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Introduction

NB The use of the word “collisionless” is a technical one, specific to
stellar dynamics. It does not simply mean there are no physical
collisions between stars - it is a stronger statement than that.

Aiming to describe the strucure of a self-gravitating collection of stars,
such as a star cluster or a galaxy.

e.g. globular cluster N ∼ 106 stars, rt ∼ 10 pc ∼ 3× 1017 m.
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1. Gravity is a long range force. For example, if the star density is
uniform, then a star at the apex of a cone sees the same force from a
region of a given thickness independent of its distance.

m1 ∝ r 2
1 h

m2 ∝ r 2
2 h

and

f1 ∝ −
Gm1

r 2
1

∝ h

f2 ∝ −
Gm2

r 2
2

∝ h

⇒ the force acting on a star is determined by distant stars and
large-scale structure of the galaxy. The force is zero if uniform density
everywhere, but 6= 0 if the density falls off in one direction, for
example. This is unlike molecules of gas where forces are strong only
during close collisions
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2 Stars almost never collide physically.

Distance to nearest star in a globular cluster is
d ∼ 10

(106)
1
3
∼ 0.1 pc ∼ 3× 1015 m >> r∗ ∼ 109 m.

r∗ � d � rt

This means that we can mentally smooth out the stars into a mean
density ρ̄ and use that to calculate a mean gravitational potential Φ̄
and use that to calculate the orbits of the individual stars. The forces
on a given star do not vary rapidly.

If this is a good approximation then the system is said to be
“collisionless”..
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Between 2 and ∞

N =∞ If the system consisted of an infinite number of stars which
are themselves point masses then the collisionless approximation would
be perfect.

N = 2 If instead we have a binary system then the approximation is
dire - it does not work at all.

So somewhere between N = 2 and N =∞ it becomes OK. What is
the criterion for this?

Consider a system of N stars each of mass m, and look at the motion
of one star as it crosses the system. Now look at

1 the path under the assumption that the mass of the stars is
smoothed out

2 the real path using individual stars

What we want to do is estimate the difference between the two - or, in
particular, the difference in the resultant transverse (relative to the
initial motion) velocity of the star we have chosen to follow.
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Weak encounters

For the real path we will use an impulse approximation to start with.
On the real path the star undergoes encounters with other stars which
perturb the straight path. One encounter with a star of mass m at
(0, b), i.e. impact parameter b as shown:

on the path x = vt Fy =
Gm2

r 2
cos θ =

Gm2b

(x2 + b2)
3
2

Fy =
Gm2

b2

[
1 +

(vt
b

)2
]− 3

2

= mv̇y

∆vy =
Gm

b2

∫ ∞
−∞

[
1 +

(vt
b

)2
]− 3

2

dt

=
Gm

bv

∫ ∞
−∞

(1 + s2)−
3
2 ds

Setting s = tan θ allows us to integrate this

∆vy =
2Gm

bv
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We could have obtained this sort of approximation more quickly by
noting that |∆v⊥| ≈ Force at closest approach × time spent near
perturber = Gm

b2 × 2b
v

.

How many encounters at distance b are there? The surface density of
stars is ∼ N

πR2 ,

so the number of stars with b in the
range(b, b + db) is

δn =
N

πR2
2πb db

Each encounter produces an effect ∆v⊥, but the vectors are randomly
oriented. Therefore the mean value of the effect is zero, but the sum
of the δv 2

⊥ is non-zero.

So v 2
⊥ changes by an amount(

2Gm

bv

)2
2N

R2
b db

We need to integrate this over all b, so

∆v 2
⊥ =

∫ R

0

8N

(
Gm

Rv

)2
db

b
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∆v 2
⊥ =

∫ R

0

8N

(
Gm

Rv

)2
db

b

There is a problem here, and that is the lower limit 0 for the integral.
The approximation we have used breaks down then, so replace 0 by
bmin, the expected closest approach - i.e. such that

N

πR2
(b2

minπ) = 1

so
bmin ∼ R/N

1
2

Then

∆v 2
⊥ ≈ 8N

(
Gm

Rv

)2

ln Λ

where Λ = R/bmin.
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Weak encounters

Let us check for consistency that approximation we have used is OK.

When b = bmin. We have the requirement that δv⊥/v << 1,
so require 2Gm/bv 2 << 1, or b >> 2Gm/v 2.

But from the Virial theorem v 2 ∼ GM/R ∼ GNm/R, so need
b >> 2GmR/GNm = 2R/N, i.e. b/R >> 2/N.

For bmin have bmin/R ∼ 1/N
1
2 >> 1/N, so the approximation is OK.
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The time to erase the memory of the past motion

So we conclude that v 2
⊥ changes by an amount ∆v 2

⊥ ≈ 8N
(
Gm
Rv

)2
ln Λ

at each crossing.

The collisionless approximation will fail after nrelax crossings, where

nrelax∆v 2
⊥ ∼ v 2 i.e. nrelax8N

(
Gm

Rv

)2

ln Λ ∼ v 2

and using v 2 ' GNm
R

this becomes

nrelax8N

(
v 2

Nv

)2

ln Λ ∼ v 2 i.e. nrelax ∼
N

8 ln Λ

The relaxation time is

trelax = nrelax × tcross ≈ nrelax
R

v

and the crossing time

tcross ∼
√

R3

GNm
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Notes:

1 ln Λ ∼ lnN, so nrelax ∼ N
8 ln N

.

2 relaxation time is the timescale on which stars share energy with
each other.

3 can model a system as collisionless only if t << trelax.

