
M. Pettini: Introduction to Cosmology — Lecture 6

THE HUBBLE DIAGRAM OF TYPE IA SUPERNOVAE:
EVIDENCE FOR A COSMOLOGICAL CONSTANT

6.1 Applications of the Luminosity Distance

The luminosity distance we have encountered in the previous lecture is
used by observational cosmologists in two ways. The first, and the more
common, is to assume a cosmological model which gives dL = f(z), and
use:

Fobs =
L

4πd2
L

(6.1)

to deduce the luminosities L of objects at cosmological distances with ob-
served fluxes Fobs. While the value of L of course depends on the set of
cosmological parameters adopted, this may be of secondary importance in
applications which involve comparative studies. An example is the deter-
mination of the luminosity function of galaxies, or quasars, at a particular
redshift (provided of course that the same set of cosmological parameters
is used for all the galaxies under scrutiny).

The luminosity function (LF) describes analytically the number of galaxies
per unit volume with luminosity in the range [L,L+ dL]. It is usually well
represented by the product of a power law and exponential—the Schechter
function—which takes the form:

Φ(L)dL = φ∗
(
L

L∗

)α
e−L/L

∗ dL

L∗
, (6.2)

where the faint end slope α is a negative number, L∗ is the characteristic
(or fiducial) luminosity, and φ∗ is the overall normalisation. Note that
in this form the LF diverges at the faint end—that is, there must be a
turn-over at the faint end for the overall number of galaxies to be finite.
However, the luminosity-weighted LF, L · Φ(L), does converge, provided
the faint-end slope α > −2. In the local universe, the LF of galaxies in
visible light (in the V -band) is well-fitted by a Schechter function with
typical parameters:
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Figure 6.1: Luminosity functions of nearby galaxies (z < 0.1) published by the Galaxy and
Mass Assembly (GAMA) project from data obtained with the Anglo-Australian telescope.
The five panels refer to LFs in five different wavelength bands, from the ultraviolet, u, to
the infrared, z. The LF is plotted separately for blue (i.e. star-forming) galaxies and red
galaxies whose light is dominated by old stars. The black squares are for the combined
blue and red samples. Dotted lines show the best fit to the data assuming a Schechter
function (eq. 6.2). The GAMA team accumulated spectra of many thousands of galaxies
to construct these LFs. (Reproduced from Loveday et al. 2012, MNRAS, 420, 1239).

α = −1.25
L∗ = 1.0× 1010 h−2 L�V
φ∗ = 1.2× 10−2 h3 Mpc−3
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In the past few years, it has become possible to extend studies of the
galaxy luminosity function from the local Universe out to redshifts as high
as z ∼ 8 (see Fig. 6.2 as an example).

Figure 6.2: Left: Evolution of the ultraviolet (UV) luminosity function from z = 7.4 to
z = 0. Right: Evolution of the characteristic UV luminosity (or absolute magnitude, M∗,
at 1700 Å) with redshift. (Reproduced from Reddy & Steidel 2009, ApJ, 692, 778).

The second use of the luminosity distance is the reverse of the first. Suppose
we know the absolute luminosity of an astronomical source, then we could
use its observed flux to deduce its luminosity distance from eq. 6.1. If we
could be confident that the absolute luminosity is a constant in time and
space, so that the object in question constitutes a standard candle, and
if the source luminosity is sufficiently high that it can be detected over
cosmological distances, then we could test for the cosmological parameters
Ωm,0, ΩΛ,0, and Ωk,0 that determine the form of dL = f(z) according to the
equations:

dL(z) =
c(1 + z)√
|Ωk,0|H0

Sk

H0

√
|Ωk,0|

∫ z
0

dz

H(z)

 (6.3)

and

H(z) = H0

[
Ωm,0 · (1 + z)3 + Ωk,0 · (1 + z)2 + ΩΛ,0

]1/2
= H0 ·E(z)1/2 (6.4)

Expressing the luminosity distance in terms of the distance modulus:

M −m = 2.5 log

(
dL,0

dL

)2

= 5 log

(
dL,0

dL

)
, (6.5)
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where M is the magnitude of the standard candle at some nearby distance
dL,0. In the conventional definition of the distance modulus, dL,0 = 10 pc
and M at this distance is usually referred to as the absolute magnitude.
However, in cosmological situations this is a rather small distance and a
more natural unit is 1 Mpc. If we measure the distance in this unit, the
apparent magnitude is given by:

m = M + 5 log dL + 25 . (6.6)
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Figure 6.3: The distance modulus as a function of redshift for four relevant cosmological
models, as indicated. In the lower panel the empty universe (Ωm,0 = ΩΛ,0 = 0) has been
subtracted from the other models to highlight the differences.

