Institute of Astronomy

Astronomy News

'Supermoon' viewers to get closest glimpse since 1948

14 November 2016 - 9:42am
Skywatchers are preparing for a "supermoon" after the moon made its closest approach since 1948.

Virtual Milky Way

11 November 2016 - 9:19am

ESA’s Gaia mission is surveying stars in our Galaxy and local galactic neighbourhood in order to build the most precise 3D map of the Milky Way and answer questions about its structure, origin and evolution.

Launched in 2013, Gaia has already generated its first catalogue of more than a billion stars – the largest all-sky survey of celestial objects to date.

To achieve its scientific aims, the spacecraft operates in an ultra-high-precision pointing mode, and to enable the flight control team to monitor spacecraft performance, Gaia regularly reports to the ground information about its current attitude and the stars that have been observed.

These engineering data have been accumulated over 18 months and combined to create a ‘map’ of the observed star densities, from which a beautiful and ghostly ‘virtual image’ of our magnificent Milky Way galaxy can be discerned, showing the attendant globular clusters and Magellanic clouds.

A ghostly image of our Milky Way galaxy derived from spacecraft orientation data Credit: ESA

The intensity scale of this map represents star density derived from the engineering data representing star density. Where there are more stars, as in the Galactic centre, the map is brighter; where there are fewer, the map is darker. The map includes brightness data corresponding to several million stars.

More information on Gaia operations

Editor’s note: On 21 November, at 16:00 CET, the Gaia mission team will host a live ‘Ask Me Anything’ chat. Details will be posted via ESA social media channels later.

How to see biggest supermoon in almost 70 years

11 November 2016 - 9:17am

A supermoon is due on 14 November and meaning the Moon will be the biggest and brightest since 1948 - but what is a supermoon?

WFIRST coronagraph: Imaging Giant Exoplanets Around Nearby Stars

11 November 2016 - 9:16am

Technology Development: The Wide-Field Infrared Survey Telescope (WFIRST) is the highest-ranked recommendation for a large space mission in the NRC 2010 decadal survey, New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics. The WFIRST coronagraph instrument (CGI) will be the first high-contrast stellar coronagraph in space. It will enable WFIRST to respond to the goals of NWNH by directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths (extrasolar planets with a mass higher than Earth’s but lower than our Solar System’s ice giants, Neptune and Uranus), around nearby stars. The WFIRST CGI includes both a Shaped Pupil Coronagraph (SPC) and a Hybrid Lyot Coronagraph (HLC). All three of WFIRST’s CGI technology milestones for 2015 were passed successfully.

Measured milestone contrasts for the HLC (middle) and SPC (left) in a vacuum testbed in2015, where the milestone target contrast of 10-8 average in the dark hole (the annularand wedge-shaped regions, respectively) was achieved for both coronagraphs, as plannedand on schedule.

 

First, the HLC demonstrated a raw contrast (speckle/star intensity ratio) of 10-8, using a 10% bandwidth filter in visible light (550 nm), in a static environment. Second, the SPC achieved the same milestone under the same conditions. For both the HLC and SPC, the figure above shows excellent average contrast (blue-green) over most of the field of view, and slight turn-up (red) at the inner and outer radii, as expected. The third milestone was accomplished when the Low Order Wavefront Sensing and Control (LOWFS) subsystem achieved its goal of providing sensing of pointing jitter and control at the 0.4 milli-arc-second rootmean- square (RMS) level, which will keep a target star sufficiently centered on the coronagraph star-blocking mask, when the WFIRST telescope experiences pointing drift and jitter.

Pupil-plane reflective mask for the SPC, 24-mm diameter, black silicon on mirror (left).Image-plane reflective mask for the back-up technology Phase Induced AmplitudeApodization Complex Mask Coronagraph (PIAA-CMC) coronagraph, 155-μm diameter,raised elements on silicon (center). Image-plane transmitting mask for HLC, 100-μmdiameter, raised dielectric and metal on glass (right). All masks were fabricated in theMicro-Devices Lab (MDL) at the Jet Propulsion Laboratory (JPL).

