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ABSTRACT

Mounting discoveries of extrasolar planets orbiting post-main sequence stars mo-
tivate studies aimed at understanding the fate of these planets. In the traditional
“adiabatic” approximation, a secondary’s eccentricity remains constant during
stellar mass loss. Here, we remove this approximation, investigate the full two-
body point-mass problem with isotropic mass loss, and illustrate the resulting
dynamical evolution. The magnitude and duration of a star’s mass loss com-
bined with a secondary’s initial orbital characteristics might provoke ejection,
modest eccentricity pumping, or even circularisation of the orbit. We conclude
that Oort clouds and wide-separation planets may be dynamically ejected from
1M⊙ − 7M⊙ parent stars during AGB evolution. The vast majority of plane-
tary material which survives a supernova from a 7M⊙ − 20M⊙ progenitor will
be dynamically ejected from the system, placing limits on the existence of first-
generation pulsar planets. Planets around > 20M⊙ black hole progenitors may
easily survive or readily be ejected depending on the core collapse and super-
wind models applied. Material ejected during stellar evolution might contribute
significantly to the free-floating planetary population.

Key words: planet-star interactions, planets and satellites: dynamical evo-
lution and stability, stars: evolution, stars: AGB and post-AGB, Oort Cloud,
supernovae: general

1 INTRODUCTION

Understanding the formation and subsequent dynami-
cal evolution of exoplanets has been a motivational hall-
mark for many observational and theoretical investiga-
tions. However, extrasolar planets continue to be discov-
ered in surprising and exotic environments, and questions
about the endstate of exoplanets are becoming increas-
ingly relevant. Few studies so far have modeled these
systems, which often feature evolved and variable par-
ent stars. The rich dynamics therein fundamentally differ
from studies of planets around main sequence stars.

Examples of exoplanets which do not orbit main
sequence stars are growing. The first confirmed ex-
trasolar planets were discovered around a neutron
star: specifically, the millisecond pulsar PSR1257+12
(Wolszczan & Frail 1992; Wolszczan 1994). The mini-
mum masses of these three planets continue to be among
the lowest known to date, and two of these planets reso-

⋆ E-mail: veras@ast.cam.ac.uk

nantly interact. Sigurdsson et al. (2003) later discovered
another pulsar planet, around the binary radio millisec-
ond pulsar PSR B1620-26. Exoplanets are also thought
to orbit white dwarfs and stars with white dwarf com-
panions. In the first category, GD 66 (Mullally et al.
2008, 2009), GD 356 (Wickramasinghe et al. 2010) and
Gliese 3483 (Matt Burleigh, private communication) are
planet-hosting stars. In the second category, examples are
thought to include Gl 86 = HD 13445 (Queloz et al. 2000;
Mugrauer & Neuhäuser 2005; Lagrange et al. 2006), HD
27442 (Butler et al. 2001; Chauvin et al. 2006), and HD
147513 (Mayor et al. 2004; Desidera & Barbieri 2007).

Additionally, planets have been discovered orbiting
stars that have turned off of the main sequence but are
not yet stellar remnants. Silvotti et al. (2007) discovered
a giant planet orbiting the extreme horizontal branch star
V 391 Pegasi, Geier et al. (2009) found a planet around
the hot subdwarf star HD 149382, Lee et al. (2009) re-
ported circumbinary planets to the sdB+M eclipsing sys-
tem HW Virginis, and Setiawan et al. (2010) suggested
that the planet orbiting the red horizontal branch star
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HIP 13044b might be of extragalactic origin. Cataclysmic
variables are another class of systems which might har-
bor planets, and recently, planets around the cataclysmic
variables QS Vir (Qian et al. 2010a), DP Leo (Qian et al.
2010b) and HU Aqr (Qian et al. 2011) have been re-
ported.

Prospects for discovering additional planets orbit-
ing white dwarfs (Drake et al. 2010; Faedi et al. 2011)
and extreme horizontal branch stars (Bear & Soker
2011) are promising, and observational campaigns to
do so have already been initiated (Hogan et al. 2009;
Benatti et al. 2010; Schuh et al. 2010). The Kepler mis-
sion can detect even smaller bodies around white dwarfs
(Di Stefano et al. 2010).

Theoretical investigations regarding the evolution
of planets around post-main sequence stars have fo-
cused primarily on planet engulfment and interaction
with the expanding stellar envelope, both for exoplanets
and specifically for the Earth. Villaver & Livio (2007),
Massarotti (2008) and Villaver & Livio (2009) use par-
ticular stellar evolutionary tracks to determine ranges
of semimajor axes at which planets are likely to be en-
gulfed. In this regime, tidal modelling has a significant
effect on the subsequent orbital evolution. However, as
summarized by Hansen (2010), the nature of tidal dissi-
pation is poorly understood and continues to yield dif-
ferent results depending on the model and assumptions
used. For this reason, the fate of the Earth is uncer-
tain. Sackmann et al. (1993), Rybicki & Denis (2001),
Schröder & Connon Smith (2008) and Iorio (2010) all ex-
plore the fate of the Earth in light of the Sun’s post
main-sequence mass loss, with differing results. Alterna-
tively, Debes & Sigurdsson (2002) focus on the stability
of multi-planet systems and link stellar mass loss to in-
stability timescales. By doing so, they demonstrate how
multiple planets beyond the reach of the star’s expanding
envelope might become unstable.

In this study, we consider just a single planet, or
smaller body. We perform a detailed analysis of the vari-
able mass two-body problem and apply the results to a
wide range of star-planet fates that encompass all stel-
lar masses . 150M⊙. We focus on how stellar mass loss
affects the eccentricity of a planet or planetary material,
a link often ignored in previous studies. As a result, we
show that planetary material can be ejected from a sys-
tem based on mass loss alone. We then quantify for what
combination of parameters we can expect this behavior.

We start, in Section 2, by reviewing the history of the
variable mass two-body problem and the corresponding
equations of motion. We then analyze the orbital evo-
lution in different mass loss regimes, determine where
and when the traditionally-used adiabatic approximation
holds, and estimate when the planets would become un-
stable. In Section 3, we apply the theory to stars of all
masses up to 150M⊙ in order to pinpoint realistic sys-
tems which would yield instability. We treat five different
mass regimes in separate subsections. We then discuss the
caveats, implications and potential extensions in Section
4, and conclude in Section 5.

2 THE GENERAL TWO-BODY MASS-LOSS

PROBLEM

2.1 Overview

Mass loss in the two-body problem, where both bodies
are considered to be point masses, has been studied for
over a century (e.g. Gyldén 1884; Mestschersky 1893).
This situation is sometimes referred to as the “Gyldén-
Mestschersky” problem, even though this particular case
refers to both variable mass rates having the same func-
tional dependence. The more general problem takes many
forms, or special cases, which are nicely outlined by Ta-
ble 1 of Razbitnaya (1985). One well-known form results
from the application of this general theory to binary stel-
lar systems, a formalism pioneered by Jeans (1924). The
mass loss prescription which bears his name, Ṁ = −κM j ,
where M is mass and κ and j are constants, has been an-
alytically and numerically treated in many subsequent
studies. However, specific applications of mass loss to
planetary systems have received little treatment.

Soon after the advent of computer-based numeri-
cal integrations, Hadjidemetriou (1963, 1966a,b) revis-
ited and reformulated the problem in important ways.
Hadjidemetriou (1963) highlighted the subtlety with
which mass loss must be treated in order to retain phys-
ical interpretations of the evolution of orbital elements.
He modeled mass loss as an additional acceleration that
is a function of a time- and mass-dependent velocity, and
showed that for any isotropic mass loss prescription, a
planet’s angular momentum h satisfies:

h = constant =
√

Gµa (1− e2), (1)

where a refers to the semimajor axis, e to the eccen-
tricity, and µ ≡ M⋆ + M . The subscript “⋆” refers to
the star and the variables without subscripts refer to the
(lower-mass) secondary in the two-body system, which
can be thought of as either a planet or particle; we will
use the term “planet.” Despite the conservation of angu-
lar momentum, no such conservation claim could be made
about the total energy of the system. 1 Hadjidemetriou
(1966b) then significantly discovered that amidst great
mass loss, such as in a supernova, the eccentricity of
the secondary may increase, and eventually lead to ejec-
tion from the system. That finding is the foundation for
this work. A subsequent series of papers (Verhulst 1969;
Verhulst & Eckhaus 1970; Verhulst 1972) provided an ex-
pansion of and comparison with Hadjidemetriou’s results.
Alcock et al. (1986) then approached the ejection possi-
bilities from a different perspective by considering the
effect of vigorous mass loss of white dwarf progenitors on
a comet. Later, Parriott & Alcock (1998) demonstrated
how the asymmetric mass loss case yields a greater frac-
tion of cometary ejections.

Despite the wide body of work on mass loss in the

1 Because a system with isotropic mass loss will maintain its
rotational symmetry, according to Noether’s Theorem, the an-
gular momentum will be conserved. Because the same system
does not exhibit time invariance, the energy of the system is
not guaranteed to be conserved.
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two-body problem2, most studies continued to concen-
trate on binary stars. Debes & Sigurdsson (2002) helped
break this trend by analyzing the planetary case through
the modelling of multiple planets orbiting a single star.
They assumed the planets had equal masses and initially
circular orbits, and studied their motion in the “adia-
batic” approximation. This approximation holds when
the mass loss timescale is much greater than a plane-

tary orbital timescale. In this approximation, the planet’s
eccentricity is thought to remain nearly constant, and
hence, from Eq. (1),

(

da

dt

)

adiabatic

= − a

µ

dµ

dt
. (2)

However, in the general planetary case, the angular
momentum is a function of eccentricity, which is generally
not constrained to be fixed. Other complicating factors
are: i) because planetary orbits which are changing due to
stellar mass loss are not closed, averaged orbital element
expressions can be misleading and counter-intuitive, al-
though technically correct (Iorio 2010), ii) in a single
phase of stellar evolution, mass loss is typically noncon-
stant (although monotonic) and may not be isotropic, iii)
stellar mass evolution typically involves multiple phases
of mass loss on timescales which can vary by orders of
magnitude, and iv) several additional forces due to stel-
lar evolution, such as tides and dynamical friction from
the expanding envelope, might be necessary to model in
order to describe the correct orbital evolution.

Here, we do not place restrictions a planet’s semima-
jor axis, eccentricity or orbital angles, but do take mea-
sures to focus our results. We treat mass loss as isotropic.
Tidal effects are unimportant in the regimes we consider
here, and so we can safely neglect those. To foster intu-
ition for the mass loss problem, and to obtain tractable
results, our analytics assume a constant mass loss rate
throughout. However, some of our analytical results are
completely independent of the mass loss rate assumed.
The parameters for the example cases used in this Section
were selected to best demonstrate different aspects of the
motion of this general two-body problem with mass loss;
more realistic cases are presented in Section 3. There, we
apply the theory presented here to just a single phase of
stellar evolution, but do consider almost the entire phase
space of stellar mass.

