Part II Astrophysics/Physics Astrophysical Fluid Dynamics Lecture 23: The PLUTO MHD code

NON-EXAMINABLE (JUST FOR FUN!)

Professor Chris Reynolds (csr12@ast.cam.ac.uk)

This Lecture

- A quick "how to" guide on Computational Fluid Dynamics
- PLUTO Magnetohydrodynamic Code
 - Downloading and configuring
 - A walk through the input files
 - Compiling the code
 - Running the code
- Some examples of single-CPU simulations...
 - Blast wave
 - Wind tunnel
- Next Lecture visualization and parallel simulations

PLUTO

- Powerful, flexible code for astrophysical fluid dynamics
- http://plutocode.ph.unito.it
- Characteristics
 - Grid-based code (solved equations in Eulerian picture)
 - Solves conservative forms of mass, momentum and energy equations
 - Given appropriate boundary conditions, conserves this quantities "exactly"
 - Can use cartesian, cylindrical polar or spherical polar coordinate system
 - Can also "stretch" coordinate grids as necessary/useful
 - Modular code; can turn on additional physics as needed
 - Cooling, viscosity, conductivity, MHD, (special) relativity, radiation transport
 - Use in single CPU mode, or (massively) parallel mode
 - Written in C (so is a fast, compiled code)

- General requirements
 - C compiler, GNU make, python
 - MPI library (for parallel runs)
- This demonstration:
 - Using a MacBook Pro laptop
 - Compilers managed/installed with XCODE and MacPorts

Main ingredients of a simulation

- A simulation is just a numerical solution of the set of (non-linear) partial differential equations.
- Need to define...
- 1. The equations being solved (definitions.h)
 - Physics
 - Coordinate system / definition of grid
- 2. Boundary conditions (pluto.ini)
- 3. Initial conditions (init.c)
- 4. Stopping conditions (pluto.ini)
- 5. Output information (pluto.ini)

Wind tunnel

