

The Earth-Moon system

The Moon orbits the Earth at $a_{moon} = 385,000 \text{ km}$ with an eccentricity of 0.05, inclination to ecliptic of 5°

The Earth orbits the Sun at $a_{earth} = 150,000,000 \text{ km}$

Earth's Hill sphere (the distance at which objects are no longer gravitationally bound) is at

 $R_{\text{hill}} = a_{\text{earth}} (M_{\text{earth}} / 3M_{\text{sun}})^{1/3}$ = 1,500,000 km

So Moon is well within this limit at $R_{\rm hill}$ / 4, though note that orbits beyond $R_{\rm hill}$ / 2 are unstable

Our Moon is large compared with the size of the parent planet: $M_{moon} = M_{earth} / 80$ Other moons all have mass ratios $< M_{pl} / 4000$... apart from Charon which is half the size of Pluto (and $M_{charon} = M_{pluto} / 8$)

Angular momentum in Earth-Moon

Orbital angular momentum:

 $\begin{array}{l} J_{orbEM} \sim M_{moon} \, [G \; M_{earth} \; a_{moon}]^{1/2} & (plus \; M_{moon}/M_{earth} \, and \; e_{moon} \; terms) \\ &= 2.9 \; x \; 10^{34} \; kg \; m^2 \; / \; s \end{array}$

Rotational angular momentum of solid homogeneous body:

 $\begin{array}{l} J_{rotE}\sim 4\pi\;M_{earth}\;R_{earth}^{2}/\;5\;P_{rot} \\ = 7.1\;x\;10^{33}\;kg\;m^{2}/\;s \end{array}$ (but most objects have higher density cores)

 $J_{rotM} \sim J_{rotE}$ / (80 * 3.7² * 27) = J_{rotE} / 30,000 so is negligible

So, most of the angular momentum of the Earth-Moon system is in the orbital motion, which is in contrast to other moons in the solar system (e.g., for Jupiter's moons $\rm J_{orb} < J_{rot} \ / \ 100)$

Tides cause

 $\dot{E} = I\dot{\Omega}(\Omega - \omega) < 0$

Earth's spin is slowing (days are lengthening by 23µs/year)

Moon's orbit is receding at a rate 38mm/year

Eventually would cause Earth's spin rate to equal the orbital angular freq $\Omega = \omega$ (as then dE/dt=0)

This already happened to the Moon's spin (its rotation period equals its orbital period of 27 days), and means Moon keeps same face to us

Where did the Moon start?

In past Earth was spinning faster and Moon was closer to the Earth; constant recession over 4.5Gyr would imply Moon started at 214,000 km

Actually dissipation would have been faster when closer, with simple model of a bulge leading the motion of the Moon giving

da/dt ~ a^{-7} ($P_{orb}/P_{rotE} - 1$)

leading to tidal catastrophe

Also tidal energy loss comes out as heat (which is why Io is so volcanic), so tidal dissipation would have melted Earth

When did the Moon form?

Studies of lunar rocks give oldest ages at 30-100Myr after the Solar System formed

Y-86032

4,200

60025

67075 67016c

4,300

Basalt sources Model ages KREEP 80 72215 zircon Alkali/ Mg-suite 15445.17 60 62236 **-**60025 (this study) 40 67215 ⊢

Protoplanetary disks disperse over ~5Myr, so Moon formed after disk dispersal, and also after meteorites and terrestrial planets formed

Terrestrial planet formation: stage 1

Stars are born with protoplanetary disks made of gas and μ m-sized dust

Experiments show that dust grains stick to each other when they collide at anticipated velocities, and that growth to cm-size is easy

But growth beyond metresizes is prevented by bouncing and strong radial drift

250 µm

Constraints on Moon formation

Mass: $M_{moon} = M_{earth} / 80$

Angular momentum: High $\rm J_{\rm EM}$ / $\rm M_{\rm EM}$ compared with other planets

Age: ~50Myr

Lack of volatiles: very dry (no water except from comets?)

Lack of Iron: density is $3.3g/cm^3$ implies 0.25x cosmic abundance of Fe, much less than Earth

Oxygen isotopes: 17 O / 18 O are identical to Earth, but these vary with position in the Solar System and so in protoplanetary disk

Magma ocean: Apollo rocks showed that Moon melted early in history forming a low density crust, denser mantle, maybe metallic core

Formation scenarios: Giant Impact

Idea: Solve the problems of the co-accretion scenario by creating a circumterrestrial disk in a collision with a Mars-sized impactor (Theia) when Earth was 90% of its current mass

If Earth was differentiated then explains lack of Fe in Moon since this formed from mantle

Smoothed Particle Hydrodynamics (SPH) simulations show that the formation of such a disk is plausible (Canup et al. 2001)

Explanation 1: Protolunar disk physics

Diffusion of Earth and protolunar isotopic systems through disk atmosphere (Pahlevan & Stevenson 2007)

But, required diffusion may be self-limiting due to mass and angular momentum transfer, K enrichment in lunar rocks not explained by this model but requires collision that vaporises all mantle and magma disk (Wang & Jacobsen 2016)

Explanation 2: Different collision parameters Not all collisions end up with Theia in protolunar disk, but most also end up with a system with too much angular momentum 0.65 momentum QE=48 QM=48 Invoke capture of QE=96 QM=97 0.6 Moon in evection QM=117 0.55 resonance (Cuk & Stewart QM=73 QM=57 Earth+Moon angular 2012) which can halve 0.5 angular momentum in 0.45 Earth-Moon system by 0.4 exchanging it within the Sun-Earth-Moon 0.35 system 0.3 0 20 40 60 80 100 Time (kyr) Evection resonance is between the Moon's orbital precession period and the Earth's orbital period