 

Impact: With achievement of these milestones, NASA is a major step closer to being confident that WFIRST will be able to directly image planets and dust disks around nearby stars. There are at least 15 radial-velocity exoplanets that both coronagraphs will be able to image in their dark hole regions, in a few hours integration time each. The WFIRST coronagraph will enable scientists to see these exoplanets directly for the first time, and the images will be in their true colors (using some of the other color filters in the CGI). A simulation is shown in the figure on page 9, where the blocked star is hidden inside the annulus; a planet is seen at about 5 o’clock, and the star is assumed to have no zodiacal dust around it (left) or a strong dust cloud (right).

Status and Future Plans: WFIRST successfully completed its Mission Concept Review in December 2015, in preparation for its Phase-A start the following January (which was also successful). The CGI is baselined as a technology demonstration instrument on WFIRST; it does not drive mission requirements beyond those needed for the Wide Field Instrument. However, with one year of allocated observing time out of a six-year mission, NASA expects that it will achieve breakthrough science, and will demonstrate key technology elements for follow-up missions, the next of which could be aimed at finding habitable Earth-like planets around nearby stars.

Simulation of expected image with CGI on WFIRST of a planet (at about 5 o’clock) with nozodiacal dust cloud (left) and with a zodiacal dust cloud (right).

 

Sponsoring Organization: This coronagraph technology is jointly funded by the Astrophysics Division’s SAT program, in partnership with the NASA Space Technology Mission Directorate (STMD). NASA JPL currently leads the coronagraph development effort, and key contributions of the coronagraph team have been provided by three former SAT PIs: Jeremy Kasdin at Princeton University, John Trauger at NASA JPL, and Olivier Guyon at the University of Arizona.

Master Image: 

Sculpting Solar Systems

10 November 2016 - 9:23am
Sharp new observations have revealed striking features in planet-forming discs around young stars. The SPHERE instrument, mounted on ESO’s Very Large Telescope, has made it possible to observe the complex dynamics of young solar systems — including one seen developing in real-time. The recently published results from three teams of astronomers showcase SPHERE’s impressive capability to capture the way planets sculpt the discs that form them — exposing the complexities of the environment in which new worlds are formed.

Astroparticle physics: Cosmic rays make more muons

10 November 2016 - 9:07am

Astroparticle physics: Cosmic rays make more muons

Nature 539, 7628 (2016). doi:10.1038/539143a

Particle showers caused by natural ultra-high-energy collisions in Earth's atmosphere produce more muons — heavier cousins of the electron — than current physics models can explain.Using the Pierre Auger Observatory in Argentina, Glennys Farrar of New York University and her colleagues studied showers of

Exoplanet hunters are missing 75 per cent of two-star worlds

9 November 2016 - 9:35am

Planets orbiting binary stars have a weird whirling geometry, meaning they don't pass in front of their stars once every orbit - but we're figuring out how to find them

Mars' ionosphere shaped by crustal magnetic fields

8 November 2016 - 9:39am

Scattered pockets of magnetism across the surface of Mars have a significant influence on the planet's upper atmosphere, according to observations from ESA's Mars Express. Understanding these effects may be crucial for ensuring safe radio communications between Mars and Earth and, eventually, between explorers on the surface of the planet.

Pasta spirals link neutron stars and the machinery of your cells

7 November 2016 - 9:19am

A balancing act between forces forms similar structures inside cells and dense stellar corpses, suggesting links between astrophysics and life on Earth

Mickey Mouse ears may explain universe’s biggest explosions

7 November 2016 - 9:18am

About a third of supernova remnants have bulging protuberances called "ears" - and these cute features could be key to understanding how supernovae are detonated

Pillars of Destruction

4 November 2016 - 9:38am
Spectacular new observations of vast pillar-like structures within the Carina Nebula have been made using the MUSE instrument on ESO’s Very Large Telescope. The different pillars analysed by an international team seem to be pillars of destruction — in contrast to the name of the iconic Pillars of Creation in the Eagle Nebula, which are of similar nature.

