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Jeans Theorem

If we go back the the Collisionless Boltzmann Equation and look for
a steady state solution (so ∂

∂t
= 0)

v .∇f −∇Φ . ∂f

∂v
= 0

where f (x, v, t) is the stellar distribution function in phase space (x, v).

Recall that each star follows a path in phase space given by
(x(t), v(t)) where

dx

dt
= v

dv

dt
= −∇Φ

(6.1)

Define an integral of the motion as a function of the phase space
coordinates I (x, v) which is constant along the path.
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Integrals of Motion

Constants of Motion: any function of the phase-space coordinates
and time C(x, v, t) that is constant along every orbit where x(t) and
v(t) are a solution to the equations of motion

C [x(t1), v(t1); t1] = C [x(t2), v(t2); t2] (6.2)

for any t1 and t2

Any orbit in any force field has six independent constants of motion.
For example, the initial phase-space coordinates (x0, v0) ≡ [x(0), v(0)]
can always be obtained from the equations of motion and can be
regarded as six constants of motion.

The above procedure reminds us that physics is invariant to time
translations i.e., the time at which we pick our initial conditions does
not hold any information regarding the dynamical system.
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Integrals of Motion: any function I (x, v) of the phase-space
coordinates alone that is constant along any orbit

I [x(t1), v(t1)] = I [x(t2), v(t2)] (6.3)

Every integral is a constant of motion, but every constant of motion is
not an integral.

For example, on a circular orbit in a spherical potential, the azimuthal
speed Ω satisfies:

ψ = Ωt + ψ0

Hence, C(ψ, t) ≡ t − ψ/Ω will be constant of motion, but is not an
integral of motion because it depends on time.
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Integrals of Motion

Integrals of motion come in two flavors:

• Isolating Integrals of Motion reduce the dimensionality of the
orbit by one, i.e. with energy E or angular momentum L in hand,
the motion is restricted to 5D manifold in 6D dimensional
phase-space. These are of great practical and theoretical
importance in Dynamics.

• Non-Isolating Integrals of Motion do not affect the phase-space
distribution of an orbit, i.e. do not reduce the dimensionality of
the motion. These carry no practical value.

And, finally,�� ��Energy is always an isolating integral of motion
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Jeans Theorem

�� ��dx
dt

= v
�� ��dv
dt

= −∇Φ

For example, in a static potential Φ(x), the energy

E =
1

2
v2 + Φ(x) (6.4)

is an integral of the motion because

dE

dt
= v .

dv

dt
+∇Φ . dx

dt
= v . (−∇Φ) +∇Φ . v

= 0
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Jeans Theorem

Thus, for an integral of the motion I , we require

d

dt
{I [x(t), v(t)]} = 0 (6.5)

⇒
dI

dt
= ∇I . dx

dt
+
∂I

∂v
. dv

dt
= 0

i.e.

v .∇I −∇Φ . ∂I

∂v
= 0 (6.6)

Recall the steady state collisionless Boltzmann equation

v .∇f −∇Φ . ∂f

∂v
= 0

i.e. f and I obey the same equation.
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Theorem (Jeans Theorem)

i) Any steady state solution of the Collisionless Boltzmann Equation
depends on the phase-space coordinates (x,v) only through integrals of
the motion in a static potential, and ii) any function of the integrals
yields a steady state solution of the collisionless Boltzmann equation.

Proof.

Suppose f is a steady state solution of the collisionless Boltzmann
equation. Then we have just shown df

dt
= 0, and so f is an integral of

the motion i.e. f can depend only on integrals of the motion.
Conversely if there are n integrals of the motion I1,I2,...,In, and if f is
any function of these then

d

dt
[f (I1(x, v), I2(x, v), ..., In(x, v))] =

n∑
m=1

∂f

∂Im

dIm
dt

= 0

and so f satisfies the collisionless Boltzmann equation.
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Jeans Theorem

The value of Jeans theorem is that it gives us a way of closing the
loop for solving the Collisionless Boltzmann Equation.

• Taking moments gave us insight about the properties of the
solutions but not the actual solutions.

