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According to Newton

Remember Newton’s law?

d

dt
(mẋ) = F (8.1)

i.e.
mẍ = F (8.2)

If F is due to a gravitational potential Φ(r), then

F = mf = −m∇Φ (8.3)
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According to Lagrange

For the Lagrangian L, defined as difference between the kinetic and
potential energies:

L(x, ẋ, t) ≡ K − V =
1

2
mẋ2 − V (x, t) (8.4)

the following equation is valid:

d

dt

∂L
∂ẋ

=
∂L
∂x

(8.5)

which is clearly just a restatement of the Newton’s second law, since

∂L
∂x

= −∂V
∂x

,
∂L
∂ẋ

= mẋ,
d

dt

∂L
∂ẋ

= mẍ (8.6)
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Extremal Action

The Euler-Lagrange equation

d

dt

∂L
∂ẋ
− ∂L
∂x

= 0 (8.7)

can be obtained by observing that the motion of the particle will be
along the path that is an extremal of the action:

S ≡
∫ t1

t0

Ldt (8.8)

which is known as Hamilton’s principle or the principle of least
action.
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Changing coordinates

Because the Lagrangian is a scalar, extremising the action allows us to
show that the form of Euler-Lagrange equations remains the same in
arbitrary coordinates!

d

dt

∂L
∂q̇
− ∂L
∂q

= 0 (8.9)

Looking at this equation, it is prudent to define the so-called
generalized momenta:

p ≡ ∂L
∂q̇

(8.10)

Then another useful construction is the Hamiltonian

H(q, q̇, t) ≡ pq̇− L(q, q̇, t) (8.11)
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Hamilton Equations

Using the Hamiltonian definition, the Lagrange equations simplify to:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(8.12)

For a particle moving on an orbit in a time independent potential,
according to the Lagrange equations (using chain rule and setting
∂L/∂t = 0, the Hamiltonian H is conserved. This is not a surprise
since the Hamiltonian can be shown to be equal to the total Energy:

H(x, p) = pẋ− L = K + V (8.13)
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Motion in axisymmetric potentials

The Lagrangian:

L =
1

2
[Ṙ2 + (Rφ̇)2 + ż2]− Φ(R, z) (8.14)

The momenta:

pR = Ṙ, pφ = R2φ̇, pz = ż (8.15)

Therefore, the Hamiltonian:

H =
1

2

(
p2
R +

p2
φ

R2
+ p2

z

)
+ Φ(R, z) (8.16)
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Given H = 1
2

(
p2
R +

p2φ
R2 + p2

z

)
+ Φ(R, z), the Hamilton equations

ṗ = −∂H
∂q

become

ṗR = R̈ =
p2
φ

R3
− ∂Φ

∂R
(8.17)

ṗφ =
d

dt
(R2φ̇) = 0 (8.18)

ṗz = z̈ = −∂Φ

∂z
(8.19)
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