Figure 6.3 illustrates the dependence of the distance modulus on redshift
for four different sets of cosmological parameters. It can be seen that if we
could measure the distance modulus of a standard candle with a precision
of about 10%, or 0.1 magnitudes, out to redshifts z > 0.5, we may be able
to distinguish a Λ-dominated universe from a matter-dominated one.
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Incidentally, we can measure the absolute magnitude M , independently
of Ωi, in the local universe using the approximation for dL we derived for
small values of z (eq. 5.46):

dL = (1 + z)r1 ≈
c

H0

[
z +

1

2
(1− q0)z

2 + · · ·
]

to give:
m = M − 5 logH0 + 5 log cz + · · ·+ 25 . (6.7)

A well-known example of standard candles are Cepheids, a class of vari-
able stars which exhibit a period-luminosity relation which has allowed the
determination of H0. However, Cepheids are intrinsically too faint to be fol-
lowed beyond the local Universe. The class of astronomical objects which
has so far turned out to be the closest approximation to a cosmological
standard candle are the so-called type Ia supernovae.

6.2 Type Ia Supernovae

As early as 1938, Baade and Zwicky pointed out that supernovae were
promising candidates for measuring the cosmic expansion. Their peak
brightness seemed quite uniform, and they were bright enough to be seen
at extremely large distances. In fact a supernova can, for a few weeks, be
as bright as an entire galaxy [see Figure 6.4; SN 1998aq in NGC 3982 at
a distance of ∼ 20 Mpc reached peak magnitude mV = 11.4, brighter than
the whole galaxy which has mV = 11.8]. Over the years, however, as more
and more supernovae were measured, it became clear that they are in fact
a heterogeneous group with a wide range of spectral characteristics and
intrinsic peak brightnesses.

As as often the case in astronomy, the original classification of SNe into two
types, type I and type II, was based on morphological characteristics—in
this case of their spectra, rather than on physical understanding: type I
and II supernovae were so classified simply on the basis of whether their
spectra included any emission/absorption lines from neutral hydrogen. In
the early 1980s a new subclassification of supernovae emerged: SNe of type
I were further divided into type Ia and type Ib depending on the presence
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Figure 6.4: SN 1998aq in NGC 3982. This prototypical Type Ia supernova was discovered
on 1998 April 13 by Mark Armstrong as part of the UK Nova/Supernova Patrol approx-
imately two weeks before it reached its peak luminosity in the B-band. Its host galaxy,
NGC 3982, is a nearly face-on spiral with a Seyfert 2 active nucleus. At a distance of
20.5 Mpc, NGC 3982 is a possible member of the Ursa Major cluster of galaxies.

or absence of a broad Silicon absorption feature at 6150 Å in their red
spectrum. It was soon realised that type Ia SNe exhibit a great uniformity
not only in their spectral characteristics but also in their light curves—
that is in the way their luminosity varies as a function of time, as they first
brighten to a peak and then fade over a period of weeks.

Current thinking is that both type II and type Ib are core-collapse super-
novae whose progenitors are massive stars, with M > 8M�. They are the
source of ∼ 90% of the oxygen that we breathe.

SNe of type Ia are thought to be nuclear explosions of carbon/oxygen
white dwarfs in binary systems (see Figure 6.5). The white dwarf (a stel-
lar remnant supported by the degenerate pressure of electrons) accretes
matter from an evolving companion and its mass increases toward the
Chandrasekhar limit of 1.44 M� (this is the mass above which the degen-
erate electrons become relativistic and the white dwarf unstable). Near
this limit there is a nuclear detonation in the core in which carbon (or
oxygen) is converted to iron. (Approximately two thirds of the iron in
our haemoglobin was synthesised by type Ia SNe). A nuclear flame propa-
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Figure 6.5: Schematic representation of the stellar progenitor of a Type Ia supernova.

gates to the exterior and blows the white dwarf apart (there are alternative
models but this is the favoured scenario).

SNe of type Ia are seen in both young and old stellar populations; for
example, they are observed in the spiral arms of spiral galaxies where
there is active star formation at present, as well as in elliptical galaxies
where vigorous star formation apparently ceased many Gyr ago. Locally,
there appears to be no difference in the properties of SNIa arising in these
two different populations, which is important because at large redshift the
stellar population is certainly younger.

