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Recap – last lecture
• Started discussion of fluid instabilities
• Convective instability – heuristic (fluid element) approach
• Schwarzschild criterion… instability if entropy decreases upwards

• Gravitational instability – linear perturbation theory
• Gravitationally modified sound waves
• Instability for wavelengths greater than 



This Lecture

• Fluid Instabilities (cont)
• Briefly revisiting convective instability 
• Instability of an interface of two fluids (Chapter H.3)
• Instability of an interface
• Problem set up and derivation of dispersion relation
• Surface waves, Rayleigh-Taylor instability, Kelvin-Helmholtz instability



Revisiting convective instability

Fluid element approach uncovered Schwarzschild criterion… stable if

BUT, why wasn’t this uncovered by our linear stability analysis when we examined 
sound waves in a stratified atmosphere?  

Ans : that analysis restricted itself to waves that had ! = #$%
• Thus, all fluid elements displaced upwards simultaneously
• Approach of comparing density of displaced fluid element to “unperturbed” background 

doesn’t make sense.



To examine convective instability with linear theory, need to include perturbations with 
components in the horizontal direction.
Can then derive a cumbersome dispersion relation that has roots corresponding to the 
sound waves, and another root corresponding to convective stability.
We can “filter out” the sound waves from out analysis (isolating the convection problem) 
by applying the Boussinesq approximation… neglect density perturbations except where 
they are multiplied by g.
Resulting dispersion relation: if ! = −$%&, then 

If N decreases upwards (common situation), this can lead to trapping of internal gravity 
waves.

!2 =
k2x + k2y

k2
N2
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H.3: Stability of fluid interfaces

Examine the stability of an interface with discontinuous change of density or 
tangential velocity.

For convenience, let’s assume:
• Constant gravity
• Ideal fluid
• Irrotational flow
• Incompressible
• 2-dimensional 

u = �r�

r2� = 0
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Write down momentum equation for each fluid:

Let unperturbed fluid velocities in lower and upper fluids be U and U’ in x-direction.  
We can write split the velocity potentials into unperturbed and perturbed pieces:

where



The ! and !′ fields are sourced by displacements of the boundary # $, & .
We have:

Look for plane wave solutions:

⇒

since

since



So,

Substitute into (2):

Got three unknowns and two equations… need one more equation.  We haven’t 
yet used the fact that the pressure is continuous across interface.  Let’s use (*) to 
get 



Set equal at interface z=0:

Can examine conditions at infinite to determine that K(t) is actually a constant:

To make progress on (5), need to determine u2:

and



Substitute into (5):

Finally, we can combine this with eqns (3) and (4) to eliminate C, C’ and A.



This is the dispersion relation for our problem:

Case I : Two fluids at rest (U=U’=0) with !’< ! (heavy fluid on bottom)

So, if " ∈ ℝ then % ∈ ℝ… so oscillatory/wave solutions.
Phase speed

These are surface gravity waves.





Case II : Two fluids at rest (U=U’=0) with !< !’ (heavy fluid on top)

So, if " ∈ ℝ then % is pure imaginary… so exponentially growing/decaying 
solutions.
This is the Rayleigh-Taylor Instability.

⇒





RT instability



Case III : Fluids in motion with different velocities, !’< ! so RT stable… 

If g=0, any relative motion gives instability… the Kelvin-Helmholtz Instability.
If g≠0, unstable modes have 

So, sufficiently long-wavelength modes are stabilized by gravity.





KH instability





Yang & Reynolds (2016)


