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Collisions
Do we have to worry about collisions?

Collisions

Model requirements

Globular clusters look densest, so obtain a rough estimate of collision

timescale for them
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Collisions in globular clusters
The case of NGC 2808

Collisions
Model requirements

po ~ 8 x 10* Mg pc3

M, ~ 0.8 Mg.

= np ~ 10% pc3 is the star number density.

We have o, ~ 13 km s~ ! as the typical 1D speed of a star, so the 3D

speed is ~ /3 X 0, (= \/02 + 0} +02) ~ 20 km s™*.

Since M, x R, (see Fluids, or Stars, course notes), have R, ~ 0.8Rg.
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Collisions
Model requirements

Collisions in globular clusters
The case of NGC 2808

For a collision, need the volume 7(2R.)?ct.on to contain one star, i.e.

no=1/ (W(QR*)zatcou) (1.1)

or
teon =1/ (47TR§0"70) (1.2)

Putting in the numbers gives teon ~ 10 yr.
So direct collisions between stars are rare, but if you have ~ 10° stars
then there is a collision every ~ 108 years, so they do happen.

Note that NGC 2808 is 10 times denser than typical

So, for now, ignore collisions, and we are left with stars orbiting in the
potential from all the other stars in the system.
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Collisions

Model requirements

Model requirements

Model (e.g., a globular cluster) just as a self-gravitating collection of
objects.

Have a gravitational potential well ®(r), approximately smooth if the
number of particles >> 1. Conventionally take ®(c0) = 0.

Stars orbit in the potential well, with time per orbit (for a globular
cluster) ~ 2R, /o ~ 10° years << age.

Stars give rise to ®(r) by their mass, so for this potential in a steady
state could average each star over its orbit to get p(r).

The key problem is therefore self-consistently building a model which
fills in the terms:

®(r) — stellar orbits — p(r) — ®(r) (1.3)

Note that in most observed cases we only have Viine of sight (R), so it is
even harder to model real systems.

6
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

The law of attraction

[Newton's laws of motion and Newtonian gravity

GR not needed, since

® 10 kM <« ¢ <10® K s << c =3 x 10° km

o M1

The gravitational force per unit mass acting on a body due to a mass

M at the origin is

(1.4)

(1.5)
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The corresponding potential

Newton's law
Orbits
Orbits in spherical

otentials
: So

Equation of motion in

two dimensions f=-Vo (1.6)

Path of the orbit
Energy per unit mass

el s where @ is a scalar,

Unbound orbits

R —
® = &(r) = —GTM (1.7)

Hence the potential due to a point mass M atr =r; is

GM

=l

O(r) = (1.8)
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Before we start modelling
stellar systems

Basics

Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Binary star orbits

General orbit under radial
force law

Density vs Potential

Potential
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From Hayashi et al, “The shape of the gravitational potential in cold dark matter haloes”
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Orbits

Particle of constant mass m at position r subject to a force F.
Nt e Newton's law:

Orbits d .
Orbits in spherical at (mf)=F (1.9)
potentials

Equation of motion in .

two dimensions 1.€.

Path of the orbit .
mi =F (1.10)

Energy per unit mass

Kepler's Laws

Unbound orbits If F is due to a gravitational potential ®(r), then

Escape velocity

F=mf=-mVd (1.11)
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Escape velocity

Orbits

Particle of constant mass m at position r subject to a force F.
Newton's law:

% (mb) = F (1.9)
mi = F (1.10)

If F is due to a gravitational potential ®(r), then
F=mf=—mVo (1.11)

The angular momentum about the origin is H = r x (mf). Then

dH r x (m¥) + mr x ¢
dt

= rxF

= G

(1.12)

where G is the torque about the origin.
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Energy

The kinetic energy

T = %mt"-i (1.13)
c;—::ml"-i‘:F-i' (1.14)
If F= —mV®, then
dT !
i —mi - V&(r) (1.15)
But if ® is independent of t, the rate of change of ® along an orbit is
9 o(r) = Vo i (1.16)
dt N '
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Energy

The kinetic energy

(1.13)

(1.14)

(1.15)

(1.16)

