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Rotation in a disk galaxy is the obvious example of such orbit.
Given a central force fr due to a fixed potential Φ, we have

r̈ − r φ̇2 = fr = −dΦ

dr
(3.1)

r 2φ̇ = h = constant (3.2)
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Circular and Nearly Circular Orbits�� ��r̈ − r φ̇2 = fr = − dΦ
dr 3.1

�� ��r2φ̇ = h = constant 3.2

For a circular orbit r = R =constant and φ̇ = Ω =constant.
Then (3.2) is satisfied trivially, and (3.1)⇒

RΩ2 = −fr =
dΦ

dr

∣∣∣∣
r=R

(3.3)

so if Φ = −GM
r

, then

RΩ2 =
GM

R2
⇒ Ω =

(
GM

R3

) 1
2

and the period

T =
2π

Ω
= 2π

√
R3

GM

From the earlier Keplerian orbit discussion, R = a = the radius of the
orbit, or the separation between the two stars for a binary system with
circular orbits.
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Now consider an orbit which is nearly circular, so we take

r = R + ε(t) with ε << R

and
φ̇ = Ω + ω(t) with ω << Ω

If we choose to characterize orbits by their angular momentum, we
keep the angular momentum unchanged, and the (3.2)⇒

h = R2Ω = (R + ε)2(Ω + ω)

= (R2 + 2Rε)(Ω + ω)

= R2Ω + 2RεΩ + R2ω (3.4)

if we retain only terms to first order. Therefore

Rω = −2εΩ (3.5)
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Circular and Nearly Circular Orbits�� ��r̈ − r φ̇2 = fr = − dΦ
dr 3.1

�� ��RΩ2 = −fr = dΦ
dr

∣∣
r=R

3.3

Now, using (3.1) and retaining only terms to first order, the
perturbation’s behaviour is described by:

ε̈− (R + ε)(Ω2 + 2Ωω) = f (R + ε) (3.6)

ε̈− RΩ2 − εΩ2 − 2RΩω = f (R) + εf ′(R) (3.7)

RΩ2 = −f (R) from (3.3), and using (3.5) −2RΩω = 4εΩ2, so we
have

ε̈+ 3εΩ2 = εf ′(R) (3.8)

or ε̈+
(

3Ω2 − f ′(R)
)
ε = 0 (3.9)

This is stable simple harmonic motion if Ω2
R = 3Ω2 − f ′(R) > 0 so,

using (3.3), if

f ′(R) + 3
f (R)

R
< 0⇔ d

dR
(R3f ) < 0

e.g. f (R) ∝ −R−n is stable only if n < 3 i.e. unstable if potential is
steep.
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Precession

To a first approximation, a particle circles the origin with a period
T = 2π/Ω.
It executes radial motion with a period Tr = 2π/ΩR where
Ω2

R = 3Ω2 − f ′(R).
In general ΩR 6= Ω, so the orbit is not closed.
The orbit is like an ellipse which rotates (or precesses) with a period
2π/Ωp where Ωp = Ω− ΩR

In general for galaxies precession is retrograde (i.e. opposite to the
rotation direction of the stars) since Tr is usually less than Tφ. We’ll
see why later, but the basic results are for a harmonic (uniform
density) model ∆φ = π in one radial period, and for Keplerian orbits
∆φ = 2π in one radial period, and real galaxies fall between these
extremes

For Keplerian potential f (R) = −GM
R2 , Ω2 = GM

R3 and f ′(R) = 2GM
R3 , so

Ω2
R = 3Ω2 − f ′(R) = GM

R3 = Ω2, so the orbits are closed.

Note: Often Ω2
R is written K 2, and K called the epicyclic frequency.