Estimates of timescales:

• Galaxies: N ∼ 1011, tcross ∼ 108 yr, nrelax ∼ 5× 108, so
trelax ∼ 5× 108tcross ∼ 5× 1016 yr. This is much greater than a
Hubble time, so galaxies are not relaxed.

• Globular clusters: N ∼ 106, tcross ∼ 10pc/20km s−1 ∼ 5× 105 yr,
so trelax ∼ 4× 109 yr. Their ages are somewhat greater than this,
so globular clusters are relaxed, and hence spherical.
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Consider a large mass M moving with speed v through a sea of
stationary masses m, density ρ. In the frame of the mass M:

.. so not only is v⊥
affected, but there is also a
contribution to v‖.
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Relative to M have a Keplerian orbit with the angular momentum
h = bv = r 2ψ̇ The orbit, as you remember:

1

r
= C cos(ψ − ψ0) +

GM

h2
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1

r
= C cos(ψ − ψ0) +

GM

h2

Get C , ψ0 by differentiating
this ↑

dr

dt
= Cr 2ψ̇ sin(ψ − ψ0)

As ψ → 0 dr
dt
→ −v so

−v = Cbv sin(−ψ0)

Also, since r →∞ then

0 = C cosψ0 +
GM

b2v 2

so
tanψ0 = −bv 2/GM
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Now π − θdefl = 2(π − ψ0), so
θdefl = 2ψ0 − π. ⇒

tan

(
θdefl

2

)
= − 1

tanψ0

and so

tan

(
θdefl

2

)
=

GM

bv 2

Then θdefl = π
2

if ψ0 = 3π
4

, or tanψ0 = −1 ⇒

b⊥ ∼
GM

v 2
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To estimate the drag force, we assume that all particles with b < b⊥
lose all their momentum to M (i.e. δv ≈ v at b⊥)
So the force on M = rate of change of momentum = πb2

⊥ρv
2

(consider cylinder vdt × πb2 within which each star contributes v)
So

M
dv

dt
= −πρv 2

(
GM

v 2

)2

or
dv

dt
' −πρG

2M

v 2

This is known as dynamical friction.
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Note:

1 We have assumed that the mass is moving at velocity v with
respect to the background. In general the background will have a
velocity dispersion σ. We have effectively assumed in the above
that v >> σ. If v << σ then we expect negligible drag since the
particle barely “knows” it is moving. The general result (see
Binney & Tremaine, p643 onwards) is that drag is caused by
particles with velocities 0 < u < v .

2 Force F ∝ M2, and the wake mass is ∝ M

3 F ∝ 1
v2 .
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Applications of dynamical friction

• Galactic cannibalism
A satellite with σ ∼ 50 km/s

in a galaxy with σ ∼ 200
km/s will spiral from 30 kpc
in 10 Gyr.

• Decay of black-hole orbits
for MBH > 106M� only few

Gyr to go from 10 kpc to 0

• Friction between the Galactic
bar and the Dark Matter halo

• Formation and evolution of
binary black holes

• The fates of globular clusters
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The Collisionless Boltzman Equation

• If the interactions are rare, then the orbit of any star can be
calculated as if the system’s mass was distributed smoothly.

• But, as we just saw, eventually the true orbit deviates from the
model orbit.

• Luckily, as long as we consider timescales < trelax we are fine

• In fact, for galaxies, trelax >> tHubble . Perfect!

• However, when modelling a collisionless system such as an
elliptical galaxy it is not practical to follow the motions of all
constituent stars. Because there are too many of them!
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The Collisionless Boltzman Equation
The Distribution Function

Let us assume that the stellar systems consist of a large number N of
identical particles with mass m (could be stars, could be dark matter)
moving under a smooth gravitational potential Φ(x, t).

Most problems are to do with working out the probability of finding a
star in particular geographical location about the galaxy, moving at a
particular speed.

Or, in other words, the probability of finding the star in the
six-dimensional phase-space volume d3xd3v, which is a small volume
d3x centred on x in the small velocity range d3v centred on v.

At any time t a full description of the state of this system is given by
specifying the number of stars f (x, v, t)d3xd3v, where f (x, v, t) is
called the “distribution function” (or “phase space density”) of the
system.

Obviously, f ≥ 0 everywhere, since we do not allow negative star
densities.
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The Distribution Function

Naturally, integrating over all phase space:∫
f (x, v, t)d3xd3v = N (5.1)

Alternatively, we can normalize it to have:∫
f (x, v, t)d3xd3v = 1 (5.2)

Then f (x, v, t)d3xd3v is the probability that at time t a randomly
chosen star has phase-space coordinates in the given range.
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Phase space flow

If we know the initial coordinates and velocities of every star, then we
can use Newton’s laws to evaluate their positions and velocities at any
other time i.e. given f (x, v, t0) then we should be able to determine
f (x, v, t) for any t. With this aim, we consider the flow of points in
phase space, with coordinates (x,v), that arises as stars move along in
their orbits. We can set the phase space coordinates

(x, v) ≡ w ≡ (w1,w2,w3,w4,w5,w6)

so the velocity of the flow (which is the time derivative of the
coordinates) may be written as

ẇ = (ẋ, v̇) = (v,−∇Φ).

ẇ is a six-dimensional vector which bears the same relationship to the
six-dimensional vector w as the three-dimensional fluid flow velocity
v = ẋ.
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The Collisionless Boltzman Equation
Phase space flow

Any given star moves through phase space, so the probability of finding
it at any given phase-space location changes with time. In what way?