T = %mi’ r
T ;
i,—t =mr-r=F-r
If F= —mV®, then
% — —mi-Vo(r)
But if ® is independent of t, the rate of change of ® along an orbit is
%Cb(r) =Vo-r



Energy

Hence dT d
d (1. .
= ma <§r-r+ d)(r)) =0 (1.18)
0 (1.19)

2

The total energy is constant for a given orbit
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Orbits

Hence

Energy
dT d
s —mECD(r) (1.17)
d (1. .
=m— (ir-r + Cb(r)) =0 (1.18)
S E= Yt o) (1.19)

2

The total energy is constant for a given orbit
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Newton’s la
Orbits

Orbits in spherical
potentials

Orbits in spherical potentials

O(r) = d(Jr|) = ®(r), so f = —Vb = —¢92

dr -
The orbital angular momentum H = mr x r, and
%:rxmf:—m%rx?:& (1.20)

So the angular momentum per unit massh=H/m=rxrtis a
constant vector, and is perpendicular to r and ¢

= the particle stays in a plane through the origin
which is perpendicular to h

{Check: r L h, r46r=r+i5t L hsince both rand F L h)

so particle remains in the plane

Thus the problem becomes a two-dimensional one to calculate the
orbit use 2-D cylindrical coordinates (R, ¢, z) at z = 0, or spherical
polars (r,0, ) with 6 = 7.

So, in 2D, use (R, ¢) and (r, ¢) interchangeably.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial and
angular terms, using r = rt = r&, + 084, so r =(r,0).

We know that

and

d .
—&, = ¢é 1.21
& = % (1.21)
d ., Pa
8= — P&, (1.22)
y b ”
r
x=rcosd y=rsind
/
X
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial and
angular terms, using r = rt = r&, + 084, so r =(r,0).

We know that

and

o>
o @
(.

o>
g

%lag|a
<

>

cos(¢p)éx + sin(p)é,
—sin(¢)éx + cos(¢)é,

- sin(¢)q5_éx + cos(¢>)gz:5éy
— cos(@)ge. — sin(¢) 8,

(1.21)
(1.22)
y $ A
F
x=rcosd y=rsind
7
X
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Equation of motion in two dimensions

Hence
Newton's law = A ~
Orbits r=ré + rgé, (1.23)

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit and so

Energy per unit mass
Kepler's Laws

Unbound orbits P o= P8 + g8y + FdBy + rdey — ré’e,
Escape velocity
.. SO A 1d ( 2 ) N
r—r e ——\r e
(F—rdT)e + o (r9)&s

a=[F- rgi.)Q, %% (r2¢)]

(1.24)

In general f =(f,,f;), and then f, = ¥ — r¢?, where the second term is

the centrifugal force, since we are in a rotating frame, and the torque
fy = 4 (1) (=r x ).

In a spherical potential f, =0, so rzgz.ﬁ is constant.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Path of the orbit

To determine the shape of the orbit we need to remove t from the
equations and find r(¢). It is simplest to set u = 1/r, and then from
r’$ = h obtain

é = h? (1.25)
Then 1 1d d
u - u
= — = _h— 1.2
F u2u 2 db do (1.26)
and s 5
. du ; 2 2du
r = 7hw¢ = —h"u W (1'27)
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Path of the orbit

So the radial equation of motion

Path of the orbit r _ qu.52 — fr
becomes )
2 odu 1,54
—hUW—EhU =f (1.28)
d?u f,
Z T e (129

The orbit equation in spherical potential
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Path of the orbit

Since f; is just a function of r (or u) this is an equation for u(¢), i.e.
r(¢) - the path of the orbit. Note that it does not give r(t), or ¢(t) -
you need one of the other equations for those.
If we take f;, = —Gr—zM = —GMu?, then

d2U 2

?&+uz GM/h (1.30)

(which is something you will have seen in the Relativity course).
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Kepler orbits

Solution to the equation of motion

The solution to this equation is

£
P ={lu=1+ ecos(¢ — ¢o) (1.31)
which you can verify simply by putting it in the differential equation.

