (2016). doi:10.1038/nature18627.

Adapted from an ESA press release.

With its very first – and last – observation, the Hitomi x-ray observatory has discovered that the gas in the Perseus cluster of galaxies is much less turbulent than expected, despite being home to NGC 1275, a highly energetic active galaxy.

This result is telling us that in terms of how cluster cores work, we have to think very carefully about what is going on.Andy FabianBackground: NASA/CXO; Spectrum: Hitomi Collaboration/JAXA, NASA, ESA, SRON, CSAX-ray view of the Perseus cluster

The text in this work is licensed under a Creative Commons Attribution 4.0 International License. For image use please see separate credits above.


Astrophysics: Rare data from a lost satellite

7 July 2016 - 8:58am

Astrophysics: Rare data from a lost satellite

Nature 535, 7610 (2016). doi:10.1038/535040a

Authors: Elizabeth Blanton

The Hitomi astronomical satellite observed gas motions in the Perseus galaxy cluster shortly before losing contact with Earth. Its findings are invaluable to studies of cluster physics and cosmology. See Letter p.117

Planetary science: Martian moons formed in situ

7 July 2016 - 8:58am

Planetary science: Martian moons formed in situ

Nature 535, 7610 (2016). doi:10.1038/535011a

The moons of Mars may have formed from a disk of debris kicked up by the impact of a giant meteorite on the planet.Astronomers have struggled to explain the existence of Phobos (pictured) and Deimos, the small, irregularly shaped moons of the

Astrophysics: No neutrinos from black hole smash

7 July 2016 - 8:57am

Astrophysics: No neutrinos from black hole smash

Nature 535, 7610 (2016). doi:10.1038/535010c

The first hunt for neutrinos coming from the merger of two black holes — which last year produced the first direct detection of gravitational waves — has come up empty.Imre Bartos at Columbia University in New York and his colleagues analysed data from two

Galaxy cluster keeps calm and carries on radiating X-rays

7 July 2016 - 8:49am

With its very first observation, the Hitomi X-ray observatory has discovered that the gas in the Perseus cluster of galaxies is much less turbulent than expected. This is a surprise because the Perseus cluster is home to NGC 1275, a highly energetic active galaxy.

Doomed Japanese satellite glimpsed galactic wind before it died

7 July 2016 - 8:48am

The Hitomi spacecraft only lasted a few weeks in space, but still managed to map gusts of plasma flowing in the Perseus cluster of galaxies

China builds world’s largest radio telescope to hunt for aliens

6 July 2016 - 9:15am

The gigantic 500-metre disc will boost the search for extraterrestrial life, dark matter and distant pulsars

Mark your calendar: Gaia data release set for 14 September

5 July 2016 - 9:52am
ESA's billion-star surveyor Gaia, launched on 19 December 2013, and in routine science operations since 25 July 2014, will release the first mission data on 14 September 2016.

NASA's Juno Spacecraft in Orbit Around Mighty Jupiter

5 July 2016 - 9:52am
After an almost five-year journey to the solar system’s largest planet, NASA's Juno spacecraft successfully entered Jupiter’s orbit during a 35-minute engine burn. Confirmation that the burn had completed was received on Earth at 8:53 p.m. PDT (11:53 p.m. EDT) Monday, July 4.

Fiery exoplanet may see a trillion lightning flashes in an hour

5 July 2016 - 9:50am

Volcanic eruptions could drive furious lightning storms on Kepler-10b, a volcanic exoplanet not much larger than Earth

Neutrinos hint at why antimatter didn’t blow up the universe

5 July 2016 - 9:49am

Results from two experiments looking at elusive neutrinos imply their matter and antimatter versions behave differently, which might explain how we came to be

NASA approves new far-flung destination for Pluto space probe

5 July 2016 - 9:49am

Post-Pluto, the New Horizons spacecraft is now officially homing in on a primitive red object in the Kuiper belt

China fits final piece on world's largest radio telescope

5 July 2016 - 9:47am

China has fitted the final piece on what is set to be the world's largest radio telescope, the size of 30 football fields and worth $180m (£135m).