The value of SNIa as cosmological probes arises from the high peak lumi-
nosity as well as the observational evidence (locally) that this peak lumi-
nosity is the sought-after standard candle. In fact, the absolute magnitude,
at peak, varies by about 0.5 magnitudes which corresponds to a 50%-60%
variation in luminosity; this, on the face of it, would make them fairly
useless as standard candles. However, the peak luminosity appears to be
well-correlated with decay time: the larger Lpeak, the slower the decay (see
Figure 6.6). There are various ways of quantifying this effect, such as:

MB ≈ 0.8(∆m15 − 1.1)− 19.5 , (6.8)

where MB is the peak absolute magnitude in the B-band and ∆ m15 is
the observed change in apparent magnitude 15 days after the peak. This
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Figure 6.6: Light curves of type Ia SN before (top) and after (bottom) application of the
correction of eq. 6.8. (Reproduced from http://supernova.lbl.gov).

is an empirical relationship, and there is no consensus about the theoreti-
cal explanation.1 However, when this correction is applied it appears that
∆Lpeak < 20%. If true, this means that SNIa are candles that are stan-
dard enough to distinguish between cosmological models at z ≈ 0.5 (see
Fig. 6.3).

In a given galaxy, supernovae are rare events (on a human time scale, that
is), with one or two such explosions per century. But if thousands of galax-
ies can be surveyed on a regular and frequent basis, then it is possible to
observe many events per year over a range of redshift. About 20 years ago
two large international collaborations, the ‘Supernova Cosmology Project’,
based at Berkeley, California, and the ‘High-Z Supernova Search’ based
in Australia, Chile and Baltimore, Maryland, began such ambitious pro-
grams. Observations with the Hubble Space Telescope have proved crucial
for following SN beyond z ∼ 0.5 (see Figure 6.7). These efforts turned out

1The existence of a well-defined mass threshold, 1.44M� for an accreting white dwarf to explode as
a type Ia supernova is presumably at the root of this remarkable uniformity in their spectra and light
curves, and the small residual degree of variation may reflect differences in accretion rates, rotational
velocities and C/O ratios.
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Figure 6.7: The superb resolution of the Hubble Space Telescope allows a more accurate
measurement of the light curves of high redshift supernovae than is possible from the
ground.

to be fruitful beyond the most optimistic expectations and the results led
to a major paradigm shift in cosmology.

Fig. 6.8 shows the Hubble diagram for SNe of type Ia observed by the
Supernova Cosmology Project up to 2003—the highest redshift supernova
observed at that time was at z = 0.86. The conclusion seems to be that
SNIa are 10% to 20% fainter at z ≈ 0.5 than would be expected in an

9



14

16

18

20

22

24

0.0 0.2 0.4 0.6 0.8 1.0
�1.0

�0.5

0.0

0.5

1.0

m
ag

. r
es

id
ua

l
fr

om
 e

m
pt

y 
co

sm
ol

og
y

0.25,0.75
0.25, 0
 1,     0

0.25,0.75

0.25, 0

 1,     0

redshift  z

Supernova Cosmology Project
Knop et al. (2003)

Calan/Tololo
& CfA

Supernova
Cosmology
Project

ef
fe

ct
iv

e 
 m

B

ΩΜ , ΩΛ

ΩΜ , ΩΛ

Figure 6.8: Hubble diagram for SNae of type Ia up to z = 0.86, reproduced from Knop
et al. 2003, ApJ, 598, 102. The observed B-band magnitudes of the SNae at maximum
light are compared with the predictions for three cosmological models, as indicated. The
lower panel shows the difference relative to an empty universe with Ωm,0 = ΩΛ,0 = 0 and
Ωk,0 = 1.

empty universe (Ωm,0 = ΩΛ,0 = 0 and Ωk,0 = 1) and, more significantly,
about 30% to 40% fainter than a model with Ωm,0 = 0.25 (indicated by
other considerations) and ΩΛ,0 = 0. The introduction of a cosmological
constant at the level ΩΛ,0 ' 0.75 improves the fit to the SN magnitude
vs. redshift relation significantly. The two teams concluded that we live in
an accelerating universe (recall eq. 5.44 for the q0 parameter), a discovery
which Science magazine hailed as the “The Breakthrough of the Year”, and
for which the leaders of the two teams were awarded the Nobel prize in
physics in 2011 (as well as many other prestigious prizes).
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6.2.1 Parameter Estimation

In this section we consider more closely the methods employed to deter-
mine the values of Ωi which best fit the SN data shown in Fig. 6.8. The
approach to this ‘parameter estimation problem’ has many applications in
the analysis of scientific measurements.