Then
_ecos(¢ — o) " 1+ ecos(¢ — ¢o) _GM

¢ [ T

so £ = h?/GM and e and ¢, are constants of integration.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Kepler orbits

Bound orbits

1 1+ ecos(¢ — ¢o)

r l

Note that if e < 1 then 1/r is never zero, so r is bounded in the range
ﬁ <r< lfe. Also, in .aII cases the orbit is symmetric about ¢ = ¢y,
so we take ¢o = 0 as defining the reference line for the angle ¢. ¢ is

the distance from the origin for ¢ = £7% (with ¢ measured relative to

o).
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Escape velocity

Kepler orbits

Bound orbits

We can use different parameters. Knowing that the point of closest
approach (perihelion for a planet in orbit around the Sun, periastron
for something about a star) is at £/(1 + e) when ¢ = 0 and the
aphelion (or whatever) is at ¢/(1 — e) when ¢ = 7, we can set the
distance between these two points (= major axis of the orbit)=2a.
Then

¥ %e —2a=f(1—e)+f(1+e)=2a(l—e) (1.32)

=/(=a(l-¢) (1.33)

= rp = a(1 — e) is the perihelion distance from the gravitating mass
at the origin, and r, = a(1 + e) is the aphelion distance. The distance
of the Sun from the midpoint is ae, and the angular momentum

h? = GM{ = GMa(1 — &?).
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Energy per unit mass

The energy per unit mass

E=1

2

Fr+&(r) =

1.,
2"

1,
=r

2

d’)2

_ &M
r

This is constant along the orbit, so we can evaluate it anywhere

convenient - e.g. at perihelion where # = 0. Then ¢ =

E

1 GMa(1 — €?) GM
2 2(1—e)?  a(l—e)
GM |1 (1+e 1
T{§<17e>_17e}
_ GM
T 2a

(1.34)
rp,=a(l—e)
,% and so
2
(1.35)

This is < 0 for a bound orbit, and depends only on the semi-major

axis a (and not e).
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Kepler's Laws

... deduced from observations, and explained by Newtonian theory of
gravity.
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Kepler's Laws

1 Orbits are ellipses with the Sun at a focus.
2 Planets sweep out equal areas in equal time

,% 8¢ [— ~r(rég)] (1.36)
dA _ 1 5. - - = constant (1.37)

— =Zr
dt 2
= Kepler's second law is a consequence of a central force, since this is

why h is a constant.

25 /60
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Kepler's Laws

1 Orbits are ellipses with the Sun at a focus.
2 Planets sweep out equal areas in equal time

SA= 250 = Sr(rb0)] (1.36)
dA 1,5, h_
P Er ¢ = 5= constant (1~37)

= Kepler's second law is a consequence of a central force, since this is
why h is a constant.
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Newton’s law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

3 (Period)?

(size of orbit)?
In one period T, the area swept out is A = %hT = (fT A dt)

Kepler's Laws
3rd Law

But A = area of ellipse = rab = ma’y/1 — €2

21 r
A :/ dd)/ rdr
0 0

[

Have

r

62 21
“2h

1+ ecos ¢)?

dx

do

™ a

(a + bcos x)?

R
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Sefore we start modelling

stellar systems

Basics
Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Binary star orbits

General orbit under radial
force law

Kepler's Laws
3rd Law

so ,
RPN
Since £ = a(1 — €?) this implies

A=ra’\/1—e?

and since b = av/1 — €2,
A =mab

21—e2,/1_¢2
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Newton’s law
Orbits
Orbits in spherical

potentials T

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Therefore

Escape velocity

. 2
since h

T

= T2

X

where in this case M is the mass

Note: Since E = —%, the period T =

Kepler's Laws

3rd Law
2A
h
2na’/1 — €2
h
2na’yV/1 — €2
v/ GMa(1 — €?)
GMa(1 — &%)
3
27T GW
a® (1.38)
of the Sun.

2nGM
—F.
(—26)?
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Unbound orbits

What happens to £ =1+ ecos¢ when e > 1?

o If e > 1 then 1+ ecos ¢ = 0 has solutions ¢~ where r = co
— COS P = —1/e
Then —¢oo < ¢ < @0, and, since cos P is negative,
5 < ¢oo < 7. The orbit is a hyperbola.
o If e =1 then the particle just gets to infinity at ¢ = £x - it is a
parabola.

