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Potentials from density distribution

Poisson’s Equation

Poisson’s equation relates p(r) to ®(r).

To determine the force due to a given density distribution p(r’) we
split it into many point masses of size

dm' = p(r')d* at r’

Newtonian gravity is linear, so just add up the forces

or since we want the total potential add up the individual contributions

Gdm'

f(r)=— P
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As an exercise, show that V,‘r% =
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and hence f(r) = = Vo
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=[] e ()
= need V2 (—l)

To keep the algebra simple move the origin to r’ (and move back later)

for those who want everything in full generality, see Binney
& Tremaine

So we need V*(1). For r # 0,

(1 _ 19 [2d (1)] _g
v (r)i 2 {r o (r)} =0 trivially
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Poisson’s Equation

But at r = 0 V(1) is undefined.
[You’ve seen that sort of thing before. Recall that the Dirai

-function §(x) satisfies [©_&(x)dx =1

So now ask: what is the volume integral of VQ( ) over a small volume
V' containing the origin?

/// ( )d3‘/ = /// [ ( )]d3V by definition
flal@les e

[Divergence theorem (A - outward normal) [, d*xVF = [ ﬁF]
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Poisson’s Equation

Take V to be a sphere, so it = ¢, d°S = r?sin0d0d¢, and have
V(1/r) = —%%. Then

///\/vz(%>d3v = —/Ohdqﬁ/oﬁsineda

= 47 (2.2)

Since the integral is —4m, and is non-zero only at r = 0, we must

therefore have
v’ (%) = —4md(r)

or, going back to the general origin,

¥ (2e) = 4ot 0)

6

4
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Hence

Potentials from density distribution

Poisson’s Equation

o fae (525)
4wG///p(r')5(r—’/) d’r’

47 Gp(r)

V2o(r) = 4nGp(r)

Poisson’s Equation

(2.3)
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Gauss's Theorem

Application of the Divergence Theorem to the Poisson’s
Equation

“The integral of the normal component of V& over any closed surface
equals 47 G times the mass enclosed within that surface”

To prove this simply take Poisson's equation and integrate over a
volume V containing a mass M.

47rG/pd3r=47rGM = /V2<I> d*r
= /v-v¢ d*r
= /v¢-ﬁ d’s (2.4)

where the last step follows from the divergence theorem.
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Edwin Hubble's classification of galaxies

EXTRA-GALACTIC NEBULAE*
By EDWIN HUBBLE

ABSTRACT
This contribution gives the results of a statistical investigation of 400 extrs
galactic nebulae for which Holeischek: has determined total vioal magnitudes, The et
i complete for the brighter nebulae in the northern sky and is representative 10 12.5
mag. or
‘The dassifcation employed. is based.on.the forms of the photographic images.
About 5 per cent are fregula, but the remaining nebulae full into & sequence of type
rms characterized by rotational symmetry about dominating nuclei. The sequence
e:m':p:sed of two soetions, the ciiprical ébtiat and. the pials, which meres fnte
each other.
me relations—The distribution of magnitudes appears to be uniform
ughout e sa}uence For each type or stage in the sequence, the total magnitudes
e logarithms of the maximum diameters by the formula,

mg=C—slogd,

Astrophysical Journal, 64, 321-369
(1926)
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classification of galaxies 1I. Ext]'a—gﬂ.lﬂ,cti{: nebu]a.e:

Deriving potentials of

spherical systems A. Regular:
Profiles and potentials N.G.C. 3379 Eo
1. Elliptical. .. ........... ... ool En 221 Ez2
s Lo 4621 Eg
(n=1, 2, . ..., 7 indicates the ellipticity 2117 Ey
of the image without the decimal point)
2. Spirals: Symbol Example
a) Normalspirals. . .................. S
() Early........................ Sa N.G.C. 4504
(2) Intermediate.................. Sh 2841
(3) Late. .. ..., Sc - 5457
b) Barredspirals..................... SB
(1) Barly......................... SBa N.G.C. 2859
(2) Intermediate..................SBb 3351
(3) Late. .. ... ... .. ........... SBc 7479
B. Irregular........ ... i, Irr N.G.C. 3440
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Early Types

EO NGC 3379

E5 NGC 4621 (M59)

P o T
E2 NGC 221 (M32)

ET NGC 3115

Fundamental plane exists that ties surface brightness, size and LOS
velocity dispersion

11/41
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Spirals

SBb NGC B850 .
Tully-Fisher law exists that ties together circular speed and luminosity
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Irregulars
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S0

The Tuning Fork

~Sc

.