However, the flow in phase space conserves stars, hence we can derive
the equation of conservation of the phase space probability analogous
to the fluid continuity equation.
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The fluid continuity equation

For an arbitrary closed volume V fixed in space and bounded by
surface S , the mass of fluid in the volume is

M(t) =

∫
V

d3xρ(x, t) (5.3)

The fluid mass changes with time at a rate

dM

dt
=

∫
V

d3x
∂ρ

∂t
(5.4)

But, the mass flowing out through the surface area element d2S per
unit time ρv · d2S. Thus:

dM

dt
= −

∮
S

d2S · (ρv) (5.5)

Or ∫
V

d3x
∂ρ

∂t
+

∮
S

d2S · (ρv) = 0 (5.6)
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∫
V

d3x
∂ρ

∂t
+

∮
S

d2S · (ρv) = 0

can be re-written with the use of the divergence theorem:∫
V

d3x

[
∂ρ

∂t
+ ∇ · (ρv)

]
= 0 (5.7)

Since the result holds for any volume:

∂ρ

∂t
+ ∇ · (ρv) = 0 (5.8)

Which in Cartesian coordinates looks like this:

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0 (5.9)

using the summation convention

A · B =
3∑

i=1

AiBi = AiBi
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The continuity of flow in phase space

Since ẋ = v , for fluids:

∂ρ

∂t
+

∂

∂x
· (f ẋ) = 0

The analogous equation for the conservation of probability in phase
space is:

∂f

∂t
+

∂

∂w
· (f ẇ) = 0 (5.10)

Note that writing it as a continuity equation carries with it the
assumption that the function f is differentiable. This means that close
stellar encounters where a star can jump from one point in phase
space to another are excluded from this description.
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The continuity of flow in phase space

Let us have a closer look at the second term in ∂f
∂t

+ ∂
∂w · (f ẇ)= 0

∂(f ẇi )

∂wi
= ẇi

∂f

∂wi
+ f

∂ẇi

∂wi
(5.11)

The flow in six-space is an interesting one, since

6∑
i=1

∂(ẇi )

∂wi
=

3∑
i=1

(
∂vi
∂xi

+
∂v̇i
∂vi

)
=

3∑
i=1

− ∂

∂vi

(
∂Φ

∂xi

)
= 0 (5.12)

Here ∂vi
∂xi

= 0 because in this space vi and xi are independent
coordinates, and the last step follows because Φ, and hence ∇Φ does
not depend on the velocities. We can use this equation to simplify the
continuity equation, which now becomes

∂f

∂t
+

6∑
i=1

ẇi
∂f

∂wi
= 0 (5.13)
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The continuity of flow in phase space

or,
∂f

∂t
+ ẇ .∇6f = 0,

or (in terms of xi and vi , and using summation convention with i = 1
to 3.)

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0,

or (in vector form)

Collisionless Boltzmann Equation

∂f

∂t
+ v .∇f −∇Φ . ∂f

∂v
= 0 (5.14)

where ∂f
∂v is like ∇f , but in the velocity coordinate v rather than the

spatial coordinate x.
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Liouville’s Theorem

The meaning of the collisionless Boltzmann equation can be seen by
extending to six dimensions the concept of the Lagrangian derivative.
We define (using the summation convention here and forever more)

Df

Dt
≡ ∂f

∂t
+ ẇi

∂f

∂wi
(5.15)

df
dt

represents the rate of change of density in phase space as seen by
an observer who moves through phase space with a star with phase
space velocity ẇ. The collisionless Boltzmann equation is then simply

Df

Dt
= 0 (5.16)

Therefore the flow of stellar phase points through phase space is
incompressible – the phase-space density of points around a given star
is always the same.
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Compare start...

...and finish
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In cylindrical polars

Be careful when writing down the collisionless Boltzmann equation in
non-Cartesian coordinates! For example, in cylindrical polars (axial
symmetry)

R̈ − Rφ̇2 = −∂Φ

∂R

1

R

d

dt

(
R2φ̇

)
= − 1

R

∂Φ

∂φ

z̈ = −∂Φ

∂z

with
vR = Ṙ

vφ = Rφ̇ ( not just φ̇)

vz = ż

Since dx = dReR + Rdφeφ + dzez
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In cylindrical polars�� ��R̈ − Rφ̇2 = − ∂Φ

∂R

�



�
	1

R
d
dt

(
R2φ̇

)
= − 1

R
∂Φ
∂φ

�� ��z̈ = − ∂Φ
∂z

�� ��vR = Ṙ�� ��vφ = Rφ̇
�� ��vz = ż

Then start with

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0

and this becomes

∂f

∂t
+ vR

∂f

∂R
+

vφ
R

∂f

∂φ
+ vz

∂f

∂z
+

(
v 2
φ

R
− ∂Φ

∂R

)
∂f

∂vR

− 1

R

(
vRvφ +

∂Φ

∂φ

)
∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

(5.17)
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Limitations and links with the real world

1 Stars are born and die! Hence they are not really conserved.
Therefore, more appropriately:

Df

Dt
=
∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x

∂f

∂v
= B − D (5.18)

where B(x, v, t) and D(x, v, t) are the rates per unit phase-space
volume at which stars are born and die.