29/60



Galaxies Part Il

Unbound orbits

Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

What happens to £ =1 + ecos$ when e > 17

Path of the orbit r
Energy per unit mass
Kepler's Laws

g:ﬂc;"i‘f::":vs o If e > 1 then 1+ ecos¢ = 0 has solutions ¢, where r = co
' — COS P = —1/€
Then —¢oo < ¢ < @0, and, since cos P is negative,
5 < ¢oo < m. The orbit is a hyperbola.
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Newton’s law
Orbits
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two dimensions
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Unbound orbits

What happens to % =1+ ecos¢ when e > 17
o If e > 1 then 1 4 ecos ¢ = 0 has solutions ¢oc where r = co
— COS P = —1/€
Then —¢oo < ¢ < @0, and, since cos P is negative,
5 < ¢oo < m. The orbit is a hyperbola.
o If e =1 then the particle just gets to infinity at ¢ = £7 - it is a
parabola.
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Before we start modelling
stellar systems

Basics

Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits
Escape velocity

Binary star orbits

General orbit under radial
force law

Kepler orbits
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Energies for these unbound orbits:

1, 1K GM
E=orten 7+

So,asr—>ooE—>%r'2
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Newton’s law
Orbits
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Unbound orbits

Recall ’
.= 1+ ecos ¢

d .
4 of this =

l . ;
—af= —esing ¢
and since h = r?¢ ,
f:%ﬁm¢

Asr— oo cosp — —1/e

1, 1&# 1\ GM, ,
E=3r =37 (1*5)*27(6 -1

(recalling that h?> = GM¢) Thus E > 0 if e > 1 and for parabolic
orbits (e =1) E =0.
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Newton's law
Orbits

Orbits in spherical
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Equation of motion in
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Escape velocity

We have seen that in a fixed potential ®(r) a particle has constant
energy £ = 1F° + ®(r) along an orbit. If we adopt the usual
convention and take ®(r) — 0 as |r| — oo, then if at some point ro
the particle has velocity vy such that

1,
EVO + ®(r) >0
then it is able to reach infinity. So at each point ro we can define an
escape velocity Vesc such that

Vesc =

—2¢(I’0)
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Newton’s law
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Escape velocity
From the Solar neighborhood

The escape velocity from the Sun
26M; \ ? -1
Vesc = ( ®) =422 (7”0 ) : km 871
o a.u.

Note: The circular velocity veirc is such that —rqu = —Gr—’zv’

rq.S = Veirc = GMo =20.8 (i)_% km s ?

o a.u.

(=27 a.u./yr).
Vese = V/2Veire for a point mass source of the gravitational potential.
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Escape velocity
From the Galaxy

Triple-star System Passes Near Milky Way's Central Black Hole

1 Triple-star system moves near. black One star falls toward black hole;
hole at center of M|Iky Way gaiaxyp [ bmary pair recmjs‘and is ejected: i+

| 3 Binary system leaves galaxy.

iy, .~

Unbound orb

Escape velocity

4 Blnary merges to form
blue straggler.
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Newton's law
Orbits

Orbits in spherical
potentials

Equation of motion in
two dimensions

Path of the orbit
Energy per unit mass
Kepler's Laws
Unbound orbits

Escape velocity

Kepler orbits

3

6
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Binary star orbits

Binary star orbits

e What we have done so far is assume a potential due to a fixed
point mass which we take as being at the origin of our polar
coordinates. We now wish to consider a situation in which we
have two point masses, M; and M> both moving under the
gravitational attraction of the other.
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Binary star orbits

e What we have done so far is assume a potential due to a fixed
point mass which we take as being at the origin of our polar
coordinates. We now wish to consider a situation in which we
have two point masses, M; and M> both moving under the
gravitational attraction of the other.

e This is a cluster of N stars where N = 2 and we can solve it
exactly! Hooray!
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Binary star orbits

Binary star orbits

e What we have done so far is assume a potential due to a fixed
point mass which we take as being at the origin of our polar
coordinates. We now wish to consider a situation in which we
have two point masses, M; and M> both moving under the
gravitational attraction of the other.

e This is a cluster of N stars where N = 2 and we can solve it
exactly! Hooray!