2.2 Statement of Equations

Although the equations of motion in terms of orbital el-
ements for the variable-mass two-body problem can be
derived from first principles, only a few authors (e.g.
Hadjidemetriou 1963; Verhulst 1969; Deprit 1983; Li
2008) have stated them in full without averaging or ap-
proximation:

2 Rahoma et al. (2009) provides a detailed summary of addi-
tional results from past papers, and Plastino & Muzzio (1992)
summarizes the “use and abuse” of using a force to model mass
loss.

da

dt
= −a

(

1 + e2 + 2e cos f
)

1− e2
1

µ

dµ

dt
(3)

de

dt
= − (e+ cos f)

1

µ

dµ

dt
(4)

di

dt
=

dΩ

dt
= 0 (5)

dω

dt
=

d̟

dt
= − sin f

e

1

µ

dµ

dt
(6)

df

dt
= −d̟

dt
+

n (1 + e cos f)2

(1− e2)3/2
(7)

where i is the inclination, Ω is the longitude of ascending
node, ̟ is the longitude of pericenter, ω is the argument
of pericenter and f is the true anomaly. Equations (1), (3)
and (4) are self-consistent and may be derived from one
another with help from the vis-viva equation. The time
derivative of position in terms of orbital elements and the
statement of the conservation of angular momentum in
polar coordinates give Eqs. (6) and (7).

These equations may also be derived from more gen-
eral considerations. Gauge theory is a basis from which
one may obtain sets of equations such as Lagrange’s plan-
etary equations and Gauss’ Planetary Equations by defin-
ing just a single perturbative acceleration to the clas-
sic two-body problem, and a gauge velocity. The for-
mulation of the theory with regard to planetary dy-
namics as well as extensive descriptions can be found
in Efroimsky & Goldreich (2003, 2004), Gurfil (2004),
Efroimsky (2005a), Efroimsky (2005b, 2006), Gurfil
(2007) and Gurfil & Belyanin (2008). Hadjidemetriou
(1963) showed that the sum of the isotropic mass varia-
tion of both bodies is equivalent to a perturbative force
with an acceleration of ∆ ~A = −(1/2)(dµ/dt)(1/µ)~v,
where ~v is velocity. This acceleration yields Eqs. (3)-(7)
directly for a zero gauge.

Every variable in Eqs. (3)-(7) is considered to be
a function of time. The mean motion, n, is equal to
G1/2µ1/2/a3/2, where G is treated as the standard grav-
itational constant. Although we use µ throughout this
work to emphasize how the motion is affected by the sum
of the mass loss (or gained) by both bodies, the value of
the planetary mass and how it changes with time has a
negligible effect on the results for M⋆ ≫ M . For a 1M⊙

star, if one assumes a planetary mass of ∼10 Jupiter
masses, which is on the order of the theoretical upper
bound, then M/M⋆ ∼ 1%.

The planet’s true longitude, θ, varies according to:

dθ

dt
=

n (1 + e cos f)2

(1− e2)3/2
, (8)

which is not explicitly dependent on the mass loss rate
and hence is equivalent to the case of no mass loss. This
equation demonstrates that from the point of view from
a fixed reference direction, the secondary will continue to
circulate around a star that is losing mass as long as the
secondary remains bound.

For completeness, we consider the evolution of other
traditionally-used orbital parameters. The planet’s eccen-
tric anomaly, E, will vary according to:

c© 2011 RAS, MNRAS 000, 1–23
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dE

dt
=

n (1 + e cos f)

1− e2
+

sin f

e
√
1− e2

1

µ

dµ

dt
. (9)

Note that the right-hand sides of Eqs. (3)-(9) may be
expressed in terms of the eccentric anomaly instead of
the true anomaly. The planet’s mean motion will vary
according to:

dn

dt
=

n
(

2 + e2 + 3e cos f
)

1− e2
1

µ

dµ

dt
. (10)

The planet’s mean anomaly, Π, can be expressed as an
explicit function of time by use of the “time of pericen-
ter”, τ :

dΠ

dt
= n+ n (t− τ )

(

2 + e2 + 3e cos f
)

1− e2
1

µ

dµ

dt
(11)

or, through Kepler’s Equation, as:

dΠ

dt
= n+

√
1− e2 sin f

(

1 + e2 + e cos f
)

e (1 + e cos f)

1

µ

dµ

dt
, (12)

which is explicitly independent of time. Finally, the mean
longitude, λ, changes with time according to

dλ

dt
=

dΠ

dt
+

d̟

dt
=

n− d̟

dt

[√
1− e2

(

1 + e2 + e cos f
)

1 + e cos f
− 1

]

. (13)

Throughout this paper, we denote initial values with the
subscript “0”.

2.3 Parametrizing Mass Loss

Suppose the mass loss rate is constant and equal to −α,
such that α > 0. Then µ = G (µ0 − αt), and
(

1

µ

dµ

dt

)

= −
(µ0

α
− t
)−1

. (14)

We can better quantify adiabaticity and various
regimes of motion due to mass loss by defining a dimen-
sionless “mass loss index”, Ψ:

Ψ ≡ α

nµ

=
1

2π

(

α

1M⊙/yr

)

( a

1AU

) 3

2

(

µ

1M⊙

)− 3

2

. (15)

This parameter provides a scaled ratio of the orbital
period to the mass loss timescale. The initial value of the
index as Ψ0. Hence, the time evolution of Ψ is governed
by:

dΨ

dt
= −3Ψ

(

1 + e cos f

1− e2

)

1

µ

dµ

dt
. (16)

When Ψ ≪ 1, a system can be considered “adiabatic”,
the case we treat first.

2.4 “Adiabatic” Regime Evolution

2.4.1 Adiabatic Eccentricity Evolution

We begin analyzing the equations of motion by first con-
sidering Eq. (4), because all nonzero equations of motion
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Figure 1. Analytic approximation to the eccentricity evolu-
tion in the adiabatic regime. Shown here is the difference in
eccentricity of a planet evolving according to Eq. (17) com-
pared to Eqs. (3)-(7). The planet is located at a0 = 1 AU
from a µ0 = 1M⊙ star which is losing mass at the rate of a
rate of α = 10−5M⊙/yr (Ψ0 ≈ 1.6 × 10−6). The differently
coloured lines from the top of each crest moving downward
correspond to e0 = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 respectively.

explicitly include e in some manner. Note importantly
that the equation demonstrates that an initially circular
planet will not remain on a circular orbit, and that the
planet’s eccentricity will undergo oscillations on orbital
timescales when the parent star loses mass.

We can solve Eq. (4) by noting that in the adia-
batic approximation (Ψ ≪ 1), the first term in Eq. (7) is
considered to be negligible compared to the second term
(= dθ/dt), because the first term is proportional to the
mass loss rate. Further, µ is assumed to remain fixed over
the course of one orbit. Hence, in this regime, Eq. (4) may
be integrated directly over the true anomaly, with the re-
sult:

eadiabatic = e0 +Ψ0

(

1− e20
) 3

2 sin f

1− e0 cos f
. (17)

According to Eq. (17), after each orbit the eccentric-
ity will return to its initial value. During the orbit, the
amplitude of (eadiabatic − e0) is Ψ0(1 − e20) ∝ α. Thus,
assuming a current value of α⊙ ≈ 10−13/yr, the Earth’s
eccentricity is raised by about 10−14 each year due to the
Sun’s mass loss.

Fig. 1 demonstrates the accuracy of Eq. (17) when
compared with the evolution from the full equations of
motion (Eqs. 3-7) for a ao = 1 AU planet orbiting a µ0 =
1M⊙ star which is losing mass at the rate of 10−5M⊙/yr
(8 orders of magnitude greater than α⊙). The agreement
is excellent over the course of a single orbit. Over time,
the approximation gradually worsens, as the evolution of
Ψ0 is not taken into account in Eq. (17).

c© 2011 RAS, MNRAS 000, 1–23
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Figure 2. The adiabatic regime. The position in space (left panel) and the evolution of the true anomaly (right panel) of a
planet (or belt particle) that is being pushed outward due to stellar mass loss. The colours on the curves indicate evolution at
the same points in time, and the vertical lines of true anomaly indicate circulations of the angle. The star has an initial mass of
µ0 = M⋆ = 1M⊙ and is losing mass at the rate of α = 1× 10−5M⊙/yr. The planet begins on a highly eccentric orbit (e0 = 0.9)
at a0 = 100 AU, with f0 = 0◦. Hence, Ψ0 = 0.0016. Notice that as the planet moves outward and its mean motion decreases, the
circulation period of the true anomaly decreases as well.

2.4.2 Adiabatic Semimajor Axis Evolution

We now consider the semimajor axis evolution from Eq.
(3). Note from the equation that for any mass loss, the
semimajor axis can never decrease.

In the adiabatic regime, the semimajor axis is tra-
ditionally evolved according to Eq. (2). Note, however,
that the equation does not follow from Eq. (3) if e 6= 0.
Yet, when the semimajor axis is averaged over one or-
bital period, the eccentricity terms vanish and Eq. (2) is
recovered. The solution of this equation is:

aadiabatic = a0

(

1− αt

µ0

)−1

. (18)

Therefore, an adiabatically evolving planet will, for
example, double its orbital separation if its parent 1M⊙

star constantly loses mass at the rate of α = 5 ×
10−9M⊙/yr over 100 Myr. In a different example, a 2M⊙

star is expected to lose at most ≈ 70% of its initial mass.
Therefore, if all this mass is lost adiabatically, then orbit-
ing planets can expect to increase their semimajor axis
by at most a factor of ≈ 3.3.

2.4.3 Adiabatic Orbital Angle Evolution

Turning to other orbital parameters, the longitude of
pericenter is a typically secular feature of multi-planet
extrasolar systems. Its variational timescale is often on
the order of thousands of orbits. During stellar evolu-
tion, however, Eq. (6) demonstrates that the variation
in a planet’s longitude of pericenter is quick (on orbital
timescales), and changes sign over each orbital period. To
be consistent with the adiabatic approximation, in which
dω/dt ≈ 0 in Eq. (7), then

̟adiabatic = ̟0. (19)

Because d̟/dt is assumed to be zero, the value of
fadiabatic follows the same evolution as f would in the
two-body problem with no mass loss.

We can obtain an adiabat for n from Eq. (10) under
the same assumptions that were used to derive Eqs. (2)
and (18):

nadiabatic = n0

(

1− αt

µ0

)2

. (20)

Thus, in the adiabatic approximation, the mean motion
is a monotonically decreasing function. In the same ex-
ample system from Section 2.4.2, with µ0 = 1M⊙, and
α = 5×10−9M⊙/yr, after t = 100 Myr the planet’s mean
motion would decrease by a factor of 4. This result is ex-
pected from Kepler’s 3rd law with a halved stellar mass a
doubled semimajor axis. For 2M⊙ stars, the final Keple-
rian period of a planet when mass loss has ceased would
be enhanced from its initial period by a factor of at most
≈ 11.

2.4.4 Adiabatic Evolution in Space

In space, adiabatic evolution corresponds to a planet or-
biting in an outward spiral pattern. Figure 2 displays such
an orbit (for Ψ0 ≈ 0.0016), which is not closed. After each
cycle of true longitude, the eccentricity does return to its
initial osculating value. The semimajor axis is seen to in-
crease by as much as 10% of a0 per orbit. The increase in
orbital period can be linked with the circulation timescale
of f .

A highly eccentric planet might make close passes
to the star, close enough to be affected by tides and the
stellar envelope. In order to determine if the planet is
more or less likely to suffer these encounters from mass

c© 2011 RAS, MNRAS 000, 1–23
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loss, consider the evolution of the pericenter, q, of the
planet:

dq

dt
= −a (1− e) (1− cos f)

1 + e

1

µ

dµ

dt
. (21)

Equation (21) demonstrates that the pericenter mono-

tonically increases with stellar mass loss. The left panel
of Fig. 2 corroborates this relation. Therefore, if a planet
“outruns” the star’s expanding envelope, then one can
neglect the envelope’s influence on the planet.