• The Jeans equation approach gave us more models, but no
guarantee that they were physical.
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Given Φ(x) we know that any function

f (E) = f

(
1

2
v2 + Φ(x)

)
(6.7)

is a solution of the collisionless Boltzmann equation. Now assume that
all stars have the same mass m, then

ρ(x) = m

∫ ∫ ∫
fd3v = mν(x)

or, without loss of generality, redfine f as the mass distribution
function (rather than the number). Then

∇2Φ = 4πGρ = 4πG

∫ ∫ ∫
fd3v (6.8)

If we can find a function f (E) which satisfies both (6.7) and (6.8) then
we have a self-consistent solution in which the stars all obey Newton’s
laws in the potential Φ(x), and the potential Φ(x) is due to the stars.
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Notation: To make things easier we redefine the potential and the
energy by adjusting the arbitrary constant and changing the sign.

Let Ψ = −Φ + Φ0. This is relative potential.
and E = −E + Φ0 = Ψ− 1

2
v 2. This is relative energy

Then we choose Φ0 such that

f > 0 for E > 0

f = 0 for E ≤ 0

Then, the relative potential satisfies the Poisson’s equation

∇2Ψ = −4πGρ

and Ψ→ Φ0 as |x| → ∞.
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Application of Jeans theorem

If we have spherical symmetry, so Φ depends only on r , then

1

r 2

d

dr

(
r 2 dΨ

dr

)
= −4πGρ = −4πG

∫ ∫ ∫
fd3v

= −4πG

∫ √2Ψ

0

f (E) 4πv 2dv , since f depends on v and not on v

the upper limit comes from f 6= 0 only if E = Ψ− 1

2
v 2 > 0

= −16π2G

∫ √2Ψ

0

f (Ψ− 1

2
v 2) v 2dv

Now dE = −vdv , with limits v = 0 or E = Ψ and v =
√

2Ψ or E = 0,
so

1

r 2

d

dr

(
r 2 dΨ

dr

)
= −16π2G

∫ Ψ

0

f (E)
√

2(Ψ(r)− E) dE
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�� ��So, how to get from ρ to f ?
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Eddington Formula

We start by going the other way round:

ν(Ψ(r)) =

∫
d3vf = 4π

∫
dvv 2f (Ψ−1

2
v 2) = 4π

∫ Ψ

0

dEf (E)
√

2(Ψ− E)

(6.9)
Noting that potential Ψ is a monotonic function of r in any spherical
system. Differentiating both sides with respect to Ψ

1√
8π

dν

dΨ
=

∫ Ψ

0

dE f (E)√
Ψ− E

(6.10)

This is an Abel integral equation with solution:

f (E) =
1√
8π2

d

dE

∫ E
0

dΨ√
E −Ψ

dν

dΨ
(6.11)

f (E) =
1√
8π2

[∫ E
0

dΨ√
E −Ψ

d2ν

dΨ2
+

1√
E

(
dν

dΨ

)
Ψ=0

]
Eddington′sformula

(6.12)
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Eddington Formula

To summarize: Given a spherically symmetric density distribution,
which can be written as ρ = ρ(Ψ) (may not always be possible),
Eddington’s formula yields the corresponding distribution function
f = f (E)

Because we require f (E) ≥ 0 everywhere, Eddington’s formula�� ��f (E) = 1√
8π2

d
dE

∫ E
0

dΨ√
E−Ψ

dν
dΨ

demands that the function
∫ E

0
dΨ√
E−Ψ

dν
dΨ

is an increasing function of E .
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Harmonic oscillator potential

The problem (for the spherical case) is to find a pair of functions f ,Ψ
which satisfy this equation.
What does this problem amout to? Instead of looking at the 6-D case,
let us illustrate the main ideas by taking a simple example - a 1-D
harmonic oscillator potential.
[Part of the motivation for this is that inside a ρ =constant sphere

Φ =
2

3
πGρ0(r 2 − 3r 2

0 ) =
1

2
ω2

0(x2 + y 2 + z2) + C (6.13)

where ω0 and C are constants, and this is a 3-D harmonic oscillator.]
So we take E = 1

2
mv 2 + 1

2
ω2

0x
2 (from Φ = 1

2
ω2

0x
2), and then from

Poissons equation

ρ(x) =
1

4πG

d2Φ

dx2
=

ω2
0

4πG
(6.14)
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Phase space (x , v) orbit is an ellipse determined entirely by E , so all
orbits with the same E lie on top of each other.

