skip to content

Institute of Astronomy

 
Subscribe to Next Wednesday Seminars feed
IoA Seminars usually held on Wednesday lunchtime.
Updated: 54 min 35 sec ago

Wed 15 May 13:15: Prototyping a Sparse-Aperture, Segmented, Parabolic Primary Mirror Telescope for SUPERSHARP

Sun, 12/05/2024 - 21:46
Prototyping a Sparse-Aperture, Segmented, Parabolic Primary Mirror Telescope for SUPERSHARP

The motivation for my research comes from the SUPERSHARP mission concept for large, unfolding, lightweight space telescopes which take advantage of unfolding segmented optics and a sparse aperture primary mirror to generate powerful observations while maintaining limited cost, mass, and volume requirements. The original motivation for the SUPERSHARP design comes from the ongoing search for life in the universe, but the technology has wider applications in both space and Earth observation. Prototyping of the optical system is integral to ensuring technological readiness of key aspects of the telescope design – in particular, the active control and maintenance of optics alignment. In this talk, I will present the work I have done designing and building a prototype of a sparse-aperture, segmented, parabolic primary mirror telescope using two mirror segments. I will also outline the immediate improvements and next steps required for the prototype to more accurately model an effective imaging system.

Add to your calendar or Include in your list

Categories: Talks

Wed 08 May 13:40: Type Ia supernovae: Constraining thermonuclear explosion physics with machine learning

Fri, 03/05/2024 - 11:32
Type Ia supernovae: Constraining thermonuclear explosion physics with machine learning

Type Ia supernovae are thermonuclear explosions of white dwarfs in binary systems. They play an important role in many areas of astrophysics, from providing chemical enrichment for galaxies to acting as cosmological distance probes. In spite of this, we still fundamentally do not know how or why some white dwarfs explode as thermonuclear supernovae. Multiple explosion mechanisms have been proposed, but the computational expense associated with developing realistic explosion simulations and the difficulty in observing key diagnostic signatures mean that providing robust constraints on the explosion physics is challenging. In this talk, I will provide a general overview of thermonuclear explosion physics and discuss the main explosion scenarios suggested in the literature. I will present my recent work focused on using machine learning to automatically fit spectral sequences of type Ia supernovae in a much more quantitative and efficient way than existing methods. With automated fitting we can test different explosion scenarios against observations and statistically determine which scenario provides the best overall agreement. As spectroscopic samples of supernovae continue to grow, automated fitting tools will become increasingly important to maximise the physical constraints that can be gained in a quantitative and consistent manner.

Add to your calendar or Include in your list

Categories: Talks

Wed 08 May 13:15: The cometary delivery of prebiotic feedstock molecules to the early-Earth and rocky exoplanets

Thu, 02/05/2024 - 10:12
The cometary delivery of prebiotic feedstock molecules to the early-Earth and rocky exoplanets

The delivery of prebiotic feedstocks molecules, such as hydrogen cyanide (HCN), during cometary impacts may have significantly influenced prebiotic chemistry on the early Earth, motivated by the discovery of a rich diversity of CHN - and CHS -bearing molecules on solar system comets. Numerical experiments have demonstrated that HCN survival during cometary impacts is however only possible in oblique impacts at very low velocities. In this talk I will discuss the effects of stellar mass, and planetary architecture on minimum cometary impact velocities onto rocky exoplanets. Using both an analytical model and numerical N-body simulations, we show the lowest impact velocities occur for low-mass planets in tightly-packed planetary systems around high-mass (i.e., Solar-mass) stars, enabling the intact delivery of prebiotic feedstock molecules. I will finish by discussing a specific origins scenario, proposed to achieve favourable conditions for subsequent prebiotic chemistry, which invokes the arrival of a secondary impactor in the same location. We consider the atmospheric fragmentation of cometary impactors, and use the lunar crater record to quantitatively evaluate the likelihood of these `double impact’ scenarios on the early-Earth. These scenarios are found to be extremely unlikely settings for the initial stages of prebiotic chemistry, unless there was a particularly high impact rate on the early-Earth, and global environmental conditions conducive to successful cometary delivery.

Add to your calendar or Include in your list

Categories: Talks

Tue 19 Mar 14:00: Primordial black holes in the dark matter halo of our Galaxy

Mon, 18/03/2024 - 11:09
Primordial black holes in the dark matter halo of our Galaxy

If there are primordial black holes in the dark matter halo, they must collide with the Galactic neutron stars (NSs) and produce light black holes (LBHs), with masses below 1.4 M_Sun. This has observational consequences that may be checked by microlensing, by LIGO -Virgo-Kagra interferometers detecting gravitational waves from collisions of LBHs with NSs and BHs, and (possibly) by detecting LBHs in X-ray binaries and from pulsars statistics.

Add to your calendar or Include in your list

Categories: Talks

Wed 13 Mar 13:15: A new convection scheme for exoplanet atmospheres

Mon, 11/03/2024 - 09:43
A new convection scheme for exoplanet atmospheres

Convection is an essential process for transporting heat and moisture in planetary atmospheres. The standard Earth picture of moist convection rising from the surface is only one of a number of modes of convection. Notably, convection in atmospheres with a high condensible mass fraction (non-dilute atmospheres), or with a lighter background gas than the condensible species (e.g. water convection in a hydrogen dominated atmosphere) – acts very differently and can be much weaker or even shut down entirely in the latter case. Here I present a new mass-flux scheme which can capture these variations and simulate convection in a wide range of parameter space for use in 3D climate models. A validation using the case of Trappist-1 e is presented.

Add to your calendar or Include in your list

Categories: Talks

Wed 13 Mar 13:40: Constraining physics and astrophysics with multifrequency CMB data

Sun, 10/03/2024 - 21:00
Constraining physics and astrophysics with multifrequency CMB data

The CMB anisotropies are measured in several microwave frequency bands. Having this frequency information allows us to separate signals that are due to different sources. We can easily make maps that are sensitive to specific frequency combinations, and in this way isolate the contribution from the primary CMB (early-Universe) and various other CMB interactions such as the Sunyaev—Zel’dovich (SZ) effect (the scattering of the CMB from electrons in the late Universe). I will talk about constraints on the SZ effect from Planck data using a new frequency-separation code, pyilc, which we use to isolate the signal while removing other late-Universe biases, in particular the infrared emission from star-forming galaxies. I will also show an application to beyond standard model interactions between the CMB and a non-trivial dark sector, and how we can use the CMB to constrain beyond-standard-model particle physics.

Add to your calendar or Include in your list

Categories: Talks

Wed 06 Mar 13:15: The Nature of Dark Matter with Lyman-Alpha Forest

Mon, 04/03/2024 - 09:41
The Nature of Dark Matter with Lyman-Alpha Forest

The existence of dark matter, which constitutes 85% of the matter density and 26% of the total energy density, is clearly demonstrated by cosmological observations of the Universe. And yet, very little is known about the nature of dark matter. The observations support the ‘cold dark matter’ (CDM) paradigm, in which the dark matter is a heavy particle, with little to no interactions through fundamental forces other than gravity. The cosmological and astrophysical observations of dark matter’s gravitational interaction currently provide the only robust evidence of dark matter. These observations typically rely on characterising the distribution of matter in the Universe. A dark matter particle that is lighter than the standard CDM paradigm predicts imprints a suppression of structure in the matter distribution. The exact scale where this happens is most often linked to the mass of the dark matter particle. I will present new results on the thermal relic warm dark matter constraints using the high-redshift cosmic web as traced by the Lyman-alpha forest.

Add to your calendar or Include in your list

Categories: Talks