2.5 Regime Transition

2.5.1 The Breaking of Adiabaticity

Equation (20) has important implications for the dynam-
ical system, as mean motion is inversely proportional to
the Keplerian period. Hence, as a star loses mass, and
pushes a planet radially outward, the mean motion de-
creases, and eventually the orbital period will be compa-

rable to the mass loss timescale (Ψ ∼ 1). More precisely,
dθ/dt (which is proportional to the mean motion) will
eventually become equal to (−d̟/dt) (which is propor-
tional to the mass loss timescale). At this bifurcation
point in the dynamics, Eq. (7) demonstrates that the true
anomaly becomes momentarily stationary. At this point,
one can claim that adiabaticity is broken.

Note that in the adiabatic regime, f circulates. At
and beyond the bifurcation point, df/dt instead begins
to librate. The effect of a librating f on da/dt and
de/dt is pronounced, quick and runaway. The eccentric-
ity and semimajor axes evolution undergo a qualitative
change, and the rate of increase in the latter is pro-
nounced. Therefore, we denote this regime as the “run-
away” regime. We wish to investigate this regime tran-
sition, and do so first qualitatively through Figs. 3 and
4. These figures model a 1M⊙ star which is losing mass
at a relatively high rate of α = 5 × 10−5M⊙/yr over
1.5×104 yr. After this amount of time, the star will have
lost 75% of its initial mass. These values are chosen for
demonstration purposes, as typical 1M⊙ stars will lose
≈ 35%−62% of their mass en route to becoming a white
dwarf. We model more realistic systems in Section 3.

Figure 3 illustrates the approach to and onset of
adiabaticity breaking, with Ψ0 = 0.023 (left panel) and
Ψ0 = 0.25 (right panel). In the first case, the eccentricity
ceases to remain approximately constant and can start
to oscillate on the order of a tenth. In the second case,
where Ψ quickly assumes values on the order of unity,
planets evolve in the runaway regime and may achieve
hyperbolic orbits.

Figure 4 showcases the semimajor axis evolution for
the same systems in Fig. 3. In the left panel of Fig. 4,
the curves of initial eccentricity break away from the adi-
abat, increasing at a steeper rate than the adiabat. In
the right panel, at t = 0, the systems are just beyond
the adiabat and are “running away” from the star. For
a constant mass loss that turns on and off nearly instan-
taneously (such as in a supernova), planets might not
ever evolve adiabatically, and begin their life in the run-
away regime. Note that unlike eccentricity, the semimajor
axis is always increasing, even when oscillating about the

adiabat. In the runaway regime, the departure from the
adiabat is drastic; the right panel shows that the planet
may increase its semimajor axis by many factors before
achieving a hyperbolic orbit.

The resulting increase in a will cause the mean mo-
tion term in Eq. (7) to decrease further. In the limiting
case where dω/dt ≫ n, the libration amplitude will ap-
proach zero, and the true anomaly will become nearly
stationary. As a result, the cos f term in Eq. (4) becomes
constant, and de/dt becomes linear in e, causing a posi-
tive feedback effect that is characteristic of the runaway
regime.

An orbit that is transitioning out of adiabaticity will
not complete its final orbit around the star, as the true
anomaly is no longer circulating. Figure 5 illustrates the
resulting motion in space. The system selected is the
highest eccentricity (e0 = 0.9) curve from the left pan-
els of Figs. 3 and 4 (Ψ0 = 0.023). The system reaches
the bifurcation point at ≈ 1.2 × 104 yr, as one can read
off from the right panel. Now we explore this bifurcation
point analytically.

2.5.2 Characterising the Bifurcation Point

The bifurcation point, as we defined in the last subsec-
tion, is the first moment when dθ/dt = −d̟/dt. At this
moment, from Eq. (7), df/dt = 0, and

Ψbif =
ebif (1 + ebif cos fbif)

2

sin fbif (1− e2bif)
3/2

. (22)

For the majority of possible values of eccentricity
and true anomaly, Ψbif ≈ 0.1− 1.0. There are an infinite
number of triples (Ψbif , ebif , fbif) that satisfy Eq. (22).
We cannot determine any of these three values from the
initial conditions, although one may approximate ebif ≈
e0 from the adiabatic approximation. However, at this
point in the planet’s evolution, ebif might differ by over
0.1 from e0.

The functional form of Eq. (22) suggests that for a
given Ψbif and a given ebif , there might be more than one
value of fbif which satisfies the equation. We now investi-
gate this possible multiplicity further by considering the
extremities of Ψbif with respect to ebif and fbif . There
are six values of fbif which satisfy dΨbif/dfbif = 0, five of
which are unphysical. The one physical solution is:

fbif,min = cos−1

[

1−
√

1 + 8e2bif
2ebif

]

, (23)

where 90◦ 6 fbif 6 270◦. Let the value of Ψbif at fbif =
fbif,min be denoted as Ψbif,fmin. Then, for a given Ψbif and
a given ebif , the number of values of fbif which satisfy Eq.
(22) are:

0 values of fbif if Ψbif < Ψbif,fmin (24)

1 value of fbif if Ψbif = Ψbif,fmin (25)

2 values of fbif if Ψbif > Ψbif,fmin. (26)

The maximum value of Ψbif,min (obtained in the
limit ebif → 1) is 4/(3

√
3). Therefore, for any given

Ψbif > 4/(3
√
3) ≈ 0.77, there are two possible values of
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Figure 3. The breaking of adiabaticity. Shown is the eccentricity evolution over 104 years of evolution of a0 = 200 AU planets (or
belt particles; left panel) and a0 = 103 AU planets (or belt particles; right panel) orbiting a µ0 = M⋆ = 1M⊙ star losing mass at
a rate of α = 5× 10−5M⊙/yr. The initial mass loss index for the systems in the left and right panels are respectively Ψ0 ≈ 0.023
and Ψ0 ≈ 0.25, values which are close to the transition point in the dynamics between the adiabatic and runaway regimes. Here,
f0 = 0◦. The lines with an increasing dash length represent e0 values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
In the right panel, all planets are ejected from the system within 104 yr except the two planets with the lowest initial eccentricity.
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Figure 4. The breaking of adiabaticity for the same two systems in Fig. 3. In the left panel, note how the eccentric planets
oscillate about the adiabat until reaching the runaway regime. In the right panel, the planets begin at t = 0 just off of the adiabat,
and quickly settle into the runaway regime.

fbif which satisfy Eq. (22). Figure 6 demonstrates Eqs.
(24)-(26) graphically by plotting Ψbif vs. fbif for 10 val-
ues of ebif (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9).
Large dots mark where Ψbif = Ψbif,fmin. As adiabatic sys-
tems increase Ψ and approach the bifurcation point, their
evolution can be imagined as moving upwards on this plot
while circulating almost parallel to the X-axis. Eventu-
ally they will reach the bifurcation point, preferentially
at Ψbif,min.

Note from Eq. (22) that ebif → 0 implies Ψbif → 0,
suggesting that planets with initially circular orbits can
never be in the adiabatic regime. However, this is not
true. If e0 = 0, then from Eq. (17), eadiabatic = Ψ0 sin f .
Inserting this expression into Eq. (7) yields:

df

dt

∣

∣

∣

t=0,e0=0
= n

[

(

1 + 1
2
Ψ0 sin 2f

)2

(

1−Ψ2
0 sin

2 f
)3/2

− 1

]

> 0 (27)

for any nonzero value of f (even if f0 = 0, then f at-
tains a positive value immediately). After t = 0, df/dt
will then continue to increase until the bifurcation point
is reached. Therefore, initially circular planets may easily
evolve adiabatically, which corroborates numerical simu-
lations.

Now we consider dΨbif/debif = 0. There are 3 solu-
tions, 2 of which are physical:

ebif,ext1 =
1

4

(

−3 cos fbif +

√

−7

2
+

9

2
cos (2fbif)

)

(28)

ebif,ext2 =
1

4

(

−3 cos fbif −
√

−7

2
+

9

2
cos (2fbif)

)

(29)

where fcrit 6 fbif 6 (360◦ − fcrit), such that
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Figure 5. The position in space (left panel) and the evolution of the true anomaly (right panel) of the e0 = 0.9 planet from the
system in the left panels of Figs. 3 and 4. At t ≈ 1.2× 104 yr, the planet stops circulating and starts to head out of the system as
the true anomaly becomes stationary.

fcrit = 180◦ − 1

2
cos−1

(

7

9

)

≈ 160.53◦. (30)

This critical true anomaly value will be important for de-
scribing motion in the runaway regime because it deter-
mines where a qualitative change in the evolution occurs.
For a given Ψbif and a given fbif , the number of values
of ebif which satisfy Eq. (22) are:

1 value of ebif if 0◦ 6 fbif < fcrit (31)

3 values of ebif if fcrit < fbif < 180◦ (32)

∞ values of ebif if fbif = fcrit (33)

Limiting values of Ψbif at ebif = ebif,ext1 and ebif =
ebif,ext2 are 2/3 and 4/(3

√
3).

We can illustrate the multiplicity suggested by Eqs.
(31)-(33) with Fig. 7. Plotted in Fig. 7 are six curves cor-
responding to f = 1◦, 5◦, 10◦ (short-dashed blue curves),
and f = 179.0◦, 179.5◦, 179.9◦ (long-dashed red curves).
We display these curves because they approximate e−Ψ
evolution tracks beyond the bifurcation point in the f →
0◦ and f → 180◦ cases. For these two values of f ,
df/dt ≈ 0 (from Eq. 7), and hence f remains constant as
a function of time. In this case, a system will move along
one of these tracks. Because Ψ is always increasing, for
the blue short-dashed curves, this system will increase
its eccentricity until ejection. However, for the red long-
dashed curves, the planet’s eccentricity might decrease

until reaching a critical point, when the increase in Ψ
will break the constant f approximation and force the
system off the track. The critical points (circles; peaks)
along these tracks which appear between 1/2 < e 6 1/

√
2

are given by:

Ψbif,crit1 =

[

− 6 cos fbif + ǫ

24
√
3 sin fbif

]

·
√

5− 3 cos (2fbif)− ǫ cos fbif , (34)

and for those critical points (triangles; troughs) which
appear between 1/

√
2 6 e < 1,:

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1.0

4

3 3

fbif HdegL

Y
bi

f

Solutions At The Bifurcation Point

Figure 6. Values of (Ψbif , ebif , fbif) at the bifurcation point,
where lines with increasing dash length represent ebif values
of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
Corresponding colour dots represent the value of Ψbif,fmin for

a given ebif , when just one value of fbif satisfies Eq. (22).
Adiabatic systems approaching the bifurcation point would be
traveling upwards on this plot while circulating nearly parallel
to the X axis.

Ψbif,crit2 =

[

− 6 cos fbif + ǫ

24
√
3 sin fbif

]

·
(

8− 6 cos2 fbif + ǫ cos fbif
)2

(5− 3 cos (2fbif) + ǫ cos fbif)
3/2

, (35)

where ǫ ≡
√

18 cos (2fbif)− 14. The two critical curves
are shown on Fig. 7 as thin black lines. The limiting val-
ues represented by the three triangles, which are not dis-
tinguishable by eye from one another on the plot, occur
at ebif < 1.