e The potential is no longer fixed at origin

GM, GM,

o) = S
(r) F—r| |r—r)
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Binary star orbits

Binary star orbits

Or the force acting on star 1, due to star 2 is

GM; M,
Fl = —
1 — raf?
in the direction of r, — rp
GMy M,
> F T —— -
! [r1 —ra)3 (r2 = n)

And by symmetry (or Newton's 3rd law)

GM; M-,
Fp= 2772
Ir —r2f3

(rn—r2)
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Binary star orbits
Then we know
GMy My ~

Mt = — PR d (1.39)
and CM: M
.. 1 M> ~
le’z = — d2 (—d) (1.40)
where
d= rr—r (141)
is the vector from M> to M. )
Using these two we can write for d = ¥1 — 2
d= _Ma (1.42)

d2
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Binary star orbits

G(My + Ms) 3
e
which is identical to the equation of motion of a particle subject to a
fixed mass My + M, at the origin.

a:
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Binary star orbits

Binary star orbits

G(My + Ms) 3
e
which is identical to the equation of motion of a particle subject to a
fixed mass My + M, at the origin.
So we know that the period

a:

23
T=om|—2" 1.43
™ G(My + M) (1.43)

where the size (maximum separation) of the relative orbit is 2a.
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iy e @ifs If we take the coordinates for the centre of mass

M, - M, .
M+ M, " My + M,

rcm = 2 (1.44)

From equations (1.39) and (1.40) we know that

Mi¥1 + Mok, =0 (1.45)
and so d
I (M1I"1 + M2|.'2) =0 (1'46)
or
(Mif1 + Maiz) = constant (1.47)

i.e.rcv =constant.

41 /60



Galaxies Part I

Binary star orbits

iy e @ifs If we take the coordinates for the centre of mass
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M+ M, " My + M,

rcm = 2 (1.44)

From equations (1.39) and (1.40) we know that
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and so d
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Note that choosing ren = 0 = Min
r1:d+r2:d—%r1

This = 11 =

M2 . . _
7+M2d and similarly r; =

Binary star orbits

= —Mbry, and so

M
VitV d.
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Binary star orbits

: : Note that choosing rcm = 0 = Miri = —Mbrs, and so
Binary star orbits .
r1:d+r2:d—ﬁzr1
This = r = —M__q and similarly r; = S —
My +M, M1+ M,

The angular momentum J (or H if you want) is

J = Miri X1+ Mora X 1o
2 ) 2
MM L MM
(My + My)? (M1 + M»)?

My M. -

2 dxd

My + M,

dxd

(1.48)
So
J=ph (1.49)

where p is the reduced mass, and h is the specific angular momentum.
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Momentum loss due to mass loss

Binary star orbits
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Momentum loss due to Gravitational Radiation

Binary star orbits
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Momentum loss due to Gravitational Radiation

Binary star orbits

Russell A. Hulse Joseph H. Taylor Jr.

The Nobel Prize in Physics 1993 was awarded jointly to Russell A. Hulse and
Joseph H. Taylor Jr. "for the discovery of a new type of pulsar, a discovery that
has opened up new possibilities for the study of gravitation”

Photos: Copyright @ The Mobel Foundation

Question: predict the evolution of the pulsar’s orbit.
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Binary star orbits

Momentum loss due to Gravitational Radiation

Line of zero orbital decay

_s0 - General Relativity prediction —

Cumulative shift of periastron time (s)

L 1 1 ! 1 ! !

1975 1980 1985 1990 1995 2000 2005
Year

Figure 2. Orbital decay caused by the loss of energy by gravitational radiation.

The parabola depicts the expected shift of periastron time relative to an

unchanging orbit, according to general relativity. Data points represent our

measurements, with error bars mostly too small to see.

Weisberg and Taylor 2010.
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Gravitational waves now directly detected

The Nobel Prize in Physics
2017

8
Photo: Bryce Vickmark Photo: Caltech Photo: Caltech Alumni

Rainer Weiss Barry C. Barish Association
Prize share: 172 Prize share: 1/4 Kip S. Thorne

Prize share: 1/4

The Nobel Prize in Physics 2017 was divided, one half awarded to
Rainer Weiss, the other half jointly to Barry C. Barish and Kip S.
Thorne "for decisive contributions to the LIGO detector and the
observation of gravitational waves".