AR

Irr

~SBc

14/41



Galaxies Part I

Poisson’s Equation
Gauss’'s Theorem

Edwin Hubble's
classification of galaxies

Deriving potentials of
spherical systems

Edwin Hubble's classification of galaxies
The Three Pioneers

Albert Einstein, Edwin Hubble, and Walter Adams in 1931 at the
Mount Wilson Observatory 100" telescope, in the San Gabriel
Mountains of southern California.
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Galaxy Luminosity Function

Equation

auss’s Theorem 100 T T T T = T T T .
Edwin Hubble’s E ES El
classification of galaxies [ Coma {10,/13,2/0/%5) + virge (6/9/25/15/45) 4
Deriving potentials of [ T ]

10 | r 4

d(M) = 3
E 1 ]

100 £ =

10 | 4

1B 4

F, ]

In any environment, dwarfs dominate!
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In spherical polars

V20(r) = 1d <r21¢)_ 1d° (r0)

rrdr\’ dr ) rdr

{Exercise: show the last equality is trueJ

So
V20 = 4nGp
becomes )
1d
g (r®) = 4nGp,

and, given p we can solve for ®(r).

17 /41
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Deriving potentials of spherical systems

Homogeneous Sphere

(a) Homogeneous sphere: p(r) = po for 0 < r < ro, and p(r) = 0 for

r>n.
So for r < rp, have

1d?
;ﬁ(”ﬁ)

d2
e (ro)

d
I (ro)
ré

o(r)

47 G po

4 Gpor
2rGpor® + A

2 3

ngpor + Ar+ B

%WGpor2—|—A+€ (2.5)

18 /41
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Require that & is finite at r = 0, else there is a point mass there, and
so B=0.
= ®(r) = 27Gpor® + Afor 0 < r < ro.

For r > ry have

1d°

ran (re) =0
=rdb=Cr+D
o(=c+?

WLOG ! let @ — 0 as r — oo (this is just choosing the zero point of
the potential).

:>d>(r):$ for n < r

'WLOG=Without Loss Of Generality

19/41
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Deriving potentials of spherical systems

Homogeneous Sphere

s

o(r)=2 forrn <r|

‘@(@,%:Gp;‘/’)+/\for0' r< m“

Also require  to be continuous at r = ry, since V®=force is finite
do

there, and 22 also continuous (else V>® = 47Gp is infinite there).

= %ﬂGporg + A= Q

]
and 4 D
gﬂ'Gporo = 7%
= 4
D= —wapor(‘;’
3
and

A= —27'eror§

20/41
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Deriving potentials of spherical systems

Homogeneous Sphere

Hence

Potential of a homogeneous sphere

2
(D(r) = §7’er0([’2 = 3[’5) 0<r<n
4 3
= —§7eror0/r o <r (2.6)
Note: Outside the sphere ® = — G:V’ as expected, where M = %Trporg.