Linking the orbital parameters at the bifurcation
point with the initial system orbital parameters is dif-
ficult because although the bifurcation point is well-
defined, the adiabatic approximations begin to break
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Figure 7. Values of (Ψbif , ebif , fbif) at the bifurcation
point, where the blue-short dashed lines, starting from the
top down, represent fbif = 1◦, 5◦, 10◦, and the red long-
dashed lines, starting from the bottom up, represent fbif =
179.0◦, 179.5◦, 179.9◦. The peak and trough critical points for
the red long-dashed curves are marked with red circles and tri-
angles, respectively. The black curves are given by Eqs. (34)
and (35). The blue and red curves, separated by fcrit (Eq.
30) exhibit qualitatively different behaviors. The blue short-
dashed curves and the rising portions of the red long-dashed
curves represent evolutionary tracks beyond the bifurcation
point, demonstrating that for fcrit < f < 360◦ − fcrit, the
planet’s eccentricity will experience an initial decrease beyond
the bifurcation point.

down before the bifurcation point is reached (see, e.g.,
Fig. 3). Nevertheless, we can analytically estimate the
semimajor axis at the bifurcation point by using the semi-
major axis adiabat. Doing so gives:

abif

a0

= Ψ
− 1

3

0





e
1

3

bif (1 + ebif cos fbif)
2

3

(1− e2bif)
1

2 (sin fbif)
1

3





∝ M
1

2

⋆ a
−

1

2

0 α−
1

3 . (36)

Equation (36) contains qualitative physics useful for un-
derstanding when the system reaches the bifurcation
point. The dependence on the initial stellar mass, ini-
tial semimajor axis and the mass loss rate determine how
prone a star is to reaching the bifurcation point and eject-
ing its planet. For two planets in separate systems with
the same a0, the parent star whose physical parameters
yield a smaller value of abif is more likely to cause ejec-
tion. Also, wide orbit planets are more prone to be ejected
than smaller orbit planets. Unfortunately, the term in
square brackets is unknown and cannot be bound with-
out some assumptions on ebif and fbif . To be consistent
with using the adiabat, one can assume ebif = e0. How-
ever, by the time the system has reached the bifurcation
point, the eccentricity could have already varied away
from its initial value by at least a tenth. The value of fbif
is the cause of greater uncertainty.

2.6 “Runaway” Regime Evolution

2.6.1 Runaway True Anomaly Evolution

The unknown value of fbif largely determines how the
planet will evolve past the bifurcation point. If the mass
loss is great and sudden enough, then the planet will by-
pass the bifurcation point altogether and immediately
start evolving in the runaway regime. In this case, the
planet’s f0 value is crucial to its evolution. The divided
phase space structure of Fig. 7 correctly suggests that
systems can behave quantitatively differently depending
on their true anomalies.

Consider Figs. 8 and 9, which illustrate the eccen-
tricity evolution as a function of initial true anomaly
for Ψ0 = 0.089 (approaching the bifurcation point) and
Ψ = 7.96 (runaway regime). This dependence is more
complex around the bifurcation point Ψ ∼ 0.1 − 1 than
after it (Ψ > Ψbif). Note importantly that the divided
phase space structure in Fig. 7 manifests itself strongly in
Fig. 9 (at fcrit in the runaway regime, highlighted by the
dotted blue box, when every planet’s eccentricity must
experience an initial decrease), but not in Fig. 8 (be-
fore the bifurcation point). Additionally, in Fig. 8, for
at least a third of all possible initial f0 values, the first
planet ejected has a e0 value in between the extremes
sampled of 0.01 and 0.9. Contrastingly, in Fig. 9, in ev-
ery instance the first planet ejected has either e0 = 0.01
or e0 = 0.9. Further, the eccentricity evolution is nearly
symmetric about f = 180◦ in the runaway regime, a ten-
dency not exhibited in Fig. 8. This helps to demonstrate
how complex the evolution can be when the system is nei-
ther robustly in the adiabatic or runaway regime. Planets
which begin their post-main sequence life already in the
strongly runaway regime (Ψ ≫ 1; Fig. 9) experience more
predictable behavior.

Fortunately, in some cases we can analytically ap-
proximate the evolution of orbital parameters in this
regime. If a planet begins to evolve at t = 0 in a Ψ ≫ 1
system with a value of f that is close to either 0◦ or 180◦,
then f is guaranteed to librate with a small enough am-
plitude so that f may be treated as a constant. Figures
7 and 9 suggest that the resulting behavior in each of
the two cases will differ qualitatively. The latter figure
illustrates that for f = 180◦, immediately after circular-
isation, the eccentricity evolution starts increasing and
continues to do so up until ejection. Before quantifying
this behavior analytically, we first attempt to explain the
physical mechanism at work:

At f ≈ 0◦, e will increase until the planet is ejected.
There is no alternative evolutionary track. At f ≈ 180◦,
the eccentricity will decrease until e → 0. In this limit,
|d̟/dt| becomes large, forcing df/dt 6= 0. The true
anomaly will then quickly sample other values. At all
other values except 0◦, df/dt 6= 0. When f eventually
samples 0◦, it becomes stuck on that evolutionary track.

2.6.2 Runaway Eccentricity Evolution

In the runaway regime, when f = 0◦ or f = 180◦, Eqs.
(3) and (4) may be solved directly and analytically. The
eccentricity evolution is then given by:
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Figure 8. How true anomaly affects eccentricity evolution on the approach to the runaway regime. Shown is the eccentricity
of a planet at a0 = 500 AU over 1.5 × 104 yr orbiting the same star (µ0 = 1M⊙ and α = 5 × 10−5M⊙/yr, so Ψ0 ≈ 0.089)
as in the left panels of Figs. 3 and 4, as a function of f0. The lines with increasing dash length represent e0 values of
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. Note the dramatic sensitivity the initial true anomaly may have on
the eccentricity evolution, and that for f0 = 120◦ − 240◦, the particle or planet which is ejected first is one with an initial eccen-

tricity that is neither the highest nor lowest sampled. The evolution is not symmetric about f0 = 180◦, and a few of the initially
eccentric planets will become circularised.
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Figure 9. How true anomaly affects eccentricity evolution in the runaway regime. Shown is the eccentricity of a planet at a0 = 104

AU for the situation in Fig. 8. Here, however, Ψ0 ≈ 7.96 and the eccentricity evolution is nearly symmetric about f0 = 180◦ (as
hinted at by the f0 = 170◦ and f0 = 190◦ cases). Circular orbits are approached at f0 = 180◦. The blue dashed box highlights
the case f0 = fcrit. For fcrit < f0 < 360◦ − fcrit, every planet, regardless of e0, is predicted to experience an initial eccentricity
decrease. The eccentricity will later increase if the mass loss continues for a long enough time (which is not the case, e.g., for
f0 = 180◦ and e0 = 0.8).
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erunaway|f=0◦ = e0

(

1− αt

µ0

)−1

+
(µ0

αt
− 1
)−1

= e0
µ0

µ
+

(

µ0

µ
− 1

)

, (37)

and

erunaway|f=180◦ = e0

(

1− αt

µ0

)−1

−
(µ0

αt
− 1
)−1

= e0
µ0

µ
−
(

µ0

µ
− 1

)

. (38)

In the f0 = 0◦ case, the eccentricity will increase until the
planet is ejected; in the f0 = 180◦ case, the eccentricity
will decrease until the planet achieves a circular orbit.
Hence, the amount of mass remaining in a star at the
moment of ejection, µout and at circulation, µcirc, are:

µout

µ0

=
1 + e0

2
, (39)

µcirc

µ0

= 1− e0. (40)

Equation (39) demonstrates that for Ψ > Ψbif and
f0 ≈ 0◦, a planet will be ejected before half of the star’s

mass is lost. Also, planets with larger initial eccentricities
would be the first to be ejected. Equation (40) demon-
strates that a planet of any eccentricity may be circu-
larised, and that nearly initially circular planets are the
most likely to do so first. These equations may also be
expressed as tout = µ0 (1− e0) /(2α) and tcirc = µ0e0/α.

After circularisation, the planet’s true anomaly
quickly becomes 0◦, as described in the last subsec-
tion. Then, the eccentricity evolves according to a “post-
circular” prescription:

epost−circular =
t− µ0e0

α
µ0

α
− t

=
µ0

µ
(1− e0)− 1. (41)

The total time taken for a planet to circularise and then

be ejected from a system is ttot = µ0 (1 + e0) /(2α). After
this time, the amount of material the star has depleted
is:

µtot

µ0

=
1− e0

2
. (42)

Any planet which circularises before becoming ejected
therefore must have a parent star that loses at least half

of its mass. Additionally, in order for the most eccentric
planets to be ejected, they require the star to lose all

of its mass. The implications are that no belt of objects
that are uniformly distributed in both true anomaly and
eccentricity can all be ejected due to mass loss: Regardless
of the value of Ψ, the highest eccentricity bodies at f ≈
180◦ must survive.

2.6.3 Runaway Semimajor Axis Evolution

The semimajor axis evolution in the f0 = 0◦, 180◦ run-
away regime is:

arunaway |f=0◦ = a0 (1− e0)
1− αt

µ0

(1− e0)− 2αt
µ0

=
a0 (1− e0)

2− µ0

µ
(1 + e0)

(43)

and

arunaway |f=180◦ = a0 (1 + e0)
1− αt

µ0

(1 + e0)− 2αt
µ0

=
a0 (1 + e0)

2− µ0

µ
(1− e0)

(44)

respectively. As one might expect, for initially circular
orbits in the runaway regime, the semimajor axis evolu-
tion is the same for f0 = 0◦ and f0 = 180◦. Also, in the
circular limit, we can compare the semimajor axis evolu-
tion with what it would have been in the adiabatic limit.
For a given a0, arunaway/aadiabatic = (2µ/µ0−1)−1, which
holds until µ = µ0/2, the moment the planet is ejected.

Similarly, using Eqs. (39) and (40), one can show
that aout = ∞ and acirc = a0 (1 + e0). Therefore, the
circularisation semimajor axis is at most twice the initial
semimajor axis. When a planet is circularised, it is done
so only momentarily; it can only retain such an orbit if
the mass loss is suddenly stopped at that moment. For
any planet that has been circularised, one can show that
the semimajor axis will subsequently evolve as:

apost−circular = arunaway|f=180◦ . (45)

Therefore, the semimajor axis evolves through the e =
0 transition smoothly, without changing its functional
form.