Let us assume that we have a sample of n SN measurements consisting
of magnitude mi, typical magnitude error ±σm,i, and redshift zi (there
is also an error associated with zi, but it can be neglected, for our pur-
poses, compared with σm,i). We wish to compare quantitatively this data
set with theoretical expectations from Eqs. 6.6, 6.3 and 6.4 for different
combinations of the parameters (Ωm,0,ΩΛ,0,M).

There are two ways to tackle the absolute magnitude M . We could assume
that we know M with sufficient precision from measurements of nearby
SNae via eq. 6.7 which, remember, does not depend on any value of Ω, but
only on the Hubble constant H0 (and the assumption of negligible peculiar
velocities relative to the Hubble flow). Alternatively, we could consider M
to be a free parameter alongside Ωm,0 and ΩΛ,0, and fit simultaneously for
all three.

We’ll consider the second approach. In order to get a compact notation,
we define the parameter vector:

θ ≡ (Ωm,0, ΩΛ,0, M) . (6.9)

If we assume that the errors in the magnitude, σm, i are purely of a random
nature and are drawn from a Gaussian distribution2, then we can obtain the
best fit parameters by maximising the posterior probability (likelihood):

L(θ) ∝ exp

[
−1

2
χ2
]

(6.10)

with

χ2 =
n∑
i=1

m(zi; θ)−mi

σm,i

2

(6.11)

2In scientific analysis this is often a crucial assumption, in the sense that generally we do not know
all the sources of error in a measurement, random and systematic.
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It is then relatively straightforward to minimise eq. 6.11 to obtain the best-
fit value of θ. More importantly, by calculating the value of L(θ) over a
whole region in parameter space—which is relatively straightforward to
do with numerical techniques—we can generate the full distribution of
probabilities for the set of parameters considered.

If we are most interested in the cosmological parameters Ωm,0 and ΩΛ,0,
and less concerned with the value of M , we can marginalize over the ab-
solute magnitude and restrict ourselves to the two-dimensional probability
distribution

L(Ωm,0,ΩΛ,0) =
∫
dM L(Ωm,0,ΩΛ,0,M) (6.12)

Figure 6.9 shows contours of L(Ωm,0,ΩΛ,0) at the 68%, 90%, 95%, and 99%
levels on the Ωm,0−ΩΛ,0 plane for the SN data in Figure 6.8. Clearly a range
of Ωm,0,ΩΛ,0 combinations can reproduce the SNIa peak magnitudes, but
it is noteworthy that at the 95% confidence level we do require ΩΛ,0 > 0.

The confidence contours on the Ωm,0 − ΩΛ,0 plane are stretched along a

Figure 6.9: Left: Likelihood contours in the Ωm,0−ΩΛ,0 plane for the SN data in Figure 6.8.
Right: Joint likelihood contours in the Ωm,0 − ΩΛ,0 plane from type Ia supernovae, the
angular power spectrum of the cosmic background radiation, and massive galaxy clusters.
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line ΩΛ,0 = 1.4Ωm,0 + 0.4. Some other cosmological test, which depends
on Ωi in a different way from the luminosity distance, is thus required to
narrow down the allowed region. The angular diameter distance test on
the temperature fluctuations of the CMB on the sky—already mentioned
in lecture 5—provides the most stringent of such constraints. The position
of the first peak in the angular power spectrum (see Figure 5.7.), together
with the amplitudes of the first two peaks, define a line on the Ωm,0−ΩΛ,0

plane which is nearly perpendicular to that of the SNIa measurements, at
Ωm,0+ΩΛ,0 ' 1, indicating that we live in a near-flat universe with Ωk,0 ' 0.
When we combine the CMB, SNIa and other measurements we arrive at
today’s consensus cosmology with Ωm,0 ' 0.3, ΩΛ,0 ' 0.7, Ωk,0 ' 0 (see
Fig. 6.9).

Figure 6.10 shows updated versions of these likelihood contours constructed
from a recent compilation of 580 SNe (the Union2.1 compilation).

Figure 6.10: Left: Joint likelihood contours (68%, 95%, and 99.7% confidence limits) in
the Ωm,0 − ΩΛ,0 plane for a recent compilation of SN Ia data, together with the WMAP
measure of the temperature anisotropies of the CMB, and the large-scale distribution
of galaxies in the nearby Universe (BAO). Right: Same as left figure, but including
systematic uncertainties in the SN Ia luminosity.
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6.3 Alternative Explanations?