Then f (E) just determines how many orbits there are of a given
amplitude.

Note though that the contribution to the density at x = 0 is different
for each E , since v there increases with E , so ones with higher E
spend less time there.

The question is now: can we find f (E) which gives ρ = ρ0 =constant
out to some x0?
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Let

Ψ = −Φ + Φ0 = C − 1

2
ω2

0x
2

E = −E + Φ0 = C − 1

2
ω2

0x
2 − 1

2
v 2

At x = x0 need v = 0, so choose C = 1
2
ω2

0x
2
0

E =
1

2
ω2

0x
2
0 −

1

2
ω2

0x
2 − 1

2
v 2 = Ψ− 1

2
v 2 (6.15)

Then
f > 0 for E > 0

f = 0 for E ≤ 0

ρ(x) =

∫ ∞
0

fdv =

∫ √2Ψ(x)

0

fdv
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In terms of E we use −vdv = dE , with limits v = 0↔ E = Ψ and
v =
√

2Ψ↔ E = 0 to obtain

ρ(x) =

∫ Ψ(x)

0

f (E)dE√
2(Ψ(x)− E)

where

Ψ(x) =
1

2
ω2

0(x2
0 − x2).

[Note that 1-D differs from 3-D for this]
In fact it is easier to use the v equation, i.e.

ρ(x) =

∫ √ω2
0 (x2

0−x2)

0

f

(
1

2
ω2

0(x2
0 − x2)− 1

2
v 2

)
dv (6.16)

Now need to find a function f which gives us constant ρ. We can do
this by trial and error, or inspired guesswork...
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Try f = constant = f0. Then

ρ(x) = [f0v ]

√
ω2

0 (x2
0−x2)

0 = f0

√
ω2

0(x2
0 − x2)

which is not constant, so we have chosen the wrong f .
So try f = k√

E , where k is a constant.

ρ(x) =

∫ √ω2
0 (x2

0−x2)

0

√
2 k dv√

ω2
0(x2

0 − x2)− v 2

=

[
√

2 k sin−1

(
v√

ω2
0(x2

0 − x2)

)]√ω2
0 (x2

0−x2)

0

=
kπ√

2
= constant as required
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Application of Jeans theorem
Surface brightness profiles of elliptical galaxies

Ellipticals either have “cores” or “extra light”

Lauer et al 2007, HST data
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Surface brightness profiles of elliptical galaxies

“Extra light” = shells of accreted material

SDSS image manipulation
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Dark Matter only N-body simulations

Universal DM radial density profile discovered

Moore et al, 1999
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Application of Jeans theorem
Baryonic physics affects Dark Matter

Cusps are turned into cores with supernova feedback

Pontzen & Governato, 2011
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Two-Power Law Density Models

The two-power law models motivated by the measurements of the
light profile of elliptical galaxies and by the results of dark matter
N-body simulations.

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α
(6.17)

For several α and β there are models with particularly simple analytic
properties. For example

• β = 4 Dehnen (Dehnen 1993)

• α = 1, β = 4 Hernquist (Hernquist 1990)

• α = 2, β = 4 Jaffe (Jaffe 1983)

• α = 1, β = 3 NFW (Navarro, Frenk & White 1993)

• 1 < α < 1.5, β ' 3 for dark haloes
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Two-Power Law Density Models

Circular speed versus radius
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Two-Power Law Density Models

Distribution functions for simple two-power law models
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Spherically symmetric solutions of the collisionless

Boltzmann equation

These still have one spatial coordinate, but note that the orbits are
not just radial.
A simple form of the distribution function is

f =

{
FEn−

3
2 E > 0

0 E ≤ 0
(6.18)

where F is a constant.
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f =

{
FEn−

3
2 E > 0

0 E ≤ 0

Then

ρ(r) = 4π

∫ ∞
0

f (Ψ− 1

2
v 2)v 2 dv

with Ψ = Ψ(r). So

ρ(r) = 4πF

∫ √2Ψ

0

(Ψ− 1

2
v 2)n−

3
2 v 2 dv (6.19)
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�� ��ρ(r) = 4πF
∫√2Ψ