We test the goodness of these analytical approxima-
tions by considering a close-in planet (at a0 = 2 AU) in
the robustly runaway regime of a supernova. Consider a
10M⊙ progenitor which expels α = 0.5M⊙/hour of mass
past the orbit the planet. Thus, Ψ ≈ 62.4. When f0 = 0◦

and f0 = 180◦, Eqs. (37), (38) and (41) replicate the ec-
centricity evolution. Therefore, we set f0 = 20◦ in Fig.
10 to show the extent of the deviation from the analytic
approximation. In the figure, the thin black dashed lines
represent the analytic approximation, which mimics the
true eccentricity evolution to within 10% for all values of
e0. As predicted by Eq. (39), all planets are ejected be-
fore the star loses half of its mass (at 10 hrs). In Fig. 11,
we set f0 = 178◦, just 2 degrees off an exact match, be-
cause such a deviation from the analytics is more drastic
than for deviations of f0 = 0◦. As f0 deviates from 180◦,
the eccentricity turns up sooner, and becomes less cir-
cularised. The approximation will mimic the semimajor
axis evolution until the point at which the planet would
have been circularised had f0 = 180◦. Note that these cir-
cularisation instances occur when a is less than twice its
initial value, in conformity with acirc = a0 (1 + e0). The
dots in the left panel indicate when this circularisation
would have taken place, and show that the semimajor
axis evolution is unaffected. As predicted by Eq. (42), no
planets are ejected until at least half of the star’s mass is
lost, and the highest eccentricity planets are ejected only
in the limit of the star losing all of its mass (at 20 hrs).
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Figure 10. Analytic approximations (thick black nearly-solid foreground lines, from Eqs. 37 and 43) to the e and a evolution from
the numerical simulations (background-coloured dashed curves) in a robustly runaway regime for f0 = 20◦. The planet at a0 = 2
AU is experiencing supernova-like mass loss of α = 0.5M⊙/hour from a µ0 = 10M⊙ star (Ψ0 ≈ 62.4). The lines with increasing
dash length represent e0 values of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. The analytical approximation is best
for e0 = 0.01, and reproduces all the e0 curves from the full numerical integrations to within 10%. All the planets are ejected
before half of the star’s mass is lost (see Eq. 39).
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Figure 11. Analytic approximations (thin black nearly-solid foreground lines, from Eqs. 38, 41 and 44) to the e and a evolution
from the numerical simulations (background-coloured dashed curves) in the same runaway regime as in Fig. 10, but for f0 = 178◦.
In the limiting case of f0 = 180◦, the eccentricity decreases until reaching zero. The dots in the left panel indicate when this
would have occurred (at a0 [1 + e0]). None of the planets are ejected until at least half of the star’s mass is lost, and the highest
eccentricity planets are not ejected until almost all of the star’s mass is lost (see Eq. 42).

2.7 Impulsive Regime Evolution

One may treat the entirety of stellar mass loss under
the impulse approximation, when the mass is lost instan-
taneously. This situation corresponds to Ψ0 → ∞, an
asymptotic runaway regime. Let the subscripts “i” and
“f” represent the initial and final values, E the (uncon-
served) specific energy of the system, and r and v the
position and velocity of the planet. Then

Ei =
1

2
v2i − Gµi

ri
= −Gµi

2ao
(46)

and

Ef =
1

2
v2f − Gµf

rf
> 0 (47)

assuming that the planet is ejected.

Now assume µf = βµi, where 0 < β 6 1. We can
obtain a condition for ejection by eliminating vi = vf
from the equations and setting ri = rf . Doing so gives:

β >
1 + e20 + 2e0 cos f0
2 (1 + e0 cos f0)

. (48)

We illustrate the phase space suggested by Eq. (48) in
Fig. 12. Below each curve of a given e0, the planet is
ejected. Note how the region around f0 = 180◦ highlights
a stable region, one for which the highest eccentricity
planets are the most protected. This situation is reflected
in the finite Ψ runaway regime, and demonstrated in Figs.
9 and 11. Although the highest eccentricity planets are
the most protected at f0 ≈ 180◦ (apocenter), they are
the least protected at f0 ≈ 0◦ (pericenter). The tendency
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for nearly circular planets to be ejected is independent of
true anomaly.

One curious connection between the impulse approx-
imation and the bifurcation point is that the two inflec-
tion points of Eq. (48) satisfy Eq. (23). The value of β at
these points, βinfl, is given by:

βinfl =
1

8

(

5−
√

1 + 8e20

)

. (49)

Therefore, 1/4 6 βinfl 6 1/2. These points are marked as
dots in Fig. 12, and are connected by the analytic curve
from Eqs. (23) and (49).

Returning to Eq. (48), note that in the limit of
f → 0◦ and f → 180◦, one recovers Eqs. (39) and (42).
Additionally, if the inequality in Eq. (48) is solved for
cos f and then bounded by its maximum value, then ejec-
tion is impossible if

β >
1 + e0

2
. (50)

This condition demonstrates that for an initially circular
planet, at least half of the star’s mass must be lost in or-
der for there to be a possibility of ejection. For a highly
eccentric planet, however, just a slight mass loss might
be enough to eject it. Whether or not a planet’s high ec-
centricity serves as a protection mechanism is dependent
on its f value, which relates how close the planet is to
pericenter or apocenter.

As an example, consider a circular ring of massless
particles uniformly distributed in true anomaly at any
separation from a star of any nonzero mass. If over half
of the star’s mass is lost instantaneously, then the entire
particle ring will be ejected. Otherwise, all the particles
will remain bound. Now consider an eccentric ring where
all particles have e = 0.9. If the parent star instanta-
neously loses 60% of its mass, then only ≈ 11% of the
ring will remain bound to the star.

3 EXCITATION AND EJECTION IN

REALISTIC SYSTEMS

3.1 Overview

We can now apply the theory developed in Section 2 to
realistic systems. The field of stellar evolution is exten-
sive and touches on several areas of astrophysics. We can-
not hope to cover the entire phase space in detail in one
paper. However, by focusing on a single phase of stel-
lar evolution and considering constant mass loss in most
cases, we will attempt to provide preliminary statistics
and order-of-magnitude analysis for the entire progenitor
stellar mass range up to 150M⊙. We perform detailed
nonlinear simulations only for the 2M⊙ 6 µ0 . 7M⊙

regime, whose stellar evolutionary tracks lend themselves
well to this study.

The evolution of stars is almost entirely determined
by its ZAMS (Zero-Age Main Sequence) metallicity con-
tent and mass (Woosley et al. 2002). These two factors
determine how mass is lost later in life through winds.
Because this correlation is so poorly known, mass loss
prescriptions are often treated as a third independent
parameter for tracing stellar evolution. To avoid detailed
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Figure 12. Ejection prospects in the impulse approxima-
tion (Ψ0 → ∞). Plotted is the fraction of stellar mass re-
tained (≡ β) vs. f0 for 10 curves of increasing dash length for
e0 = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The planet
remains bound in the regions above the curves and is ejected
in the regions below the curves. The dots refer to the inflec-
tion points of the curves, given by Eq. (49) and which satisfy
Eq. (23). Note how highly eccentric planets are especially pro-
tected from ejection near apocenter (f ≈ 180◦), but are prone
to ejection near pericenter (f ≈ 0◦).

modelling involving integration of the stellar evolution
differential equations, we rely heavily on the empirical al-
gebraic fits of Hurley et al. (2000) to model the evolution-
ary tracks of stars of most mass, metallicity and mass loss
rate properties. These evolutionary tracks demonstrate
that mass loss i) can occur in multiple stellar phases,
ii) is often prominent in just one stellar phase, and iii)
is always monotonic but typically nonlinear in any given
phase. All stellar evolutionary phase names used here are
defined in their seminal work.

We use the mass loss prescriptions provided in
Hurley et al. (2000), which include the Reimers law
on the Red Giant Branch (RGB; Kudritzki & Reimers
1978), a steady superwind asymptotic giant branch
prescription (Vassiliadis & Wood 1993), a high-
mass loss prescription (Nieuwenhuijzen & de Jager
1990), a Wolf-Rayet-like mass loss prescription
(Hamann et al. 1995) and a luminous blue variable
law (Humphreys & Davidson 1994). The Reimers pre-
scription is in particular widely used for giant branch
evolution, and beyond:

dM⋆

dt
= η

(

4× 10−13
) L⋆(t)R⋆(t)

M⋆

M⊙

yr
(51)

where L⋆ and R⋆ are the stellar luminosity and ra-
dius and η is a dimensionless coefficient. We adopt
the “typical” value for η of 0.5 (Hurley et al. 2000;
Schröder & Cuntz 2005).

We divide the stellar mass phase space into 5
regimes, which are approximately separated at 1M⊙,
2M⊙, 7M⊙, and 20M⊙, based on stellar evolutionary
properties.
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3.2 Numerics and Checks

Although certain regimes of evolution can be modelled
well by algebraic formulas, the lack of a complete closed-
form analytical solution to Eqs. (3)-(7) suggests that nu-
merical integrations are needed to model the evolution
of the full two-body problem with mass loss. We evolve
planetary orbits in this section by using numerical inte-
grations.

In these integrations, one may incorporate mass loss
i) as a separate differential equation, ii) by explicitly re-
moving mass from the primary according to a given pre-
scription, or, alternatively iii) by adding mass to the sec-
ondary (Debes & Sigurdsson 2002). As a check on our
results, we have reproduced each curve in the breaking
of adiabaticity regime in the left panel of Fig. 3 (Ψ0 ≈
0.023) with both i) integration of the orbital elements
(Eqs. 3-7) plus integration of a separate mass loss differ-
ential equation in the Mathematica software program, for
13 digits of accuracy and precision and with a working
precision equal to machine precision, and ii) integration
of the Cartesian equations of motion with the hybrid in-
tegrator of the N-body code, Mercury (Chambers 1999),
with a maximum timestep of 1 yr and with mass explic-
itly being removed from the primary at each timestep.

However, we warn future investigators that in sys-
tems which ultimately do not obey the adiabatic ap-
proximation, the dynamical evolution is sensitive to the
evolution of f . Therefore, in numerical integrations, par-
ticularly for nonlinear mass loss prescriptions, how one
discretises the continuous mass-loss process can quali-
tatively affect the resulting evolution. A discretation of
mass loss is mimicked in reality by instantaneous bursts
of primary mass lost beyond the orbit of the secondary.
Therefore, a detailed study of an individual system with
a given mass loss prescription will require a numerical
integration where the time between discrete decreases in
the primary mass should be less than the (largely un-
known) timespan of discontinuous patterns in the mass
loss modeled. Here, we just seek to demonstrate the in-
stability in the general two-body mass loss problem and
achieve representative statistics on ensembles of systems.
In the 2M⊙ 6 µ0 . 7M⊙ regime, which features nonlin-
ear mass loss, we model planets with 50 AU 6 a0 6 105

AU. Therefore, we set a maximum possible timespan of
1 yr (the same value used to reproduce Fig. 3) between
mass lost; in order to achieve mass loss on this scale,
we interpolate linearly between the outputs from the
largely nonlinear stellar evolutionary track outputs from
Hurley et al. (2000). We then run the simulations with
Mercury’s (Chambers 1999) hybrid integrator.

3.3 The Stellar Mass Spectrum

3.3.1 The µ0 < 1M⊙ regime

Sub-solar mass stars experience quiescent deaths, some
of which are theorized to last longer than the age of
the universe. However, stellar tracks computed from the
Hurley et al. (2000) code indicate that the most massive
members of this group (µ0 > 0.7M⊙) may pass through
multiple stages of evolution, and eject up to half of their

initial mass in the Red Giant Branch (RGB) stage. Low
metallicity µ0 = 0.8M⊙ and µ0 = 0.9M⊙ stars do so
on the RGB over ∼ 100 − 200 Myr. If this mass is lost
uniformly, then Ψ0 ≈ 0.011, meaning that the system is
likely to start losing its adiabatic properties. Simulations
of constant mass loss confirm that the change of the ec-
centricity of an Oort Cloud at a0 = 105 AU will vary
from ∼ 0.01 (for particles with e0 = 0.90) to ∼ 0.1 (for
particles with e0 = 0.01). The mass loss is not strong
and quick enough to eject the particles, and objects with
semimajor axis less than ∼ 104 AU (which would yield
Ψ 6 0.00036) are robustly in the adiabatic regime. This
regime of the motion might change, however, due to non-
linear modeling. This might reveal short bursts of mass
loss causing Ψ to increase sharply over the corresponding
burst timescale.