7 / 31



Galaxies Part II

Circular and Nearly
Circular Orbits

Precession

Epicyclic approximation

Example: pseudo black
hole potential

More general potentials

Another look at circular
orbit stability

Bar and spiral wave

Epicyclic approximation

Move to a frame in which the unperturbed particle is at rest, with the
coordinates in the direction of rotation and in the radial direction.
This is necessarily a rotating frame.
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Epicyclic approximation

r = R + y

Rφ̇ = RΩ + ẋ

so
y = ε

ẋ = Rω = −2εΩ

The second equality from the conservation of angular momentum
Rω = −2εΩ.
So can use relation ε̈+

(
3Ω2 − f ′(R)

)
ε = 0, which becomes

ÿ + K 2y = 0
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Epicyclic approximation

so if we take y = −b cos(Kt), ẋ = 2Ωb cos(Kt), so

x =
2Ωb

K
sin(Kt) = a sin(Kt)

defines a, and then
x2

a2
+

y 2

b2
= 1

⇒ motion is an ellipse which moves retrograde at frequency K and is
such that b = K

2Ω
a

For Keplerian potential K = Ω so b = a/2
[For harmonic potential (to come) K = 2Ω so b = a]
In general epicycle is elongated along tangential direction.
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Epicyclic approximation

Quasi-circular orbits when the ratio of angular to radial frequency is rational (3/2,

upper left; 2/3 lower left; 4, upper right; 1/4, lower right).
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Epicyclic approximation
Example: pseudo black hole potential

Φ(r) = − GM

r − Rs

f (r) = −dΦ

dr
= − GM

(r − Rs)
2

For a circular orbit Ω2
c = − f (R)

R
so

Ω2
c =

GM

R (R − Rs)
2

Also

f ′(R) =
2GM

(R − Rs)
3

so

K 2 = 3Ω2 − f ′(R) =
3GM

R (R − Rs)
2 −

2GM

(R − Rs)
3
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Epicyclic approximation
Example: pseudo black hole potential

Stable circular orbits are those for which K 2 > 0, so require

3 (R − Rs)
3 > 2R (R − Rs)

2

so for R 6= Rs

3 (R − Rs) > 2R

or
R > 3Rs

This is reminiscent of a Schwarzschild black hole: Rs = 2GM
c2 .
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More general potentials
Axisymmetric Potentials

In most of the things we are interested in, the density distribution is
not always (or even often) spherically symmetric, but it may be
approximately axisymmetric. In such cases we use cylindrical polar
coordintes (R, φ, z).
If ρ = ρ(R, z), then Φ(r) = Φ(R, z).
Often also have plane symmetry, where ρ(R, z) = ρ(R,−z) (with
choice of origin in the plane of symmetry of course).
e.g. Spheroidal galaxy, or central bulge in a spiral
thin disk
and so, by addition, get the full galaxy potential
or fast rotating planet (Jupiter, Saturn) has equatorial bulge
or even the time averaged potential of the moon (for the study of long
timescale effects)
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More general potentials
Axisymmetric Potentials

So we have to consider orbits in axisymmetric potentials, where there
is no φ-dependence so Φ(R, φ, z) = Φ(R, z).
The force

F =

(
−∂Φ

∂R
, 0,−∂Φ

∂z

)
Since there is no force in the φ direction, the angular momentum
about the z-axis Lz is constant, so the equation of motion becomes

R̈ − Rφ̇2 = −∂Φ

∂R
(3.10)

R2φ̇ = Lz (3.11)

z̈ = −∂Φ

∂z
(3.12)
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More general potentials
Axisymmetric Potentials

We can remove the φ̇ term from the first two to obtain

R̈ = −∂Φ

∂R
+

L2
z

R3
= −∂Φeff

∂R
(3.13)

where

Φeff = Φ +
L2
z

2R2

and since Lz
2R2 is independent of z ,

z̈ = −∂Φeff

∂z
(3.14)