0
(Ψ− 1

2
v 2)n−

3
2 v 2 dv

Let
v 2 = 2Ψ cos2 θ

so
v dv = −2Ψ cos θ sin θ dθ

v 2 dv = −(2Ψ)
3
2 cos2 θ sin θ dθ

Limits are v = 0↔ θ = π
2

and v =
√

2Ψ↔ θ = 0
⇒

ρ(r) = 4πF

∫ π
2

0

Ψn− 3
2 sin2n−3 θ(2Ψ)

3
2 cos2 θ sin θ dθ (6.20)
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ρ(r) = 4πF

∫ π
2

0

Ψn− 3
2 sin2n−3 θ(2Ψ)

3
2 cos2 θ sin θ dθ

= 2
7
2 πFΨn

[∫ π
2

0

sin2n−2 θ dθ −
∫ π

2

0

sin2n θ dθ

]
= CnΨn where Ψ > 0 (otherwise 0) (6.21)

where

Cn =
(2π)

3
2
(
n − 3

2

)
!F

n!
(6.22)

Note that for Cn to be finite we need n − 3
2
> −1⇒ n > 1

2
since

(n − 3
2
)! = Γ(n − 1

2
), and Γ(x) is finite for x > 0.

35 / 50



Galaxies Part II

Jeans Theorem

Application of Jeans
theorem

Obtaining self-consistent
models

Eddington Formula

Harmonic oscillator
potential

Spherically symmetric
solutions of the
collisionless Boltzmann
equation

Plummer potential

Isothermal sphere

Application of Jeans theorem
Spherically symmetric solutions of the collisionless

Boltzmann equation

Gamma function:

Γ(z + 1) =

∫ ∞
0

tze−tdt, Γ(1) = Γ(2) = 1

Integration by parts gives Γ(z + 1) = zΓ(z) ⇒ Γ(z + 1) = z! for
integer z .
Also have (Euler’s reflection formula)

Γ(z)Γ(1− z) =
π

sin(πz)
=

∫ ∞
0

tz−1

1 + t
dt

⇒ Γ(
1

2
) =
√
π

Γ(z) has simple poles at z = 0,
−1, −2 ...
⇒ Cn finite requires n > 1

2
for

Cn =
(2π)

3
2
(
n − 3

2

)
!F

n!
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�� ��ρ(r) = CnΨn where Ψ > 0 (otherwise 0)

Now we can substitute the expression for ρ into Poisson’s equation, so

1

r 2

d

dr

(
r 2 dΨ

dr

)
= −4πGCnΨn (6.23)

We can rescale this, so s = r/b, where

b = (4πGΨn−1
0 Cn)−

1
2 (6.24)

ψ = Ψ/Ψ0 with Ψ0 = Ψ(0) and then

1

s2

d

ds

(
s2 dψ

ds

)
=

{
−ψn ψ > 0
0 ψ ≤ 0

(6.25)

(Ψ ≤ 0⇒ E ≤ 0⇒ f = 0⇒ ρ = 0)

37 / 50



Galaxies Part II

Jeans Theorem

Application of Jeans
theorem

Obtaining self-consistent
models

Eddington Formula

Harmonic oscillator
potential

Spherically symmetric
solutions of the
collisionless Boltzmann
equation

Plummer potential

Isothermal sphere

Application of Jeans theorem
Spherically symmetric solutions of the collisionless

Boltzmann equation

�



�
	1

s2
d
ds

(
s2 dψ

ds

)
=

{
−ψn ψ > 0
0 ψ ≤ 0

This is the Lane-Emden equation, which you are familiar with from
the fluids course.

The boundary conditions are: at s = 0 ψ = 1 by definition, and
dψ
ds

= 0 because there is no gravitational force at s = 0.

The equation for ψ(r) is the same as the equation for ρ(r) for a star

with an equation of state p = Kρ1+ 1
n . And we know there are analytic

solutions for n = 0, 1, 5, and that the one with n = 5 has infinite
radius. Here we need n > 1

2
.