But v∂f /∂x ≈ vf /R = f /tcross

Similarly, ∂Φ/∂x ≈ a ≈ v/tcross , hence
∂Φ/∂x ∂f /∂v ≈ af /v ≈ f /tcross
Therefore, the important ratio

γ =

∣∣∣∣B − D

f /tcross

∣∣∣∣� 1 (5.19)

i.e. the fractional change in the number of stars per crossing time is
small
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Limitations and links with the real world

Density of stars at a particular location x

ν(x) ≡
∫

d3vf (x, v) (5.20)

Probability distribution of stellar velocities at x

Px(v) =
f (x, v)

ν(x)
(5.21)

For lines of sight through the galaxy, defined by s - a unit vector from
observer to the galaxy.
The components of x and v vectors parallel and perpendicular to the
line of sight are:

x‖ ≡ s · x

v‖ ≡ s · v

x⊥ ≡ x− x‖s

v⊥ ≡ v − v‖s
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The distribution of the line-of-sight velocities at x⊥

F (x⊥, v‖) =

∫
dx‖ν(x)

∫
d2v⊥Px(v‖s + v⊥)∫
dx‖ν(x)

The mean line-of-sight velocity:

v̄‖(x⊥) ≡
∫

dv‖v‖F (x⊥, v‖)

The line-of-sight velocity dispersion:

σ2
‖(x⊥) ≡

∫
dv‖(v‖ − v̄‖)

2F (x⊥, v‖)
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• The distribution function f is a function of seven variables, so
solving the collisionless Boltzmann equation in general is hard.

• So need either simplifying assumptions (usually symmetry), or try
to get insights by taking moments of the equation.

• We cannot observe f , but can determine ρ and line profile (which

is the average velocity along a line of sight v r and v 2
r .
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Zeroth moment

Start with the collisionless Boltzmann equation -using the summation
convention

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 (5.22)

and take the zeroth moment integrating over d3v.

∂

∂t

∫ ∫ ∫ ∞
∞

fd3v +

∫ ∫ ∫
vi
∂f

∂xi
d3v − ∂Φ

∂xi

∫ ∫ ∫
∂f

∂vi
d3v = 0 (5.23)

where for the first term we can take the differential with respect to
time out of the integral since the limits are independent of t, and in
the third term Φ is independent of v so the ∂Φ

∂xi
term comes out.
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Now

ν(x, t) =

∫ ∫ ∫ ∞
−∞

fd3v

is just the number density of stars at x (and if all stars have the same
mass m then ρ(x, t) = mν(x, t)). So the first term is just

∂ν

∂t
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Also
∂

∂xi
(vi f ) =

∂vi
∂xi

f + vi
∂f

∂xi

and
∂vi
∂xi

= 0

since vi and xi are independent coordinates, and so

∂

∂xi
(vi f ) = vi

∂f

∂xi
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

Hence the second term above becomes

∂

∂xi

∫ ∫ ∫
vi fd

3v

and if we define an average velocity v i by

v i =
1

ν

∫ ∫ ∫
vi fd

3v

(so interpret f as a probability density) then the term we are
considering becomes

∂

∂xi
(νv i )
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�� ��∂
∂t

∫∫∫∞
∞ fd3v +

∫∫∫
vi
∂f
∂xi

d3v − ∂Φ
∂xi

∫∫∫
∂f
∂vi

d3v = 0

The last term involving∫ ∫ ∫
∂f

∂vi
d3v = f |∞−∞= 0

since we demand that f → 0 as v→∞.

And so the zeroth moment equation becomes

∂ν

∂t
+

∂

∂xi
(νv i ) = 0 (5.24)

which looks very like the usual fluid continuity equation

∂ρ

∂t
+

∂

∂xi
(ρvi ) = 0
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∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0

Multiply the collisionless Boltzmann equation ↑ by vj and then
integrate over d3v.

Then since
∂vj
∂t

= 0

we have ∫
vj
∂f

∂t
d3v =

∂

∂t

∫
fvjd

3v

So the first moment equation becomes

∂

∂t

∫
fvjd

3v +

∫
vivj

∂f

∂xi
d3v − ∂Φ

∂xi

∫
vj
∂f

∂vi
d3v = 0 (5.25)

49 / 100



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Zeroth moment

First moment

Application of Jeans
equations

The Virial Theorem

The Jeans Equations
First moment

�� ��∂
∂t

∫
fvjd

3v +
∫
vivj

∂f
∂xi

d3v − ∂Φ
∂xi

∫
vj
∂f
∂vi

d3v = 0

Looking at each of the terms in equation (5.25):

First term = ∂
∂t

(νv j) by definition.

Second term = ∂
∂xi

(νvivj), where

vivj =
1

ν

∫
vivj fd

3v

Third term: ∫
vj
∂f

∂vi
d3v = [fvj ]

∞
−∞ −

∫
∂vj
∂vi

fd3v = −δijν

50 / 100



Galaxies Part II

Collisionless Systems:
Introduction

Relaxation time

Gravitational Drag /
Focusing

The Collisionless
Boltzman Equation

The Jeans Equations

Zeroth moment

First moment

Application of Jeans
equations

The Virial Theorem

The Jeans Equations
First moment

�� ��∂
∂t

∫
fvjd

3v +
∫
vivj

∂f
∂xi

d3v − ∂Φ
∂xi

∫
vj
∂f
∂vi

d3v = 0

So first moment equation is

∂

∂t
(νv j) +

∂

∂xi
(νvivj) + ν

∂Φ

∂xj
= 0 (5.26)

