Institute of Astronomy

 

Ask an Astronomer - Planets

Close approach of C/2013 A1 (Siding Spring) to Mars

Published on 10/04/2014 
Question: 

I have been thinking about how water was once on the surface of Mars. Today there is no evidence on water on the surface only 'channels' of were water once flowed.

I guess, water is still on mars but under the ground.

Could an asteroid have brought the water up to the surface, then after the asteroid has passed the water sinks back under the subsurface of mars ?

If a massive asteroid passed close by the planet mars, could the gravitational pull of the asteroid  exert a pull on body of mars, that could have an effect on mars molten core centre, exerting heat and pressure upwards, that brings mars water liquid to the surface, then the water on mars sinks under the ground after the effect of the asteroids pull has passed.

I though of this after thinking about how the Earths moon gravitational pull effects the earth by moving water to create tides and the effects on the earths core.  And how the gravitational pull of Jupiter has effected Europa's core, creating heat and pressures at the core to exert the water to the surface.

On Oct. 19, 2014, Comet Siding Spring will pass 138,000 km away from mars.

Do you think this close encounter with Comet Siding Spring would have a gravitational pull that would bring any water up from the subsurface of mars.

There is still water on the surface of Mars, the problem is that it is all frozen rather than liquid.  The polar ice caps of Mars contain substantial amounts of water ice, along with frozen carbon dioxide.  Similarly there is water ice in the subsurface of Mars at high latitudes, much like the Arctic permafrost on Earth.

Tidal heating can be an important effect, and is indeed what keeps Europa's subsurface ocean liquid.  To have that kind of tidal effect though needs a very massive body, Jupiter and the other Galilean moons in the case of Europa, and the Moon in the case of Earth.  By comparison Comet C/2013 A1 (Siding Spring) is tiny and the tidal pull it will exert on Mars would not be noticeable.  Tides do work both ways however, and the comet will experience quite large tides from Mars, which could significantly affect the structure of the comet.

Large impacts on the other hand might be able to temporarily melt some of the permafrost.  In the case of C/2013 A1 (Siding Spring) we know that an impact is very unlikely, but Mars does get hit by large objects every so often. 

Speed of Saturn's rings

Published on 10/04/2014 
Question: 

I remember reading somewhere that Saturn's rings are racing around the planet at tens of thousands of miles per hour. Does that mean that Saturn is kind of like an enormous buzz saw? Would the rings just be a blur to you if you were approaching the planet? Or did I just interpret this concept incorrectly, and are the rings just placidly floating around the planet, kind of like we always see them pictured in sci fi shows?

Orbital speeds do indeed seem very large when you first hear them, but you have to bear a couple of things in mind.  Firstly the distances involved are also very large.  For example the international space station has an orbital speed of 7.6 kilometres per second (17000 miles per hour), which sounds incredibly fast, but it still takes 90 minutes to circle the Earth.  The ISS is also pretty good for observing with the naked eye, and although you can definitely see it moving it doesn't just whizz past, it takes a good 10 minutes to make its way from one horizon to the other.  The second thing to bear in mind is that if you were approaching Saturn in a spacecraft, you would also be moving at those kind of speeds, and so by comparison the rings would seem to be moving more slowly relative to you. 

Plane of the solar system

Published on 15/01/2014 
Question: 

This has somewhat been playing on my mind for a little while now, We've all seen the posters in school telling us the order of the eight planets and they're all neatly put in a straight line and it came to me, that seriously cannot be how the planets orbit the sun in a straight line some must be off in a tilt. So I went and tried to do some research and most sources do put all the planets in a somewhat near line not really varying from a straight rotation around the sun... So I was wondering is that image correct do all the planets tend to rotate around the sun on an even plane if so then our solar system must be extremely flat with huge vast spaces closely above and below planetary rotations that are never occupied.

The solar system is indeed very flat, the orbits of all of the planets are within a few degrees of the same plane.  This plane is also very close to the plane of the Sun's equator.  The flatness of the solar system is one of the pieces of evidence that suggests that the planets formed within a disc around the young Sun.

The space above and below the plane in which the planets lie is not entirely unoccupied, as many asteroids and comets have much higher inclinations.  The main part of the asteroid belt for example reaches up to about 20 degrees above and below the plane of the planets and some of the outlying groups can reach 30 degrees.  Long period comets, like Hale-Bopp, come into the inner solar system pretty much evenly from all directions, so we believe that the Oort cloud, where they originate, is roughly spherical.  All of these small bodies probably didn't form with such inclined orbits though, they were scattered by the planets (particularly Jupiter) to reach their current orbits.