The evidence for a cosmological constant rests heavily on photometric mea-
surement of distant sources that are found to be a few tenths of magnitude
fainter than expected in the absence of a cosmological constant. Is this
sufficient evidence for re-instating Einstein’s ‘Biggest Blunder’ and open
the door to a ‘Dark Energy’ of a totally unknown nature? Let’s consider
what other astrophysical effects may be producing the dimming of the
supernovae maximum light.

1. Evolution. The whole edifice rests upon an empirical peak luminosity-
decay rate relationship and, of course, upon the assumption that this
relation does not evolve with look-back time. Is it possible that the
properties of SNIa events may have evolved with cosmic time? The
SN exploding at high redshift come from a systematically younger
stellar population than the objects observed locally. Moreover, the
abundances of carbon and oxygen may have been lower then; this
evolving composition, by changing the opacity in the outer layers or
the composition of the fuel itself could lead to a systematic evolution
in peak luminosity. Here it is important to look for observational dif-
ferences between local and distant supernovae—so far, there seem to
be no significant differences in most respects, in either their spectra
nor the light curves.

2. Interstellar Dust. It might be that supernovae in distant galaxies
are more (or less) dimmed by dust than local supernovae. But normal
dust, with particle sizes comparable to the wavelength of light, not
only dims but also reddens the light of a background source. Thus, by
comparing the colours of nearby and distant SNe, it should be possible
to assess the importance of this effect. The upshot is that there seems
to be no difference in the reddening of local and distant supernovae,
implying that the distant events are not more or less obscured than
the local ones.

3. Grey Dust. It is conceivable (but unlikely) that intergalactic space
contains dust particles which are significantly larger than the wave-
length of light. Such particles would dim but not redden the distant
supernovae and so would be undetectable by the method described
above. Contrived? Certainly, but so is Λ!
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Figure 6.11: SNIa residual Hubble diagram comparing cosmological models and models
with astrophysical dimming (reproduced from Riess et al. 2004, ApJ, 607, 665). Data
and models are shown relative to an empty universe model (Ωm,0 = ΩΛ,0 = 0).

An empirical way to assess the validity of these alternative explanations
is to push the measurement of SN Ia light curves to redshifts z > 1. A
natural prediction of interpretations appealing to redshift evolution in the
supernova properties and/or the presence of intergalactic grey dust (or any
other explanation which we may label ‘astrophysical dimming’, as opposed
to cosmological dimming), is that the dimming should continue, and pos-
sibly increase, with increasing look-back time. In contrast, a cosmological
constant would lead to the SNe getting brighter again with increasing red-
shift beyond z ∼ 1, because this is the epoch when the Λ term in the
Friedmann equation (e.g. in the form given in eq. 4.10)

ȧ2 = H2
0Ωm,0a

−1 +H2
0ΩΛ,0a

2 (6.13)

begins to become comparable to the matter term (see also Fig. 6.3)

After the initial reports indicating that we live in a Λ-dominated Universe,
both supernova teams put the Hubble Space Telescope to work to extend
their observations to z > 1. It was found that the behaviour of the distance
modulus with z is indeed as expected in a cosmology with Ωm,0 ' 0.3,
ΩΛ,0 ' 0.7 (see Figure 6.11). Models appealing to astrophysical dimming
have to be so contrived that they are now considered very unlikely.
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6.4 Dark Energy

In lecture 4 we associated an energy density with the cosmological constant

ρΛ ≡
Λ

8πG
= constant (6.14)

(adopting ‘natural units’, where c = 1, which we are going to maintain
here). Recalling the fluid equation:

ρ̇ = −3(ρ+ p)
ȧ

a
(6.15)

which we first encountered as eq. 2.14, we see that for Λ:

pΛ = −ρΛ . (6.16)

That is, the cosmological constant can be viewed as another fluid compo-
nent of the universe, like matter or radiation, but with a negative pressure.
In simple fluids, pressure and density are related by the equation of state:

pi = wiρi , (6.17)

where wi is a constant. From the point of view of cosmology, the relevant
feature of each component is how its energy density evolves as the Universe
expands. For fluids with an equation of state of the form given in 6.17, we
have from eq. 6.15

ρ̇i
ρi

= −3(1 + wi)
ȧ

a
(6.18)

so that the energy density has a power-law dependence on the scale factor:

ρi ∝ a−ni , (6.19)

where:
ni = 3(1 + wi) . (6.20)

Our definition of the density parameter:

Ωi ≡
ρi
ρcrit

=

(
8πG

3H2

)
ρi , (6.21)

then has the useful property that:

Ωi

Ωj
∝ a−(ni−nj) . (6.22)
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Reviewing the components already discussed in lecture 2:

• Dust (a set of massive particles with negligible relative velocities, the
component which we have called matter in the preceding lectures) has
zero pressure, and an energy density which evolves as ρM ∝ a−3. Thus,
for dust, w = 0.