What we have done here is chosen f (E), and then obtained the
differential equation to solve for Ψ and hence ρ.
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This is the model with n = 5.
Solution is

ψ =
1√

1 + 1
3
s2

(6.26)

It satisfies the boundary conditions, and you can check it satisfies

1

s2

d

ds

(
s2 dψ

ds

)
= −ψ5 (6.27)

⇒
ρ = C5Ψ5 =

c5Ψ5
0

(1 + 1
3
s2)

5
2

(6.28)

so the density extends to ∞.
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But the mass

M =

∫ ∞
0

4πρr 2 dr

= −
∫ ∞

0

1

G

d

dr

(
r 2 dΨ

dr

)
dr

=
1

G

[
r 2 dΨ

dr

]0

∞

= lim
r→∞

− 1

G

(
r 2 dΨ

dr

)
= − b

G

(
s2 dΨ

ds

)
s→∞

=
b Ψ0

G
which is finite
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• This is quite a good model of most globular clusters,

• and (for the light profiles) of dwarf spheroidal galaxies.

• But not so good for E0 galaxies because ρ ∼ r−5 at large radii.
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i.e. σ2(r) =constant.

This is the limit n→∞ (as in fluids, where p = kρ1+ 1
n with n→∞

⇒ p = Kρ), but it is easier to start again.

Assume that the distribution function is Maxwellian with constant
velocity dispersion, so guess

f (E) =
ρ1

(2πσ2)
3
2

exp

(
E
σ2

)

=
ρ1

(2πσ2)
3
2

exp

(
Ψ(r)− 1

2
v 2

σ2

)
where ρ1 is a constant.
⇒

ρ(r) =

∫ ∞
0

4πv 2f (v)dv = ρ1 exp

(
Ψ

σ2

)
(6.29)
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Isothermal sphere�� ��ρ(r) =

∫∞
0

4πv 2f (v)dv = ρ1 exp
(

Ψ
σ2

)
which means

Ψ = σ2(ln ρ− ln ρ1)

Poisson’s equation

1

r 2

d

dr

(
r 2 dΨ

dr

)
= −4πGρ1 exp

(
Ψ

σ2

)
is then

1

r 2

d

dr

(
r 2 d

dr
ln ρ

)
= −4πG

σ2
ρ (6.30)

One solution to this equation is

ρ(r) =
σ2

2πGr 2
(6.31)

(which you can easily check).
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ρ(r) =
σ2

2πGr 2

This is called the Singular Isothermal Sphere.

• ρ→∞ as r → 0 (singular)

• M(r) = 2σ2r
G
→∞ as r →∞ (awkward)

• Σ(R) = σ2

2GR

• Φ(r) = 2σ2 ln(r) + constant
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We’d prefer a solution which is well behaved at the origin, so
Ψ→constant and dΨ

dr
→ 0 there. It is convenient to rescale the

variables first, so
ρ̃ = ρ/ρ0

and
r̃ = r/r0

where

r0 =

√
9σ2

4πGρ0

Then in terms of the new variables the Poisson’s equation (6.30)
becomes

1

r̃ 2

d

dr̃

(
r̃ 2 d

dr̃
ln ρ̃

)
= −9ρ̃ (6.32)

with boundary conditions ρ̃(0) = 1 and dρ̃
dr̃

∣∣
r̃=0

= 0.
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Isothermal sphere�� ��1

r̃2
d
dr̃

(
r̃ 2 d

dr̃
ln ρ̃
)

= −9ρ̃

This is a numerical problem (see Fig 4-7 from Binney & Tremaine).

At large radii r >> r0 have ρ ∝ r−2 and M(r) ≈ 2σ2

G
r so M →∞ and

vescape =∞.
It is of interest to calculate the mean square speed of the stars:

v 2 =

∫∞
0

f (E)v 24πv 2 dv∫∞
0

f (E)4πv 2 dv

=

∫∞
0

exp
(

Ψ− 1
2
v2

σ2

)
v 24πv 2 dv∫∞

0
exp

(
Ψ− 1

2
v2

σ2

)
4πv 2 dv

Let x2 = v 2/2σ2, and noting that exp Ψ terms cancel

= 2σ2

∫∞
0

e−x2

x4 dx∫∞
0

e−x2x2 dx
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[These are fairly standard:∫ ∞
0

e−αx
2

dx =
1

2

√
π

α

d

dα
: −

∫ ∞
0

x2e−αx
2

dx = −
√
π

4
α−

3
2

d

dα
:

∫ ∞
0

x4e−αx
2

dx =

√
π

4

3

2
α−

5
2

]
Hence

v 2 = 2σ2 × 3

2
= 3σ2

So σ is the one-dimensional velocity dispersion.
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