Not all planetary systems show the same amount of flatness though. Some of the new planetary systems that we have been finding around other stars are somewhat different.  Some of them are actually even more flat than the solar system, but then there are others that where the opposite is true and there are huge differences between the planet orbit and the stellar equator.  We suspect that the cases where the orbits are not aligned are systems that have had much more violent histories than the solar system with close encounters between some of the planets.

Earth-like Moons part 2

Published on 21/11/2013 
Question: 

I am a writer and need more info on the question : Earth-like moons

Since the tides are higher would sailing be possible? Also, the seasons; would winter be longer on the dark side of the gas giant?

In and of themselves the much higher tides that one would expect on an Earth-like moon of a gas giant would not be a big problem for sailing.  There would be a lot more small islands, sandbanks, etc. that appear at low tide and disappear at high tide, so it would be necessary to be more careful around the coast and have accurate charts in order to avoid grounding your ship, but out in the middle of the ocean there wouldn't be any issues at all.

The biggest issue would probably not be any direct impact of the tides on the act of sailing, but rather on the ports and shore facilities that are necessary to support fleets of sailing vessels. As an example take what would be a relatively modest mid-ocean tidal range of 5m, roughly ten times that we experience today. Translating that directly into tidal ranges at the coast is not totally straight forward because geographic features can interact with the tide making the local range higher or lower.  For example in the Bristol channel the present day tidal range is up to 9m. Let's assume that here in Cambridgeshire and East Anglia the tidal range is about 10m.  In Cambridgeshire that would mean that at high tide the waters edge would be in the city centre in both Cambridge and Peterborough.  At low tide on the other hand the Wash would be high and dry and the sea would be well over 100km from Cambridge, even Skegness would several 10s of kilometres inland.  This is partly because of the Fens are low lying and the Wash is shallow, but even if we moved elsewhere the effects would still be significant.  If we went to Bristol for example even if we only increased the tidal range to 20m, a much smaller amplification than the Bristol channel experiences today, the Severn would be tidal all the way to Kidderminster and at high tide Cardiff, Newport and Weston-super-mare would all be under water.  At low tide there would be probably no more than 100 metres or so of water separating England and Wales as far down as Exmoor.

The issue of very large tidal plains could certainly be overcome, ships have always generally entered and left harbour at high tide, but it would make things more difficult.

As to the seasons there would not be any substantial effect (assuming that you maintain the same tilt of Earth's axis of rotation).  There would be regular eclipses whenever Earth passed behind the gas giant, but these would only be a few hours every month, not sufficient to have a dramatic effect on climate.

Habitable planets

Published on 08/11/2013 
Question: 

Two questions, which are linked.

Occasionally there is some coverage in the media about the continuing discovery of planets around other star systems in the Milky Way, through the work of the Kepler telescope, and other initiatives. Is there a place on the web I can go to, to check what the latest thinking on all of this work is? I'm thinking of an up to date receod of things like numbers of candidate habitable planets discovered, where they are, stuff like that.

Second question, is there any work being done to try to identify such planets around either Alpha Centauri A or B? Is there somewhere I can go to on the web to see what the current thinking and evidence is from any work on these stars and their surrounding planets, and whether any might be in the 'goldilocks' zone for these stars?

There are several websites that maintain catalogues of exoplanet discoveries, with the two most well known being the Extrasolar Planets Encyclopedia (www.exoplanet.eu) run by Jean Schneider at the Paris Observatory, and the Exoplanet Data explorer (www.exoplanets.org) run by NASA, both of which provide facilities for plotting some of the basic parameters of the planets.  Both of those catalogues also have links to other pages about exoplanets, including things like discussion of potential habitable zone planets (though on that particular point be warned that there is no definitive agreement about the location of the habitable zone so you will likely find significant differences between different sources).

Alpha Centauri, as you can imagine being the nearest star system to our own Sun, has been extensively studied for many years to determine whether it has planets.  Last year a roughly Earth-mass planet was reported around Alpha Cen. B orbiting at 0.04AU (about a tenth of the orbital distance of Mercury), however there is considerable controversy surrounding this discovery and it has yet to be confirmed.  The existence of any planets larger than around Neptune has already been ruled out in the Alpha Centauri system, however finding, or ruling out, small, Earth-size, planets at Earth-like orbital distances is exceptionally difficult.  The Wikipedia article on Alpha Centauri Bb actually does a very good job of summarising the current situation.