We can manipulate this a bit further - subtracting

v j×
�� ��∂ν
∂t

+ ∂
∂xi

(νv i ) = 0

gives

ν
∂v j

∂t
− v j

∂

∂xi
(νvi ) +

∂

∂xi
(νvivj) = −ν ∂Φ

∂xj
(5.27)
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�
�
�ν

∂v j
∂t
− v j

∂
∂xi

(νvi ) + ∂
∂xi

(νvivj) = −ν ∂Φ
∂xj

Now define
σ2
ij ≡ (vi − v i )(vj − v j) = vivj − vi vj

(this is a sort of dispersion). Thus vivj = vi vj + σ2
ij where the vi vj

refers to streaming motion and the σ2
ij to random motion at the point

of interest. Using this we can tidy up (5.27) to obtain

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
(5.28)

This has a familiar look to it cf the fluid equation

ρ
∂u

∂t
+ ρ(u .∇)u = −ρ∇Φ−∇p

So the term in σ2
ij is a “stress tensor” and describes anisotrpoic

pressure.
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Note that σ2
ij is symmetric, so it can be diagonalised. Ellipsoid with

axes σ11, σ22, σ33 where 1, 2, 3 are the diagonalising coordinates is
called the velocity ellipsoid.

If the velocity distribution is isotropic then we can write σ2
ij =

(
p
ν

)
δij

for some p, and the get −∇p in equation (5.28).

(5.24) and (5.26) are the Jeans equations. (5.26) can be replaced by
(5.28).

These equations are valuable because they relate observationally
accessible quantities.
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However...

The trouble is we have not solved anything. In a fluid we use
thermodynamics to relate p and ρ, but do not have that here. These
equations can give some understanding, and can be useful in building
models, but not a great deal more.

Importantly, the solutions of the Jeans equation(s) are not guaranteed
to be physical as there is no condition f > 0 imposed.

Moreover, this is an incomplete set of equations. If Φ and ν are
known, there are still nine unknown functions to determine: 3
components of the mean velocity v̄ and 6 components of the velocity
dispersion tensor σ2. Yet we only have 4 equations: one zeroth order
and 3 first order moments.

Multiplying CBE further through by vivk and integrating over all
velocities will not supply the missing information.

We need to truncate or close the regression to even higher moments of
the velocity distribution.

Such closure is possible in special circumstances
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Take equation (5.28)

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
and assume at each point:

• steady state ∂
∂t

= 0

• isotropic σ2
ij = σ2δij

• non-rotating vi = 0

So no mean flow, and velocity dispersion is the same in all directions
(but σ2 = σ2(r)).
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Then

ν
∂v j

∂t
+ νvi

∂vj
∂xi

= −ν ∂Φ

∂xj
− ∂

∂xi

(
νσ2

ij

)
becomes

−ν∇Φ = ∇(νσ2)

• Cluster with spherical symmetry - if we know ν(r) or
ρ(r) = mν(r), then from Poisson’s equation ∇2Φ = 4πGρ, the
potential Φ(r) can be determined. Then can solve for σ2(r)

• So given a density distribution ρ(r) and the assumption of
isotropy we can find σ(r), i.e. can find a fully self-consistent
model for the internal velocity structure of the cluster / galaxy.

• Minor difficulties: no guarantee (1) it is correct (is isotropic
everywhere possible?) or (2) it works (what if σ2 < 0 in the
formal solution?).
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Jeans equations for cylindrically symmetric systems

Start with the collisionless Boltzmann equation and set ∂
∂φ

= 0 [not

vφ = 0!]. So we have, from the cylindrical polar version of the
equation (5.17)

∂f

∂t
+vR

∂f

∂R
+vz

∂f

∂z
+

(
v 2
φ

R
− ∂Φ

∂R

)
∂f

∂vR
− 1

R
(vRvφ)

∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

Then for the zeroth moment equation
∫∫∫

dvRdvφdvz .
Time derivative term:∫ ∫ ∫

∂f

∂t
dvRdvφdvz =

∂

∂t

∫ ∫ ∫
fdvRdvφdvz =

∂ν

∂t
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Velocity terms:∫ ∫ ∫ (
vR
∂f

∂R
+ vz

∂f

∂z
+

v 2
φ

R

∂f

∂vR
− 1

R
vRvφ

∂f

∂vφ

)
dvRdvφdvz

=
∂

∂R

∫ ∫ ∫
vR f dvRdvφdvz +

∂

∂z

∫ ∫ ∫
vz f dvRdvφdvz

+
1

R

∫ ∫ ∫
v 2
φ
∂f

∂vR
dvRdvφdvz

−
∫ ∫ ∫ [

∂

∂vφ

(
vRvφf

R

)
− f

∂

∂vφ

(vRvφ
R

)]
dvRdvφdvz ↑

↑ 0 (div theorem) 0 (div theorem)

=
∂

∂R

∫ ∫ ∫
vR f dvRdvφdvz +

1

R

∫ ∫ ∫
vR f dvRdvφdvz

+
∂

∂z

∫ ∫ ∫
vz f dvRdvφdvz

=
1

R

∂

∂R
(R ν vR) +

∂

∂z
(ν vz)

where vR =
1

ν

∫ ∫ ∫
vR f dvRdvφdvz and vz =

1

ν

∫ ∫ ∫
vz f dvRdvφdvz
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Terms with the potential Φ:∫ ∫ ∫
∂Φ

∂z

∂f

∂vz
dvRdvφdvz =

∂Φ

∂z

∫ ∫ ∫
∂f

∂vz
dvRdvφdvz = 0

and ∫ ∫ ∫
∂Φ

∂R

∂f

∂vR
dvRdvφdvz =

∂Φ

∂R

∫ ∫ ∫
∂f

∂vR
dvRdvφdvz = 0

Hence
∂ν

∂t
+

1

R

∂

∂R
(RνvR) +

∂

∂z
(νv z) = 0 (5.29)

This is the zeroth order moment equation.
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There are three first moment equations, corresponding to each of the
v components, where we take the collisionless Boltzmann equation
×vR , vφ, vz and

∫∫∫
dvRdvφdvz .

