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1. A shocked gas is well described by the adiabatic jump conditions at the shock face, but gradually
cools, becoming denser, downstream of the shock. Show that in the case of a strong shock (pre-shock
pressure p1 << p2, the post-shock pressure) that the ratio of ram pressure to thermal pressure is
always ≤ 1

2 (γ − 1) if p ∝ ργ . Hence show that, for a monatomic gas which can cool back only to
the original (unshocked) temperature, the thermal pressure in the shocked gas varies by no more
than 33% as the gas cools.

A crude model for the structure of shocked gas as it cools employs the above result in order to
approximate the gas as being at constant thermal pressure, so that the thermal equation may be
written in the form

cp
dT

dt
= −Q−,

where cp is the specific heat at constant pressure, T the temperature, t the time, and Q− the cooling
rate per unit mass. If Q− = KT 2, where K is a function of the pressure only, determine T (t) (where
T (0) = T2, the temperature just behind the shock). Show that in this model the velocity, u, in
the shocked gas satisfies u = u2 T (t)/T2 where u2 is the velocity just behind the shock. Hence,
or otherwise, show that the variation of temperature in the shocked gas with distance, x from the
shock front is given by

T = T2 exp

(
−xKT2
cpu2

)
.

(Based on a 1999 examination question.)

2. An incompressible fluid of density ρ with constant viscosity coefficient η flows along an annular pipe
of length ` in the region between the inner radius R1 and the outer radius R2. Determine the mass
flow rate Q through the pipe if the pressure at one end of the pipe is p1 and the other end it is p2.

3. A layer of incompressible fluid of thickness h is bounded above by a free surface and below by a fixed
plane inclined at an angle α to the horizontal in a uniform gravitational field with gravitational
acceleration g. Show that the flow rate (per unit length perpendicular to the flow) due to gravity
is Q = ρgh3 sinα/3ν, where ν is the kinematic viscosity and ρ the fluid density.

4. Suppose there is a unidirectional flow ux(y, t = 0) in an infinite viscous fluid at time t = 0. Show
that the flow remains unidirectional, and evolves with time as

ux(y, t) =
1

2
√
πνt

∫ ∞
−∞

ux(y′, 0) exp

[
− (y − y′)2

4νt

]
dy′

if there is no pressure gradient.

5. Show that for an axisymmetric thin disk where the surface density is Σ and variations in the z
direction can be ignored, the continuity equation and the Navier-Stokes equation with constant
viscosity coefficient η yield

∂

∂t

(
R2ΣΩ

)
+

1

R

∂

∂R

(
ΣR3ΩuR

)
=
νΣ

R

∂

∂R

(
R3 dΩ

dR

)
and

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

where ν is the kinematic viscosity and Ω(R) the angular velocity.
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6. An infinite homogeneous stationary fluid has uniform density ρ0 and pressure p0, and is permeated
by a constant magnetic field B0 = (B0, 0, 0) in Cartesian coordinates. A small velocity perturbation

u = (0, u1(y, t), 0)

gives rise to a perturbation of the magnetic field of the form

B0 = (B0 +B1(y, t), 0, 0)

with B1 << B0, and gives rise to adiabatic perturbations to pressure and density such that p =
p0 + p1(y, t) and ρ = ρ0 + ρ1(y, t). Show that to linear order

∂2u1
∂t2

=
(
c2s0 + v2

A

) ∂2u1
∂y2

where cs0 is the sound speed and vA the Alfvén speed in the unperturbed fluid.

What is the physical meaning of this equation?

(From 2001 exam question)

7. A gas is predominantly supported against gravity by magnetic pressure which scales as B2 for
magnetic flux density B. By comparing the gravitational collapse timescale to the propagation
timescale for magnetic disturbances, show that the magnetic Jeans mass scales as B3/ρ2.

Hence show that if a uniform spherical cloud with a frozen in magnetic field contracts homoge-
neously, the number of magnetic Jeans masses it contains is constant.
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