So we have reduced a 3D problem to a 2D one.
In astronomical situations we also have plane symmetry, so
Φ(R, z) = Φ(R,−z).
General orbits are complicated, and beyond the scope of this course
(but see Part III). We will deal with circular and nearly circular orbits
close to the z = 0 plane.
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More general potentials
Circular orbits in the z = 0 plane

Look for solution z = 0, R = Rc =constant, φ̇ = Ω =constant.
Equation (3.14) is satisfied because ∂Φ

∂z
= 0 at z = 0, from the plane

symmetry condition.
Equation (3.13)⇒

L2
z

R3
=
∂Φ

∂R

Since R2
c Ωc = Lz , then

Ω2
c =

1

R

∂Φ

∂R

∣∣∣∣
R=Rc

as before.

18 / 31



Galaxies Part II

Circular and Nearly
Circular Orbits

Precession

Epicyclic approximation

More general potentials

Circular orbits in the
z = 0 plane

Nearly circular orbits
close to the z = 0 plane

Another look at circular
orbit stability

Bar and spiral wave

More general potentials
Nearly circular orbits close to the z = 0 plane

Stars on orbits in the plane in a flattened potential have no way of
perceiving that the potential they are moving in is not spherically
symmetric. Therefore our deductions apply: star oscillates between
two extrema in the radial coordinate.

What happens to stars whose orbits carry them out of the plane?

R = Rc + x , and z = z , with x , z << Rc .
At z = x = 0, we have
∂Φeff
∂z

= 0 from symmetry, and
∂Φeff
∂R

= 0 since R̈ = 0 = ∂Φeff
∂R
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We can expand the function Φeff about z = x = 0 to obtain

Φeff(Rc + x , z) = Φeff(Rc , 0) + x
∂Φeff

∂R

∣∣∣∣
(Rc ,0)

+ z
∂Φeff

∂z

∣∣∣∣
(Rc ,0)

+
x2

2!

∂2Φeff

∂R2

∣∣∣∣
(Rc ,0)

+
2xz

2!

∂2Φeff

∂R∂z

∣∣∣∣
(Rc ,0)

+
z2

2!

∂2Φeff

∂z2

∣∣∣∣
(Rc ,0)

(3.15)

The linear terms are zero from the considerations above, and the cross
term (xz) coefficient is also zero from the plane symmetry.
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Thus, from (3.13) (R̈ = − ∂Φeff
∂R

)

ẍ = −∂Φeff

∂x
= −x ∂2Φeff

∂R2

∣∣∣∣
(Rc ,0)

and from(3.14)

z̈ = −∂Φeff

∂z
= −z ∂2Φeff

∂z2

∣∣∣∣
(Rc ,0)
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Therefore the equations become

ẍ = −K 2x

- the epcyclic frequency, and

z̈ = −V2z

- the vertical frequency.
Here

V2 =
∂2Φ

∂z2

∣∣∣∣
(Rc ,0)

and

K 2 =
∂2Φ

∂R2

∣∣∣∣
(Rc ,0)

+
3L2

z

R4
c
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But

Ω2
c(R) =

1

R

∂Φ

∂R
=

L2
z

R4
c

⇒
K 2 =

(
R
∂Ω2

∂R
+ 4Ω2

)∣∣∣∣
(Rc ,0)

[See example sheet 2].
Thus there are two types of precession - radial precession (or rotation
of pericentre, as before) Ωp = Ω− K , and vertical or nodal precession
Ωz = Ω− V. The orbit is in a tilted plane which rotates at rate Ωz .
A node is the place where the orbit crosses the z = 0 plane upwards
(by convention, also called the ascending node).
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Binney and Tremain, Fig 3.4 Orbits in axisymmetric potential.
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Special arrangements of epicycles

a - bar (aligned azimuthal/radial = 1/2 resonance)
b - 2 arm spiral (offset 1/2 resonance)
c - 3 arm spiral (offset 2/3 resonance)
d - 4 arm spiral (offset 1/4 resonance)
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from D’Onghia et al 2013
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Swing amplification
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