3.3.2 The 1M⊙ 6 µ0 < 2M⊙ regime

Roughly half of all known planet-hosting stars, including
the Sun, lie in this progenitor mass regime, motivating
detailed analyses of these systems. We defer such analy-
ses to future studies because of the complex multi-phasic
evolutionary path these stars are prone to follow.

As an example, assuming η = 0.5, the Sun will even-
tually lose a total of 48% of its original mass: 24% dur-
ing the RGB, 4% during core-He burning, 13% during
the Early Asymptotic Giant Branch (EAGB), and 7%
during the Thermally Pulsing Asymptotic Giant Branch
(TPAGB). All these phases of mass loss are nonlinear and
occur on different timescales. If instead η = 0.3, then the
mass loss percentages will change drastically: 13% dur-
ing the RGB, 2% during core-He burning, 4% during the
EAGB, and 28% during the TPAGB. Other examples
show that slightly increasing the progenitor mass from
1.1M⊙ to 1.2M⊙ can have a similarly large effect on what
mass is lost when.

We can, however, provide some rough estimates
of planetary evolution through representative numerical
simulations assuming constant mass loss over one phase.
Stars in this mass regime may lose over 60% of their orig-
inal mass, most of which either in the RGB (particularly
for values of η > 0.8) or the TPAGB (for lower η and
µ0 > 1.3M⊙). The duration of RGB phases for these
masses are ∼ 100 Myr, and will yield only minor eccen-
tricity increases at a = 105 similar to those from sub-
Solar masses. However, the duration of TPAGB phases
in this mass regime is ∼ 0.1 − 1.0 Myr. Constant mass
loss over this period of time for µ0 = 1.0M⊙ − 1.3M⊙

can cause up to 20% of an Oort Cloud at 105 AU
(Ψ ≈ 3.0) to be ejected, and raise the eccentricity of
an initially circular planet at 104 AU (Ψ ≈ 0.096) to
≈ 0.25. We obtained these figures by sampling 8 evenly
spaced values of f0 for each of the following 10 values
of e0: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. This ef-
fect is pronounced with progenitor masses approaching
2M⊙ and losing up to 70% of their initial mass.

Therefore, Oort clouds are in jeopardy of partially
escaping or being moderately disrupted in systems with
similar progenitor masses to the Sun. The comets cannot,
however, drift into the inner regions of the system (see
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Eq. 21). The widest-orbit planets at ∼ 104 AU may expe-
rience a moderate eccentricity change of a few tenths, and
might be ejected depending on the nonlinear character of
the mass loss. Future multi-phasic nonlinear modelling
will better quantify and constrain these effects.

3.3.3 The 2M⊙ 6 µ0 . 7M⊙ regime

This mass regime is well-suited for this study because
here, ∼ 70%−100% of a star’s mass loss occurs in a single
phase, the TPAGB, regardless of the values of η, [Fe/H],
or µ0. Therefore, by modelling the nonlinear mass loss in
this one phase, we can make definitive conclusions about
this region of phase space. Additionally, the duration of
this phase is short, typically under 2 Myr, and therefore
feasible for numerical integration of planets at distances
of just a few tens of AU.

We consider two progenitor star metallicities, a
“low” metallicity ([Fe/H] = 0.0001), and Solar metal-
licity ([Fe/H] = [Fe/H]⊙ = 0.02), both with η = 0.5. In
the low metallicity case, we utilize 9 TPAGB evolutionary
tracks that range from µ0 = 2M⊙−6M⊙, in increments of
0.5M⊙. In the solar metallicity case, we utilize 13 TPAGB
evolutionary tracks that range from µ0 = 2M⊙−8M⊙, in
increments of 0.5M⊙. Beyond these upper mass limits, a
star would undergo supernova for the stated metallicities.
The evolutionary tracks are plotted in Fig. 13. Note that
the initial masses indicated on the plots do not exactly
represent µ0; the small (< 10%) mass loss which occurred
between the main sequence and the start of the TPAGB,
typically in the Core-He burning and EAGB phases, has
already been subtracted. For all of the tracks except the
low metallicity µ0 = 2M⊙ track, most of the mass loss
occurs within a short 104 yr scale indicated by the sharp
downturn in the curves. However, note that between the
start of the TPAGB phase to this intense mass loss pe-
riod, over a period of ≈ 0.7− 1.5 Myr, the stars typically
lose ∼ 0.5M⊙ worth of mass. After the intense mass loss
burst, effectively no more mass is lost from the system.
Integrations for the two lowest-mass tracks for [Fe/H] =
[Fe/H]⊙ = 0.02 were begun 5 × 105 yr after the start of
the TPAGB in order to include the sharp mass loss fea-
ture and consistently integrate all systems over the same
period of time.

For each of the 22 evolutionary tracks, we mod-
eled 1200 planets as test particles and integrated the
systems for 1.6 Myr, longer than the duration of the
TPAGB phase for nearly all of the stellar tracks. The
planets were all given randomly chosen values of the
initial mean anomaly, and were split into 8 groups of
150. Each group of planets was assigned an a0 value of
50, 100, 500, 1× 103, 5× 103, 1× 104, 5× 104, and 1× 105

AU. Each group of 150 planets was split into three sub-
groups of 50, each of which was assigned an e0 value of
0.01, 0.5 and 0.9.

We compute the percentage of each group of 150 sim-
ulations of a given semimajor axis and initial progenitor
mass which become unstable. We define instability by
whether or not the planetary eccentricity reaches unity.
Figure 14 reports the results. Because of the nonlinear
nature of the mass loss, here our mass loss index from

Eq. (15) breaks down. However, we can say roughly that
the duration of the greatest mass loss is comparable to
a planet’s period at 500 AU (the blue curves with dia-
monds). At approximately this semimajor axis we expect
a planet to be in the transition region between adiabatic-
ity and runaway. This curves on the plot qualitatively
corroborate this expectation: orbits tighter than 500 AU
are stable and adiabatic, orbits wider than 500 AU are
unstable and runaway, and orbits at 500 AU are a bit
of both. Most of the planets in the widest orbits become
unstable, but they cannot all become unstable for a large
enough sample of randomly chosen values of f0 because
some of these values will be close to 180◦. As demon-
strated by Fig. 11, in the high (e.g., 0.9) e0 case, planets
with f0 close to 180◦ will be ejected only if the parent
star loses over ∼ 95% of its mass, a largely unrealistic
scenario for any progenitor mass. Further, for the sim-
ulations in Fig. 14, note that beyond 1000 AU – in the
robustly runaway regime – there is little correlation with
instability percentage and a0. Equations (37), (38) and
(41) help show why: at least for values of f0 close to 0◦

and 180◦, the eccentricity evolution is independent of a0.
For the planets which remain bound, we consider the

extent of their eccentricity excitation. Figure 15 plots the
eccentricity range experienced by bound planets averaged
over all simulations with the same values of µ0, a0, and e0
but with different values of f0. The panels show that the
eccentricity of the remaining bound planets for a0 > 500
AU is significantly excited (by several tenths). The ec-
centricity of planets at a0 = 50 and 100 AU on average
can vary by a few hundredths, and 0.1, respectively. If a
symbol in the legend does not appear on the correspond-
ing plot, then no planets at that semimajor axis remained
bound. The top two panels (e0 = 0.01) exhibit a dearth
of these symbols, a result one might expect from Fig. 12.
If that figure is qualitatively representative of the situa-
tion here, amidst strong nonlinear mass loss, then there is
no value of f0 which affords the lowest e0 planets protec-
tion. The horizontal lines on the middle two and bottom
two panels of Fig. 15 display the value of 1− e0; symbols
above these lines indicate that the corresponding systems
on average experience a net eccentricity decrease. These
systems are more likely to be left with a planet whose or-
bit is less eccentric than e0 when mass loss is terminated.

3.3.4 The 7M⊙ . µ0 . 20M⊙ regime

Generally, Solar-metallicity stars with 8M⊙ 6 µ0 6

20M⊙ are thought to undergo supernova and produce
a neutron star. However, these bounds are approximate.
Additionally, lower metallicity stars can begin neutron
star formation and black hole formation at different
values; representative ones might be 6M⊙ and 18M⊙,
respectively (Heger et al. 2003; Eldridge & Tout 2004;
Belczynski et al. 2010). These stars may eject ∼ 50% −
95% of their initial mass, most of which is in the su-
pernova (Smartt et al. 2009). Additionally, the minimum
and maximum possible masses of the remnant neutron
stars are constrained by physical principles. Typically ac-
cepted values for the minimum and maximum are ≈ 1M⊙

(Strobel & Weigel 2001) and 3M⊙ (Kalogera & Baym
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Figure 13. Thermally Pulsing Asymptotic Giant Branch (TPAGB) evolution for stars of low- and Solar-metallicities. Each colour
represents a different evolutionary track. Initial TPAGB mass can be read off from the Y-axis. The four highest-mass gray curves
for Solar metallicities were not computed for the low metallicity case because those stars would have undergone supernova.
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Figure 14. Planetary ejection prospects for massive stars from 2M⊙ − 8M⊙. Each data point is averaged over the 150 randomly
chosen mean anomaly values and 3 selected e0 values for each a0. The black filled-circle curves for 50 AU are hidden behind the
100 AU curves. The a0 = 50 and a0 = 100 AU systems, which are in the adiabatic regime, remain bound. The a0 > 103 AU
systems, in the runaway regime, become largely unstable.

1996); Clark et al. (2002) presents observational evidence
for the upper bound. Therefore, this mass regime of stel-
lar evolution is relatively well-constrained, and due to the
nearly instantaneous mass loss, is very well suited for this
study.

The sudden nature of the supernova, combined with
the great extent of mass lost compared to µ0, place
any orbiting planet immediately in the runaway regime.
Therefore, we seek to determine what planets, if any, can
survive a supernova. We hence choose parameters that
favor survival, to see if this situation is possible. First,
we select the minimum possible a0. Evolutionary tracks
from Hurley et al. (2000) indicate that the minimum ex-
tent of the pre-supernova stellar envelope (including pre-

supernova mass loss) is about ∼ 2 AU, so we choose
a0 = 2 AU.

If the mass ejected from a supernova is considered
to be isotropic, then this mass will collide with any or-
biting bodies. This collision is likely to destroy smaller
bodies. Large and/or massive planets, however, may sur-
vive. Those planets which do survive might accrete some
of the mass from the ejecta. Although doing so will cause
a to decrease, this contribution, even at 2 AU, is negligi-
ble compared to the a increase from all the other ejecta
that is being blown past the planet’s orbit. We are con-
cerned with the amount of time the mass takes to pass the
diameter of the planet. We can model mass loss in these
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Figure 15. Eccentricity excitation of planets which remain bound during massive star evolution, for 2M⊙ − 8M⊙. The left and
right panels are for low metallicity and Solar metallicity, respectively. The top, middle and bottom panels are for e0 = 0.01, 0.5,
and e = 0.9, respectively. Each data point is averaged over the 50 values of the mean anomaly sampled for the given µ0, a0, and
e0 values. If no symbol is displayed, then none of the corresponding systems were stable. The horizontal lines indicate values of
1− e0; symbols above this line experience a net eccentricity decrease.

systems by assuming an ejection velocity and a planetary
diameter.