Formation of new stellar populations from gas accreted by massive young star clusters

4 November 2016 - 9:38am

Formation of new stellar populations from gas accreted by massive young star clusters

Nature 539, 7627 (2016). doi:10.1038/nature19336

Author: Chengyuan Li, Richard de Grijs, Licai Deng, Aaron M. Geller, Yu Xin, Yi Hu & Claude-André Faucher-Giguère

Nature529, 502–504 (2016); doi:10.1038/nature16493Following publication of this Letter, we were made aware that the target cluster identified as ‘NGC 1696’ is instead the cluster ‘NGC 1806’. This mistake was caused by a misidentification in the Hubble

The formation of Charon’s red poles from seasonally cold-trapped volatiles

4 November 2016 - 9:38am

The formation of Charon’s red poles from seasonally cold-trapped volatiles

Nature 539, 7627 (2016). doi:10.1038/nature19340

Authors: W. M. Grundy, D. P. Cruikshank, G. R. Gladstone, C. J. A. Howett, T. R. Lauer, J. R. Spencer, M. E. Summers, M. W. Buie, A. M. Earle, K. Ennico, J. Wm. Parker, S. B. Porter, K. N. Singer, S. A. Stern, A. J. Verbiscer, R. A. Beyer, R. P. Binzel, B. J. Buratti, J. C. Cook, C. M. Dalle Ore, C. B. Olkin, A. H. Parker, S. Protopapa, E. Quirico, K. D. Retherford, S. J. Robbins, B. Schmitt, J. A. Stansberry, O. M. Umurhan, H. A. Weaver, L. A. Young, A. M. Zangari, V. J. Bray, A. F. Cheng, W. B. McKinnon, R. L. McNutt, J. M. Moore, F. Nimmo, D. C. Reuter & P. M. Schenk

A unique feature of Pluto’s large satellite Charon is its dark red northern polar cap. Similar colours on Pluto’s surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon’s high obliquity and long seasons in the production of this material. The escape of Pluto’s atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon’s winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon’s northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

Bridge the planetary divide

4 November 2016 - 9:36am

Bridge the planetary divide

Nature 539, 7627 (2016). doi:10.1038/539025a

Authors: Ariel D. Anbar, Christy B. Till & Mark A. Hannah

To explain why our planet is habitable, geoscientists studying Earth’s surface and interior must work with each other and with communications scholars, write Ariel D. Anbar, Christy B. Till and Mark A. Hannah.

Astronomy: Small stars host water worlds

4 November 2016 - 9:36am

Astronomy: Small stars host water worlds

Nature 539, 7627 (2016). doi:10.1038/539008d

Earth-sized planets covered in water may be abundant around red dwarfs, the most common type of star in the Universe.Yann Alibert and Willy Benz at the University of Bern used computer simulations to predict the properties of planets that could form around red dwarfs

James Webb: Two years to Hubble successor's launch

4 November 2016 - 9:32am

Engineers finish assembling the telescope that will succeed Hubble. James Webb, as it is known, is now on track to be launched two years from now.

Biggest telescope may switch location

2 November 2016 - 9:12am

One of the world's biggest telescope projects might be forced to move its location.

Space telescope duo will showcase the solar system in 3D

1 November 2016 - 9:15am

From 2019 to 2021, the Hubble and James Webb telescopes will share the sky, enabling us to see the best 3D images and movies of our celestial neighbourhood ever

Follow the Gaia 2016 Data Release #1 Workshop live

31 October 2016 - 9:43am
On 2-4 November, the European Space Astronomy Centre near Madrid, Spain, will host the Gaia 2016 Data Release #1 Workshop. Many of the talks will be broadcast live.

Gaia spies two temporarily magnified stars

28 October 2016 - 9:19am

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing across their lines of sight. One of these stars is expected to brighten again soon. Gaia's measurements will be instrumental to learn more about the nature of these 'cosmic magnifying glasses'.