The results are

∂(νvR)

∂t
+
∂(νv 2

R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v 2
R − v 2

φ

R
+
∂Φ

∂R

)
= 0 (5.30)

∂(νvφ)

∂t
+
∂(νvRvφ)

∂R
+
∂(νvφvz)

∂z
+

2ν

R
vφvR = 0 (5.31)

and

∂(νv z)

∂t
+
∂(νvRvz)

∂R
+
∂(νv 2

z )

∂z
+
νvRvz
R

+ ν
∂Φ

∂z
= 0. (5.32)

Now, this is something powerful.
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• Spheroidal components with isotropic velocity dispersion

• Asymmetric drift

• Local mass density

• Local velocity ellipsoid

• Mass distribution in the Galaxy out to large radii
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There is a lag and the lag increases with the age of the stellar tracers
and so does the random component of their motion.
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The distribution of azimuthal velocities ṽφ = vφ − vc is very skew.
This asymmetry arises from two effects.

• Stars near the Sun with ṽφ < 0 have less angular momentum and
thus have Rg < R0 compared to stars with ṽφ > 0 and Rg > R0.
The surface density of stars declines exponentially, hence there
are more stars with smaller Rg .

• The velocity dispersion σR declines with R, so the fraction of
stars with Rg = R0 − δR is larger than the fraction of stars with
Rg = R0 + δR. Thus there are more stars on eccentric orbits that
can reach the Sun with ṽφ < 0
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The epicyclic approximation:

[vφ − vc(R0)]2

v 2
R

' −B
A− B

= − B

Ω0
=

K 2

4Ω2
' 0.5
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The velocity of the asymmetric drift

va ≡ vc − v̄φ

Jeans tells us that

∂(νvR)

∂t
+
∂(νv 2

R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v 2
R − v 2

φ

R
+
∂Φ

∂R

)
= 0

We assume

• The Galactic disk is in the steady state

• The Sun lies sufficiently close to the equator, at z = 0

• The disk is symmetric with respect to z and hence ∂ν/∂z = 0

So,

R

ν

∂(νv 2
R)

∂R
+ R

∂(vRvz)

∂z
+ v 2

R − v 2
φ + R

∂Φ

∂R
= 0 (5.33)
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�
	R

ν

∂(νv2
R

)

∂R
+ R ∂(vR vz )

∂z
+ v 2

R − v 2
φ + R ∂Φ

∂R
= 0

Define
σ2
φ = v 2

φ − vφ
2

Remember that

v 2
c = R

∂Φ

∂R

Therefore

σ2
φ − v 2

R − R

ν

∂(νv 2
R)

∂R
− R

∂(vrvz)

∂z
= v 2

c − vφ
2 (5.34)

= (vc − vφ)(vc + vφ) = va(2vc − va)

If we neglect va compared to 2vc

va '
v 2
R

2vc

[
σ2
φ

v 2
R

− 1−
∂ ln(νv 2

R)

∂ lnR
− R

v 2
R

∂(vrvz)

∂z

]
(5.35)
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v 2
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σ2
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R − R

ν
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− R
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= v 2

c − vφ
2 (5.34)

= (vc − vφ)(vc + vφ) = va(2vc − va)

If we neglect va compared to 2vc

va '
v 2
R

2vc

[
σ2
φ

v 2
R

− 1−
∂ ln(νv 2

R)

∂ lnR
− R

v 2
R
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∂z
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This is Stromberg’s asymmetric drift equation

va '
v 2
R

2vc

[
σ2
φ

v 2
R

− 1−
∂ ln(νv 2

R)

∂ lnR
− R

v 2
R

∂(vrvz)

∂z

]

• σ2
φ/v

2
R = 0.35

• ν and v 2
R are both ∝ e−R/Rd with R0/Rd = 3.2

First three terms sum up to 5.8

• The last term is tricky, as it requires measuring the velocity
ellipsoid outside the plane of the Galaxy, it averages to between 0
and -0.8

Averaging over, the value in the brackets is 5.4± 0.4, so

va ' v 2
R/(82± 6)kms−1
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But, what is measured?
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Something has been heating the disk! Curious what that might be.

• Heating by MACHOs

• Scattering of disk stars by molecular clouds

• Scattering by spiral arms
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...MACHOs???

MACHO = MAssive Compact Halo Object.

This was the primary candidate for the baryonic Dark Matter
(as considered only 10-15 years ago).

Anything dark, massive and not fuzzy goes:

• black holes

• neutron stars

• very old white dwarfs = black dwarfs?

• brown dwarfs

• rogue planets
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Unfortunately, any significant contribution of MACHOs to the
Galaxy’s mass budget is ruled out, due to

• they are too efficient in heating the disk and predict the
amplitude of the effect to grow faster with time than observed

• can be detected directly through observations of gravitational
microlensing effect. While the first claims put fMACHO ∼ 20%, it
is consistent with zero.
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We know that the irregularities in the Galaxy’s gravitational potential
heat the disk and (re)shape the velocity distribution of the disk stars.