Newton's 2nd theorem: “Outside a closed spherical shell of matter,
the gravitational potential is as if all the mass were at a point at the
centre”

21/41
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Deriving potentials of spherical systems
Spherical Shell

(b) Spherical shell p(r) = po for 1 < r < r» and p(r) = 0 otherwise.
Newtonian gravity is linear, so this is the same as
(1) a uniform sphere density po, radius r»
PLUS
(2) a uniform sphere density —po, radius ri.
So we can write the answer down. It is

2 2
o(r) = §7TG,oo(r2 —313) — §7ero(r2 —3f) 0<r<n
2 4
= g7er0(r2 —31)+ ngporf/r n<r<nm

4 4
= —gﬂGporf/r—i— §7eror13/r R <r (2.7)
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Deriving potentials of
spherical systems Notes-

(1) Inside the cavity 0 < r < n:
2 2 2 2 2 2
d(r) = EwGpol(r - 3r2)2— smGpo(r® —3n) .
® =constant since the r° terms cancel. Therefore there is no force due
to an external spherically symmetric mass distribution

[ Newton's first theorem J

(2) Outside the shell r > r;: ®(r) = —27xGpors /r + 37Gpori /1

GMshell
r

b =

where Mgpen = %7rpo(r23 — 1) is the mass in the shell

23 /41
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Deriving potentials of spherical systems
Shells Galore

Since Newtonian gravitational potentials add linearly, we can calculate
the potential at r due to an arbitrary spherically symmetric p(r) by
adding contributions from shells inside and outside r.

Mass in shell of thickness dr’ and radius r’ is

47rr/2p(r')dr'

The potential inside a shell is constant, so we can evaluate it
anywhere - easiest is just inside the shell, where

4nGr'?p(r')dr’
r/

b =

(from —GM/r).
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Deriving potentials of
spherical systems

Thus, at any r, we have:
Profiles and potentials

o(r) = 47;6 2p(r')d. 47rG/

where the first term is from shells inside r, and the second from shells
outside r (to get ®(o0) = 0).

Potential of an arbitrary spherical distribution

o(r) = —47G [% /0 "2 ) + / h r’p(r’)dr’] (2.8)

25 /41
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If a galaxy has a spherical luminosity density

) . e\ 3

J(r) = (1 + (;) ) (2.9)
then the surface brightness distribution is the projection of this on the
plane of the sky

KM:2AwﬂAﬁ (2.10)

Now r? = R? + 22, so

umz%lw

1+ <§)2 + (;)2] B dz (2.11)

26 /41
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Let y = z/v/a2 + R?, and then
(5 R - )

(2.12)
2 2
= I(R) = 210( ' ) TyetRy (2.13)
a2 + R? 1+y
dy
=2 2.14
J02+R2/ (1+y)% ( )

Can be evaluated by setting y = tan x, so dy = sec®x dx, and the
integral becomes

™ s

) x
/2M:/2c05xdx:sinﬁ—sin0:1 (2.15)
0 (sec?x)z 0 2
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and hence

/(R):2/Oooj(z)dz = 210/000 1+(’§)2+(§

. a i dy 2joa
2jo 2 2 i 2
PERL 1y 14 (%)

(2.16)

dz

~—
)
—
|
rlw

This profile is quite a good fit to elliptical galaxies - it is similar to the
Hubble profile.

Now ask: assuming a fixed mass-to-light ratio T, what is the
potential?

Assume

p(r)=—"" (2.17)

where po = Tjo.

4
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sphirca demsry Let’s use Poisson’s equation V2® = 471Gp = j—:zr¢ =4nGrp
1 d° por
= 9 ) = _POT
47 G dr? (r®) 2\ 3
(1+2)
rdr
47TG7I’(r¢) - po/ 2\ 3
(1+2)
2 2
_ pea / 2r dr/a (2.18)
2 ) 1+ r/a2):

Let u=1+r*/a* then du = Zdr

29 /41
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And so
1 d poa’ du
= " (rp) = K< ==
anG dr ) 2 us
1
2 2\ T2
o poa r
Then

A ;/L
4G po Vvaz+r?

Then we have the fairly standard integral

= In(2v/a% + x2 4 2x) or sinh ™" (g)

/ dx
N

(2.19)

(2.20)

(2.21)

4
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So
4’¢G = Ar+ B — ppa’In(23/2 + 12 + 2r) (2.22)
s
B = poa’ In(2a) as otherwise 1/r — oo as r — 0 [i.e. no point mass
at origin].