• Radiation (any relativistic particle, not only photons) has an energy
density that evolves as ρR ∝ a−4. Thus, for radiation, w = 1/3.

• The cosmological constant defined as in eq. 6.14 has an energy density
which does not change as the universe expands, so that ρΛ ∝ a0. Thus,
for the cosmological constant, w = −1.

• Curvature. With our definition (eq. 4.7)

Ωk ≡ −k/(aH)2 (6.23)

we can associate an effective ‘energy density in curvature’:

ρk = − 3

8πG

k

a2
(6.24)

which varies as ρk ∝ a−2, so that for curvature w = −1/3.

We can now write for the expansion:

H(a) = H0

∑
i

Ωi,0a
−ni

1/2

(6.25)

The most popular equations of state for cosmological energy sources can
be summarized as follows:

wi ni
matter 0 3
radiation 1/3 4
‘curvature’ −1/3 2
vacuum −1 0

(6.26)

From our earlier definition of the deceleration parameter:

q(t) = − 1

H2

ä

a
= −a ä

ȧ2
(6.27)
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we now see that :

q =
∑
i

ni − 2

2
Ωi (6.28)

so that positive-energy-density sources with n > 2 cause the universe to
decelerate (q > 0), while n < 2 leads to acceleration (q < 0). The more
rapidly energy density redshifts away, the greater the tendency towards
universal deceleration. An empty universe (Ωm = Ωrad = ΩΛ = 0, Ωk = 1)
expands linearly with time. By considering eqs. 6.26 and 6.22 we can also
immediately see that the cosmological constant comes to dominate over
the energy density of other components at late times.

The database of SNIa measurements has been increasing significantly since
their value for cosmology, as well as stellar evolution, has been appreciated.
With improved statistics and more careful assessment of the many sources
of systematic error, it has become possible to test whether the acceleration
is indeed caused by a cosmological constant with w = −1, the vacuum
energy of Einstein’s equations, or another fluid component with a value of
n 6= 0, but still satisfying the requirement of a negative q0 when combined
with the other components of our Universe according to eq. 6.28. A value

Figure 6.12: Left: Joint likelihood contours (68%, 95%, and 99.7% confidence limits) for
Ωm,0 and the parameter w in the equation of state of dark energy. Right: Joint confidence
contours between the parameters w0 and wa in eq. 6.29.
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w = −1 is favoured by the current data; in their review, Weinberg et al.
(2013, Physics Reports 530, 87-255—yes, this review is 169 pages long!)
deduce w = −1.007± 0.081 (see Figure 6.12).

Given how little we know about ‘dark energy’, may it not be possible that
the parameter w is not constant in time, but rather evolves linearly (in the
simplest case) with the scale factor according to:

w(a) = w0 + wa(1− a) ? (6.29)

Expressed this way, the value of w evolves from w0 + wa at small a (high
z) to w0 at z = 0. As can be seen from the right panel of Figure 6.12, the
Union2.1 SN data do not support a strong evolution of w (w0 = −1.02 ±
0.12, wa = 0.07± 0.6), although the constraints on wa are weak.

The statistics of distant supernovae will improve still further in the next few
years. With the planned Wide-Field Infrared Survey Telescope (WFIRST)
from space, and large scale surveys from the ground such as the Dark En-
ergy Survey which began in 2013, and the Large Synoptic Survey Telescope
due to come on line towards the end of the decade, the samples of SNIa
will increase by one-two orders of magnitude. The measurements from
these large surveys should substantially reduce the statistical errors in the
SN Hubble diagram, as well as leading to improved characterisation of the
systematic errors. As the confidence contours on the determinations of
ΩΛ,0, w0, and wa narrow down to much smaller regions of parameter space,
it is hoped that we will come closer to understanding the nature and origin
of the ‘Dark Energy’.

We will return to this topic in Lecture 14.
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