We do not know exactly which phenomenon is the primary source of
heating

Most likely, it is the combined effects of spiral transients and
molecular clouds
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We predicted va ' v 2
R/(82± 6)kms−1

The measured value from above:

va = v 2
R/(80± 5)kms−1
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Local mass density

The mass density in the solar neighborhood.
Equation (5.32) can be written as

∂(νv z)

∂t
+

1

R

∂(RνvRvz)

∂R
+
∂(νv 2

z )

∂z
+ ν

∂Φ

∂z
= 0

Take this equation and assume a steady state so ∂
∂t

= 0, so have

1

R

∂(RνvRvz)

∂R
+
∂(νv 2

z )

∂z
= −ν ∂Φ

∂z
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Local mass density

We are interested in the density in a thin disk, where the density falls
off much faster in z than in R. Typically disk a few 100pc thick, with
a radial scale of a few kpc, so

∂

∂z
∼ 10

∂

∂R
∼ 10

1

R

so neglect ∂
∂R

term. So

1

ν

∂

∂z
(νv 2

z ) = −∂Φ

∂z

i.e.vertical pressure balances vertical gravity. This is the Jeans
equation for one-dimensional slab.
Also can show that Poisson’s equation in a thin disk approximation is

∂2Φ

∂z2
= 4πGρ

where ρ is the total mass density.
So have

∂

∂z

1

ν

∂

∂z
(νv 2

z ) = −4πGρ.
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Local mass density

Note that by f we do not necessarily mean all stars, it could be any
well-defined subset, such as all G stars (say).

The ν is the number density of G stars or whatever type is chosen. We
have not linked ν and Φ (or ν and ρ) as was done in the previous
example of a self-consistent spherical model.

Thus if for any population of stars we can measure v 2
z and ν as a

function of height z we can calculate the total local density ρ. This
involves differentiation of really noisy data, so the results are very
uncertain.
Using this technique for F stars + K giants Oort found

ρ0 = ρ(R0, z = 0) = 0.15 M� pc−3= Oort limit.
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Local mass density

Note that one can determine instead

Σ(z) =

∫ z

−z

ρdz ′ = − 1

2πGν

∂

∂z
(νv 2

z )

more accurately (since there is one less difference, or differential,
involved).

Oort: Σ(700pc) ' 90 M� pc−2

This compares with the observable mass:
Σ(1.1kpc) ' 71± 6 M� pc−2 (Kuijken & Gilmore, 1991)

The baryons account for Σ(stars plus gas) ' 41± 15 M� pc−2

(Binney & Evans, 2001)
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Local mass density

Or we can estimate Dark Matter halo’s contribution to Σ by
supposing that

• the halo is spherical

• the circular speed vc = v0 = constant

• without the halo, vc = (GMd/r)1/2

Then, the halo mass M(r) satisfies G [M(r) + Md ] = rv 2
0

The halo’s density:

ρh =
1

4πr 2

dM

dr
=

v 2
0

4πGr 2
= 0.014M�pc

−3

(
v0

200kms−1

)2(
R0

8kpc

)−2

The halo’s contribution Σh
1.1 = 2.2 kpc× ρh = 30.6M�pc

−2

So local dark matter is relatively tightly constrained, and the Sun lies
in transition region in which both disk and halo contribute significant
masses.
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Jeans equation for spherical systems:

d(νv 2
r )

dr
+ ν

(
dΦ

dr
+

2v 2
r − v 2

θ − v 2
φ

r

)
= 0 (5.36)

For the stationary and spherically symmetric Galactic halo, the radial
velocity dispersion σr,∗ of stars with density ρ∗ obeys the above Jeans
equation (albeit modified slightly):

1

ρ∗

d(ρ∗σ
2
r,∗)

dr
+

2βσ2
r,∗

r
= −dΦ

dr
= −v 2

c

r
(5.37)

where the velocity anisotropy parameter is

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

= 1−
v 2
θ + v 2

φ

2v 2
r

(5.38)

Thus, the Jeans equation allows us to determine a unique solution for
the mass profile if we know σ2

r,∗, ρ∗ and β(r).
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The expected radial velocity dispersion for a tracer population is
derived by integrating the Jeans equation:

σ2
r,∗ =

1

ρ∗e
∫

2βdx

∫ ∞
x

ρ∗v
2
c e

∫
2βdx

′′

dx
′
, x = ln r (5.39)

However, the proper motions are not available for the majority of the
tracers, therefore we can only measure the line-of-sight velocity
dispersion:

σGSR,∗(r) = σr,∗(r)
√

1− βH(r) (5.40)

Where

H(r) =
r 2 + R2

�

4r 2
− (r 2 − R2

�)2

8r 3R�
ln

r + R�
r − R�

(5.41)
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Alternatively,

M(r) = − rσ2
r

G

[
d ln ν

d ln r
+

d lnσ2
r

d ln r
+ 2β(r)

]
(5.42)
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Still, there are further complications. Namely, the two ingredients are
uncertain

• the behavior of the stellar velocity anisotropy

• stellar halo density profile at large radii
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The Virial Theorem

We have obtained the first moment of CBE by multiplying it through
by vj and integrating over all velocities. This allowed us to reduce an
equation for 6D distribution function f to an equation for 3D density
ν and the velocity moments:

∂

∂t
(νv j) +

∂

∂xi
(νvivj) + ν

∂Φ

∂xj
= 0 (5.43)

Now, let us multiply the above equation ↑ by xk and integrate over all
positions, converting these differential 1st moment equations into a
tensor equation relating the global properties of the galaxy such as
kinetic energy.∫

d3xxk
∂(ρv j)

∂t
= −

∫
d3xxk

∂(ρvivj)

∂xi
−
∫

d3xρxk
∂Φ

∂xj
(5.44)
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The Virial Theorem
Potential-energy tensor

�
�

�
�∫

d3xxk
∂(ρv j )