Observations help constrain the velocity of this
ejecta. Some diverse examples for different types of Su-
pernovae include: i) Fesen et al. (2007) report Hubble
Space Telescope observations which indicate that the 120
yr average expansion velocity of SN1885 is 1.24 × 104 ±
1.4 × 103 km/s, ii) Mazzali et al. (2010) model spectra

of SN2007gr, and find that the inner 1M⊙ of material
is being ejected at a velocity of 4.5 × 103 km/s, and iii)
Szalai et al. (2011) find that the maximum velocity of
supernova ejecta of 2004dj during the nebular phase is
approximately 3.25 × 103 km/s. One theoretical investi-
gation claims that ejecta velocity can reach 2×104 km/s -
3×104 km/s (Woosley et al. 1993) , and another demon-
strates that (surface) piston speeds of 1 × 104 km/s -
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2 × 104 km/s “covers the extremes from a sudden (en-
ergy deposition over 1s) to a slow-developing explosion
(energy deposition over ∼ 100 ms)” (Dessart et al. 2010).
As exemplified by these examples as well as the compila-
tion in Fig. 1 of Hamuy & Pinto (2002), a typical range is
v = 103 − 104 km/s; let us then assume the lower bound
v = 103 km/s.

Further, the highest known exoplanet radius is less
than twice Jupiter’s radius3,4, so let us assume this value
for our planet. We can then test the extremes of the total
mass lost (≡ Meje) based on the progenitor mass and
remnant mass bounds.

We assume the mass is blown past the or-
bit of the planet isotropically and at a constant
value, and we consider 36 uniformly distributed val-
ues of f0. For each, we adopt 10 values of e0
(0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). We simulate
these 360 systems in each of four scenarios: with the two
extreme values of µ0 (6M⊙ and 20M⊙) and two extreme
values of the remnant mass (1M⊙ and 3M⊙). For all these
cases, Ψ0 ≈ 1−2, placing these systems in the weak run-
away regime at t = 0. The reason why Ψ0 is not higher
for such a great mass loss rate is because a0 is so low
(2 AU). However, to determine the endpoint of orbital
evolution, one needs to combine an estimate of Ψ0 with a
mass loss duration time (or a remnant mass, for constant
mass loss), which is independent of Ψ0. This is why the
endstates can change drastically for two systems even if
their initial mass loss indicies are equivalent.

Figure 16 displays the result of our simulations. The
figure demonstrates that an appreciable number of plan-
ets can survive, but only in the extreme case of the su-
pernova ejecting just half of the progenitor mass, and
only if f0 is closer to 180◦ than to 0◦. In the more realis-
tic cases of greater mass loss during supernova, the only
planets which may survive must have f0 ≈ 180◦. This
initial condition appears to be the only protection mech-
anism against ejection for robustly runaway (see Fig. 11)
or impulsive (see Fig. 12) systems which lose most of
their mass. The impulsive limit can further help explain
Fig. 16 through Eq. (48): the top, black curve with open
circles corresponds to β = 1/2, and the highest initial
eccentricity we sampled in the simulations was e0 = 0.9.
Therefore, Eq. (48) gives cos f0 < −0.9, meaning that all
planets with 154◦ . f0 . 206◦ should remain stable. The
numerical simulations confirm the theory. Additionally,
Fig. 12 confirms why no planets with initial true anoma-
lies within 80◦ of pericenter survive, even when just half
of the star’s mass is lost.

In fact, if we decrease or increase the mass loss rate
(and hence Ψ0) by an order of magnitude (to either
v = 100 km/s or v = 104 km/s), and rerun our simu-
lations, we reproduce Fig. 16 closely. Therefore, in such
runaway regimes, the evolution becomes independent of
the mass loss rate above a certain critical mass loss rate.
The realistic implication of this finding is that the par-
ticular choice of ejecta velocity assumed for a supernova

3 http://exoplanet.eu/
4 http://exoplanets.org/
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Figure 16. Survivability of a tight-orbit (2 AU) planet during
supernova. The progenitor mass and ejected mass is given by
M0 and Meje, respectively. Each data point is based on 10 sys-
tems with e0 = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). For
all cases, Ψ0 ≈ 1−2. The plot demonstrates that the only way

planets may remain bound after a supernova blast is by ini-
tially residing in a narrow region of true anomaly space. This
behavior was predicted in Sections 2.6.2 and 2.7, and specif-
ically in Fig. 12. Equation (48) demonstrates why all planets
on the black curve with open circles with 160◦ 6 f0 6 200◦

survive, and why all planets near pericenter are ejected. Al-
most all planets that withstand a supernova are ejected unless
the percentage of the progenitor’s mass lost is the theoreti-
cal lower bound (≈ 50%) for supernovae of ≈ 7M⊙ − 20M⊙

progenitor masses.

is unimportant, as long it is assumed to be higher than a
critical minimum value.

3.3.5 The µ0 & 20M⊙ regime

There is great uncertainty regarding how the highest-
mass stars lose mass and in what amounts. The possi-
bilities for planetary evolution around these stars are in-
triguing, and can be simulated once a model has been
adopted for a particular star. Stars in this regime gen-
erally become neutron stars or black holes5. Heger et al.
(2003) and Eldridge & Tout (2004) outline these poten-
tial stellar fates as a function of initial progenitor mass
and metallicity.

Black holes may form with or without a supernova.
In the latter case, mass is still lost during core collapse.
Quantifying the extent and timescale of this mass loss is
crucial for determining the fate of any orbiting planets.
This process is thought to last on the order of tenths
of seconds to seconds (O’Connor & Ott 2011). The mass

5 In rare cases, at the very lowest metallicities, pair instability
supernovae will destroy the entire star and leave no stellar
remnant.
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lost during this process has been modeled to be as much
as 1-2 M⊙ (Belczynski et al. 2010). However, this value
could be zero; Fryer (1999) argues that for progenitor
masses above 40M⊙, the final black hole mass could be
as large as the progenitor. Zhang et al. (2008) indicates
that stars at even greater masses, with 100M⊙ < µ0 <
260M⊙, may explode completely and leave no remnant.
These theoretical treatments are poorly constrained by
observations. However, observations do suggest that stars
up to 300M⊙ exist (Crowther et al. 2010).

Hence, unlike in the previous subsections, stellar
mass evolution here remains qualitatively uncertain, as
the amount of initial mass lost could be any value up
to 100%. Therefore, we can frame our cursory analysis
in this section by considering what percent of the pro-

genitor’s mass must be lost in order to produce ejec-
tion or excitation. The large progenitor masses in this
regime promote adiabaticity, as indicated by Eq. (15),
and hamper prospects for planetary ejection, as indicated
by Eq. (36). However, mass could be lost through super-
winds at a great rate of 10−4M⊙/yr (Dessart et al. 2010;
Yoon & Cantiello 2010), which might offset the stabilis-
ing effect of the large magnitude of the progenitor mass.

We can provide a preliminary overview of the impact
large progenitor masses with superwinds would have on
the survivability of planets. We consider three (strong)
mass loss rates, α = {10−4, 10−5, 10−6}M⊙/yr and pro-
genitor masses up to 150M⊙. For all these cases, unless
a0 & 104 AU, the planetary evolution will be primarily
adiabatic, as Ψ0 ≪ 1. We find that at least ∼ 80% of a
progenitor’s mass must be lost for any planet at a0 ∼ 103

AU to be ejected by any of these winds. However, for
planets at a0 ∼ 105 AU, a mass loss of α = 10−4M⊙/yr
does place the planet in a runaway regime. In this regime,
for f0 = 0◦, the progenitor needs to lose just a few per-
cent of its initial mass to eject the highest eccentricity
planet, and roughly 50% of its mass to eject initially
circular planets. These results conform to expectation
from Eq. (39), and hold for all progenitor masses from
20M⊙ − 150M⊙. Therefore, even without appealing to
core collapse or weak supernova, the mass loss from the
highest mass stars in the universe can blow away any
remaining Oort Clouds.

Detailed modelling of secondaries evolving amidst
the complex evolution of stars in this mass regime is a
ripe topic for future studies. Although the mass lost in
core collapse can approach zero, the nearly-instantaneous
timescale for the mass loss might have a sudden pro-
nounced effect on the planetary orbit. Further, fallback
of mass from a weak supernova explosion onto a neutron
star lasting “seconds to tens of hours” (Heger et al. 2003)
could trigger a black hole. This fallback will cause a still-
bound planet’s semimajor axis to decrease. Also, for stars
that explode away almost 100% of their mass, one may
investigate the minimum amount of mass that could re-
main and still bind a planet. In this case, the planet’s
mass will become important.

4 DISCUSSION

4.1 Oort Clouds

No Oort Clouds have been observed. However, comets
thought to originate in the Sun’s Oort cloud have been
observed, and have motivated several studies which es-
timate the orbital extent of these bodies. Levison et al.
(2010) claims the Oort cloud extends to ∼ 105 AU, and
Dybczyński (2002) claims that this is a “typical” value for
the outer boundary. Although planetary material might
exist throughout the scattered disk from the Kuiper Belt
to the Oort cloud (e.g. Leto et al. 2008), some authors
(Duncan et al. 1987; Gardner et al. 2011) have set an in-
ner boundary at several thousand AU. Other studies fo-
cus on a supposed break in the Oort cloud, separating
it into an “inner” and “outer” region. This bifurcation
is claimed to occur at at ∼ 2 × 104 AU (Hills 1981;
Kaib & Quinn 2008; Brasser et al. 2010).

These estimates pertain to the Solar System only.
Oort clouds around other stars may exist. Stars born
in more dense clusters will have more comets deposited
into their clouds than did the Sun. Kaib & Quinn (2008)
simulate four different primordial environments (with no
cluster, and three clusters with densities of 10, 30, and
100 stars per cubic parsec) and find that all produce sim-
ilar “outer” (a > 2 × 104 AU) Oort clouds and qualita-
tively different inner ones. Further, Brasser et al. (2010)
consider the different types of Oort clouds which may be
formed around other stars as a function of galactocentric
distance. At large galactocentric distances (> 14 kpc),
they find that some (> 10%) Oort cloud constituents or-
bit beyond 105 AU.

All these estimates suggest that the majority of stel-
lar mass progenitors, including the Sun and those of sub-
solar mass, will excite the eccentricity of Oort Clouds dur-
ing stellar evolution. Most of these Oort Clouds will lose
material to interstellar space. Assuming that the comets
are roughly distributed uniformly in true anomaly, then
only a fraction will survive. This fraction is highly de-
pendent on the duration of mass loss. The remaining
comets will assume a differential eccentricity distribution.
Brasser et al. (2010) focus on galactic tides and how they
strip off Oort cloud constituents. Indeed, Oort clouds may
not even survive to the post main-sequence phase. If they
do, the Galactic tide will be stronger relative to the star’s
gravity for any surviving Oort cloud objects, so the stable
region that the Oort cloud can occupy will have shrunk
at the same time that the bodies’ orbits are expanding,
potentially leading to even more ejections. Further, as a
star loses mass, its gravitational influence within its stel-
lar neighborhood will shrink and be encroached by the
potential wells of stellar neighbors.

However, as demonstrated by Fig. 3 of Higuchi et al.
(2007), galactic tides often need Gyr of evolution in or-
der to cause an appreciable change of a comet’s orbital
elements. Short-lived massive stars won’t often provide
galactic tides with this opportunity before stellar mass
loss becomes the dominant perturbation on the comets.