® =47GA — 4nGpoa (2.23)

3In(2v/a? + r2 4+ 2r) — In(2a)
r

Note that we can choose A =0, and then ® — 0 as r — oo (but more
slowly than % due to infinite total mass).
The total mass within r is

" Awporidr
M(r) = / % (2.24)
0 (1+ 72)

This is o< In r for large r, so diverges as r — oo.
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o) =p0 ()"

d2

ﬁ(rd)) = 47eroaar17°‘
so
2—a

+A

d ot
E(rd)) =47Gpoa 3

(2.25)

(2.26)

(2.27)
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3—a

r
b =4 e 1A B 2.2
r wGpoa (2—a)(3—a)+ r+ (2.28)

or
_ 47 Gpoa® r—©
B-a)(a—2)

A = 0 by setting zero, and B = 0 because no point mass at centre as
usual.

d = +A+ 5 (2.29)

33/41
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Notes:

(1) o < 3 to get M(r) finite at the origin (determine [ 47w Gpr’dr near
origin).

2P —0atooifa>2,

=>2<a<3
«a = 2 gives spiral rotation curves (flat), from
V2/r= @ =—f)=>vioxre.
[C|rcular motlon = F & F=0,s0F—r¢’° =—92 becomes, with
2
vc = rqS = ‘3—‘:’. Then substituting ® from equation (2.29) gives

v2 o P ]
a = 3 gives elliptical galaxy profiles (mod. Hubble profile)
but all these models have infinite mass, since M(r) diverges at large r
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Projected density — spherical density

What we have done so far is to guess a luminosity density j(r) (which

we assume is proportional to the matter density p(r)) and formed the
projected surface brightness /(R) using the relation

I(R) = 2 : % (2.30)

and then check that /(R) is a reasonable approximation to what is
seen for our guessed density distribution.

r2:x2—|—R2

dx rdr

r2 — R2

>

35/41
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spherical density OK so
< j(r)rdr
I(R)=2 ——
R=2] Vr—r
In fact, if I(R) is known, then the equation above may be inverted to
yield j(r) directly, to yield

() _ L d [~ IRRR
I = 2xrdr J, RZ_r2

This is not quite pulled out of the air - it is a form of Abel's integral
equation.

(2.31)

36 /41
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We can simplify the form a bit if we set t = R? and x = r?, and then

we have ~ i(x)d
_ J(x)dx
") = /t (x — t)%

and then the inverse relation quoted becomes

oy Ld o (t)dt
i) /y ( 1

m dy t—y):

If we look just at the RHS, and call it h(y) for the moment, this is

_1d (= dt > j(x)dx
)= wdy/y (t—y)%/t (x— )}

hy 7;d7y/t'y/‘xt(t—dtj )&—t)i

or
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We now switch the order of the integration, remembering when doing
so to change the limits of the integration so that we are integrating
over the same area in the (x, t)-plane.

1d [*. x dt
h(Y):—;jy | J(X)dx/y m

[ e
v (t=y)i(x—t)?

and so what we called h(y) is then seen to be equal to j(y). So the
result follows.

The integral
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[The statement that

X dt
S = ———F =T
/y (t—y)2(x—t)2

needs a bit more justification, or you can take it on trust.... For those
who don't, we first change variables so the lower limit is zero, so

z=1t—y, and then
S= / P
(x— fz)zzz

This invites yet another change of variables so that the upper limit is
Lie (=% =(x—y)=x—y-—z=Kx-y)(1-0)=

—y)d¢
S= 1.1
/ (x—y (1—<) (x—y)2¢2

39/41
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So

Projected density — spherical density

1 d<
S = -5
/0 (1-¢)2¢?

o (¢—¢2)3

du

Il

I

NI
S
ISt

|
c

N

1

Il
\\H
ENT| NN
s
bh\,

(2.32)
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Then since we know

ia]rcsin{- _
dé /1—¢2
we have
/1 L— arcsinv|1 _z-‘rz_ﬂ'
V1= 172 T2

4141
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