∂t
= −

∫
d3xxk

∂(ρvi vj )

∂xi
−
∫
d3xρxk

∂Φ
∂xj

By definition, the Chandrasekhar potential-energy tensor:

Wjk ≡ −
∫

d3xρ(x)xj
∂Φ

∂xk
(5.45)

Also, by definition:

Φ(x) ≡ −G
∫

d3x
′ ρ(x

′
)

|x′ − x|
(5.46)

Which makes W on substituting Φ:

Wjk = G

∫
d3xρ(x)xj

∂

∂xk

∫
d3x

′ ρ(x
′
)

|x′ − x|
(5.47)
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The Virial Theorem
Potential-energy tensor�

�
�
�∫

d3xxk
∂(ρv j )

∂t
= −

∫
d3xxk

∂(ρvi vj )

∂xi
−
∫
d3xρxk

∂Φ
∂xj

Taking the differentiation inside the integral, re-labeling the dummy
variables x and x

′
and writing Wjk twice, we get:

Wjk = −1

2
G

∫
d3x

∫
d3x

′
ρ(x)ρ(x

′
)

(x
′
j − xj)(x

′
k − xk)

|x′ − x|3
(5.48)

Therefore, W is symmetric, i.e. Wjk = Wkj . Taking the trace:

trace(W) ≡
3∑

j=1

Wjj = −1

2
G

∫
d3x ρ(x)

∫
d3x

′ ρ(x
′
)

|x′ − x|

=
1

2

∫
d3x ρ(x) Φ(x)

(5.49)

This is the total potential energy of the body W ,

W = −
∫

d3x ρ x∇Φ. (5.50)
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The Virial Theorem
Kinetic-energy tensor

�
�

�
�∫

d3xxk
∂(ρv j )

∂t
= −

∫
d3xxk

∂(ρvi vj )

∂xi
−
∫
d3xρxk

∂Φ
∂xj

With the help of divergence theorem:∫
d3xxk

∂(ρvivj)

∂xi
= −

∫
d3xδkiρvivj = −2Kkj (5.51)

Here we have defined the kinetic-energy tensor:

Kjk ≡
1

2

∫
d3xρvjvk (5.52)

Remembering that σ2
ij ≡ (vi − v i )(vj − v j) = vivj − vi vj , contributions

from ordered T and random Π motion:

Kjk = Tjk +
1

2
Πjk , Tjk ≡

1

2

∫
d3xρv jv k , Πjk ≡

∫
d3xρσ2

jk (5.53)
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The Virial Theorem�
�

�
�∫

d3xxk
∂(ρv j )

∂t
= −

∫
d3xxk

∂(ρvi vj )

∂xi
−
∫
d3xρxk

∂Φ
∂xj

Taking the time derivative outside and averaging the (k, j) and the
(j , k) components of the above equation ↑

1

2

d

dt

∫
d3xρ(xkv j + xjv k) = 2Tjk + Πjk + Wjk (5.54)

where we have taken advantage of the symmetry of T,Π,W under
exchange of indices
If we define moment of inertia tensor

Ijk ≡
∫

d3xρxjxk and
dIjk
dt

=

∫
d3xρ(xkv j + xjv k) (5.55)

Tensor Virial Theorem

1

2

d2Ijk
dt2

= 2Tjk + Πjk + Wjk (5.56)
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The Virial Theorem

• The theorem is derived for collisionless systems, but can be
proven for self-gravitating collisional systems too.

• This is the equation of energy balance in systems in equilibrium
under gravity.

• Can be extended to include energy from turbulence and
convective motions, magnetic energy etc�

�
�
�1

2

d2Ijk
dt2 = 2Tjk + Πjk + Wjk

In a steady state Ï = 0, the trace of the Tensor Virial Theorem
equation above is:

Scalar Virial Theorem

2K + W = 0 (5.57)

where

K ≡ trace(T) +
1

2
trace(Π) (5.58)
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Curiously, if E is the energy of the system then

E = K + W = −K =
1

2
W (5.59)
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The Virial Theorem

The kinetic energy of a stellar system with mass M where stars move
at mean-square speed 〈v 2〉 is

K =
1

2
M〈v 2〉 (5.60)

The virial theorem states that:

〈v 2〉 =
|W |
M

=
GM

rg
(5.61)

This is the fastest way to get the mass of the system! Here the
gravitational radius rg

rg ≡
GM2

|W | (5.62)

For example, for a homogeneous sphere of radius a and density ρ, the
potential energy:

W = −16π2

3
Gρ2

∫ a

0

drr 4 = −16

15
π2Gρ2a5 = −3

5

GM2

a
(5.63)

And rg = 5
3
a
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The Virial Theorem
Applications Virial Theorem

• Despite the elegance of the Virial Theorem, its applications are
not straightforward.

• This is because neither 〈v 2〉 or rg are readily available for most
systems.

• Instead of 〈v 2〉, the line of sight velocity dispersion 〈v 2
‖〉 is used.

• And isotropy is assumed (not going to work in many situations)

〈v 2〉 = 3〈v 2
‖〉

• Instead of gravitational radius rg the rough extent of the system
is used

• or use the so-called half-mass radius rh obtained by integrating
light and assuming mass/light ratio. It can be shown that for
variety of systems rh/rg ∼ 1

2

See Eddington (1916). Einstein (1921) used the Virial Theorem to
estimate the mass of globular clusters.
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The Virial Theorem
Coma Cluster

AKA Abel 1656, D ∼ 100 Mpc, N > 1000 galaxies
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