More detailed modeling of Oort clouds could enable
investigators to link mass loss from a white dwarf progen-
itor with the cometary population of the resulting white
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dwarf (see Alcock et al. 1986 and Parriott & Alcock
1998). Additionally, one should also consider the differ-
ence in the stellar wind velocity at Oort Cloud distances
versus its escape velocity when it leaves the star. As ob-
served by Debes & Sigurdsson (2002), because the wind
crossing time is typically longer than the Oort Cloud or-
bital timescale, winds which have slowed will enhance the
system’s adiabaticity.

4.2 Wide-orbit Planets

Initially, exoplanet discovery techniques were not well-
suited for detecting planets which reside beyond ≈ 6
AU on decade-long timescales, and this region remained
relatively unexplored until the mid-2000s. However, new
observational techniques and carefully targeted surveys
are increasing the likelihood of uncovering planets on
wide orbits (e.g. Crepp & Johnson 2011). The discover-
ies of the four planets with a ≈ 15, 24, 38, 68 AU orbit-
ing HR 8799 (Marois et al. 2008, 2010) and the a ≈ 115
AU planet orbiting Formalhaut (Kalas et al. 2008) re-
vealed that wide-orbit (a > 10 − 100 AU) planets do
exist and incited great interest in their formation and
evolution. Additionally, at least 10 wider-orbit compan-
ions which may be massive planets that are close to the
brown dwarf mass limit have been detected. Like For-
malhaut b, the companion to GQ Lup (Guenther et al.
2005) is thought to satisfy 100 AU < a < 200 AU.
Companions around AB Pic (Chauvin et al. 2005), Oph
11 (Close et al. 2007) and CHXR 73 (Luhman et al.
2006) all harbor semimajor axis between 200 AU and
300 AU, and those orbiting CT Cha (Schmidt et al.
2008), 1RXS J160929.1-210524 (Lafrenière et al. 2010)
and GSC 06214-00210 (Ireland et al. 2011) satisfy 300
AU < a < 500 AU. Companions with 500 AU < a < 1000
AU include those orbiting UScoCTIO 108 (Béjar et al.
2008), HIP 78530 (Lafrenière et al. 2011) and HN Peg
B (Leggett et al. 2008). The three potentially planetary
companions with the widest known orbits are SR 12 C
(1100 AU, Kuzuhara et al. 2011), Ross 458 b (1168 AU,
Goldman et al. 2010), and WD 0806-661B b (2500 AU,
Luhman et al. 2011). Theoretical models place the mass
of the a = 2500 AU object at 7 Jupiter masses. Our study
is particularly relevant to such wide-orbit companions.

During stellar evolution, wide-orbit planets in isola-
tion will behave equivalently to Oort cloud comets, and
can be ejected with similar ease. Planets may be mutually
scattered out to distances of ∼ 105 AU while remaining
bound to their parent systems (Veras et al. 2009); be-
yond this distance, over time the effects of passing stars
are likely to strip the planet from the system. Another
mechanism for producing wide-orbit planets is capture
from other stars, or passing free-floaters. There is still a
possibility that the Sun contains a massive, very-wide or-
bit companion. Fernández (2011) discusses the prospects
for detecting a wide-orbit (> 104 AU) Jovian mass com-
panion to the Sun, and Matese & Whitmire (2011) sug-
gest that there is evidence for such a companion re-
siding in the Sun’s outer Oort cloud. Regardless, such
planets are very unlikely to have formed in these en-
vironments; neither core accretion nor gravitational in-

stability formation models can fully form planets be-
yond ∼100 AU (Dodson-Robinson et al. 2009). Embryos
and/or partially-formed planets that were scattered be-
yond ∼ 103 − 105 AU will undergo the same dynamical
evolution due to stellar mass loss as a fully-formed planet.
This situation might arise around short-lived, high-mass
stars, where the timescale for core accretion might be
longer than the mass loss timescale.

4.3 Multiple Planets

Introducing additional bodies in the system, such as a
second planet, or a belt of material, could significantly
complicate the evolution. Debes & Sigurdsson (2002) in-
vestigate the first scenario, and Bonsor et al. (2011) the
second. In both cases, the characteristics of their N-body
simulations demonstrated that the systems they studied
were in the adiabatic regime. In this regime, where stellar
mass loss produces quiescent adiabatic eccentricity exci-
tation on the order of Ψ0 (see Eq. 17), the eccentricity
variation of the second planet or belt particles can then
be attributed solely to the other planet. Additionally, the
orbit of the true anomaly is only negligibly affected by
mass loss in the adiabatic limit. Thus, the main contri-
bution of the stellar mass loss in their studies is through
the well-defined (Eq. 2) increase in semimajor axis of all
objects in the system.

Including additional planets in situations where Ψbif

is reached and/or exceeded represents several of the nu-
merous potential extensions to this work. The frequency
of planet-planet scattering and the resulting free-floating
planet population in the midst of semimajor axis and ec-
centricity variations from stellar mass loss are important
issues to be addressed. Other situations to consider are
how planets may stay locked into or be broken from sec-
ular and mean motion resonances, and how instability
timescales are affected.

4.4 Free-Floating Planets

The ejection of planetary material, whether it be in the
form of partially-formed planets, fully-formed planets, or
comets, might contribute to the free-floating mass present
and potentially detectable around dead stars. Evidence
for the existence of free-floating planets has been mount-
ing (Lucas & Roche 2000; Zapatero Osorio et al. 2000,
2002; Bihain et al. 2009) and was recently highlighted by
a report of potential detections of 10 free-floating plan-
ets (Sumi et al. 2011). Also, the capability may exist to
distinguish between free-floaters and bound wide-orbit
planets up to semimajor axes of ≈ 100 AU (Han 2006).

Assuming that the same amount of planetary mate-
rial was distributed equally among stars of all progenitor
masses, then ≈ 7M⊙ − 20M⊙ progenitors are by far the
most likely stars to produce free-floating material6, fol-
lowed by stars in the ≈ 4M⊙ − 8M⊙ progenitor mass

6 One potential indication of the origin of supernova-produced
free-floaters is their space velocities; neutron star “kicks” cause
the true space velocities of young pulsars to reflect the (high)
speed of the supernova ejecta (Hobbs et al. 2005).
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range (see Fig. 14). The ability of stars with µ0 & 20M⊙

to produce free floating material is unclear and is largely
dependent on the evolutionary models used. For a given
progenitor mass, metal-poor and/or metal-rich stars may
be prone to ejecting planets. However, because metal-
rich stars are slightly more likely to harbor planets than
metal-poor stars (Setiawan et al. 2010), the metal-poor
stars which are dynamically prone to planetary excita-
tion might not initially harbor planets.

Detailed modelling of the galaxy’s free-floating
planet population requires 1) an initial mass function,
2) better statistics for planets orbiting stars other than
Sun-like hosts, 3) knowledge of how many planets inhabit
wide orbits at for example, a = 103−5 AU, and 4) better
knowledge of the ability for ≈ 1M⊙ − 2M⊙ stellar-mass
progenitors to eject planets. Depending on these results,
stellar evolution might be the primary source of free-
floating planets. Alternatively, if, for example, a negligi-
ble number of planets are shown to inhabit orbits beyond
a = 103 AU, then the dominant source of free-floating
planets would likely lie elsewhere.

4.5 Pulsar Planets

Our results suggest that very few first-generation pulsar
planets exist. Such planets would have had to reside far
enough away from the expanding progenitor envelope to
not be disrupted pre-supernova, and then survive the su-
pernova. Assuming a uniform distribution of true anoma-
lies, only (180◦−fcrit)/180

◦ ≈ 11% of planets would have
a fighting chance to survive due to the additional time
they would take to initially decrease their eccentricities.
Even then, their initial eccentricities would have to be
high enough, and the mass loss duration short enough, to
outlast the supernova. These results suggest that unless
pulsars can readily form planets or capture them from
other systems, pulsar planets should be relatively rare.

However, if the pulsar planet survived engulfment
from the expanding pre-supernova stellar envelope, then
its semimajor axis might be small enough to remain
bound during the supernova. There is one planet, HIP
13044 (Setiawan et al. 2010), who potentially could have
survived residing inside its star’s envelope (Bear et al.
2011). The spiral-in time of the planet could have ex-
ceeded the short duration (∼ 100 yr) of the RGB expan-
sion and engulfment, allowing the planet to survive. If
close-in (. 1 AU) pulsar planets survive in a similar way,
their final eccentricities could be any value (see Fig. 11)
but their semimajor axes will have increased by many
factors. The three pulsar planets orbiting PSR1257+12
(Wolszczan & Frail 1992; Wolszczan 1994) all have a <
0.5 AU. If they are first-generation planets, then a0 . 0.1
would have held true for each. At such a small semimajor
axis, their resulting dynamical evolution during super-
nova would be approximately in the adiabatic-runaway
transition region (Ψ ∼ 0.1 − 1). The result is that their
pre-Supernova eccentricities (which were probably nearly
zero due to tidal circularisation) could have been excited
by a few hundredths to a few tenths, but not by enough
to have suffered ejection. Although such values fit the ob-
servations, the system is significantly complicated by the

mutual interactions amongst all three planets, including
a resonance locking. Instead, the observed pulsar plan-
ets may be second-generation planets (Perets 2010), i.e.,
captured (or even formed) after the supernova occurred.

4.6 Stellar Properties

Other questions to consider focus on the star itself. How
does non-constant multi-phase mass loss affect the re-
sults here? Nonisotropic and/or asymmetric mass loss
may have a drastic influence on the resulting cometary
(Parriott & Alcock 1998) and planetary (Namouni 2005;
Namouni & Zhou 2006) evolution. In this case, the sys-
tem no longer conserves angular momentum, and new
equations of motion must be derived. How do short
bursts, periodic or not, of ejected mass accompanying
pulsating stars affect the planetary orbit? In this case,
planetary evolution may even undergo several transitions
between the adiabatic and runaway regimes. The expan-
sion and/or contraction of the stellar envelope and the
resulting tidal effects on surviving planets could also play
an important role in some cases. Tides will compete with
planetary ejection and possibly eccentricity excitation.
Further, planets could be expanding their semimajor axes
– and their Hill Spheres – as they are experiencing tidal
effects and competing with the expanding stellar enve-
lope. Some exoplanets will likely be evaporated while
others will travel through the stellar envelope, accreting
mass and being subject to a possible non-isotropic mass
distribution of the stellar envelope.

5 CONCLUSION

The variable-mass two-body problem allows for the bod-
ies to become unbound or highly eccentric. The impli-
cations of this physical principle affect all dying stellar
systems which contain any orbiting material. Many Oort
clouds and wide-orbit planets will have their orbits dis-
rupted. The extent of the disruption depends crucially
on their initial semimajor axes, eccentricities, and true
anomalies, and the subtleties of stellar evolution. Stars
with progenitor masses of 4M⊙ − 8M⊙ will readily eject
objects that are beyond a few hundred AU distant, and
excite the eccentricities of the remaining bound mate-
rial at that distance. Supernovae which produce neutron
stars eject nearly but not all orbiting material. Con-
versely, other exotic systems, such as those with black
holes, could have easily retained planets during their for-
mation. Stellar mass loss might be the dominant source of
the free-floating planet population, and orbital properties
of currently observed disrupted planets in aged systems
may be tracers of the evolution of their parent stars.
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