Nobel Price 2017
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Binary Super-massive Black holes
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General orbit under radial
force law

Orbital periods

Example

General orbit under radial force law

Remember the orbit equation?

du o, )
dez T4 T TR

S

(1.50)

where u =
For f from

and f, = f for a spherical potential.
gravitational potential, we have

1 do 2dP
fl=)=—F=u"—F 151
(u) dr — " du (1.51)

© S Ie

since gravity is conservative.

There are two types of orbit:

e Unbound: r — 00, u >0 as ¢ = oo

e Bound: r (and u) oscillate between finite limits.
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General orbit under radial force law

Energy
;i?z:rglv\?rbit under radial If we take (150) X%
Orbital periods
Example du d2u du u2 do du
d¢ d¢2 + le¢ + h2u? du d¢ ( )
d [1/du\° 1, &
R B e = |l =0 1.53
;‘dqs[?(dqs) PN e
and integrating over ¢ we have
1/du\> 1, o E
=5 (CTqﬁ) + U+ 15 = constant = 3 (1.54)
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General orbit under radial force law
Energy

and using h = r2q5

General orbit under radial 5
force law gzl(ﬂ) L1240
Orbital periods h2 2 \do 2 n2
Example
452
r'¢° ( du 1,55
E = —— (5] t5r¢ +0(r
2 \do 2 (r)
g

4 (du . 1,55
= 7 E) +aretrel)
_ 1., 15 ® 1
= 5f +§r¢+ (r) (1.55)

i.e. we can show that the constant E we introduced is the energy per
unit mass.
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Peri and Apo
General orbit under radial
force law
Orbital periods 2 >
Example [h% =1 (%) it %]
For bound orbits, the limiting values of u (or r) occur where 5—; =0,
i.e. where £ o(u)
2 2E—-2®(u
from (1.54).

This has two roots, u; = % and up = %

this is not obvious, since @ is not defined}

For n < r, where r; is the pericentre, r» the apocentre
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Radial motion

The radial period T, is defined as the time to go from rn — rn — r.
Now take (1.55) and re-write:

Orbital periods
Example

(3:)2 —2AE- () - 1 (157)

where we used h = r2q'5 to eliminate d)
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Orbital periods

Radial motion

The radial period T, is defined as the time to go from rn — rn — r.
Now take (1.55) and re-write:

Orbital periods

Example

(%) 2(E - o(r) ~ 1 (157)

where we used h = r2q'5 to eliminate d)

So
dr h?
e +4/2(E — ®(r)) — = (1.58)

(two signs - F can be either >0 or <0, and F =0at n & r.
Then

n
T,:§dt:2/ ﬂd =2

(1.59)

/W
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Azimuthal motion

Orbital periods
Example

If travelling from r» — rn — r ¢ is increased by an amount

er()bﬂ

Cdde—o [F9Py d¢
A¢7§d¢72/r ar=2] 2

1 n

A¢:2h/rz dr (1.61)
nor2 [2(E - o(r)) — &

dr (1.60)

SO
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Orbital periods

Example

Precession of the orbit

For a given orbit, the time taken to go around once (i.e. 0 — 27)
depends in general on where you start, so the azimuthal period is not
well defined. Instead use the mean angular velocity @ = A¢/ T, to
obtain a mean azimuthal period Ty, so

2
T¢:27T/(:J:> T¢: T,

™
Ag
is the mean time to go around once.
Note that unless A¢/27 is a rational number the orbit is not closed.
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Orbital periods

Example

Precession of the orbit

For Keplerian orbit A¢ =271 = T, = Ty.

In one period T, the apocentre (or pericentre) advances by an angle
A¢ — 27. i.e.the orbit shifts in azimuth at an average rate given by
the mean precession rate

_ Ap—2r

- rad s~ (1.62)

Q,

Thus the precession period is

2r T,
-t

27

T, = (1.63)

[This precession is in the sense opposite to the rotation of the starJ

In the special case of a Keplerian orbit A¢p =27 = T4 = T, and
Q, =0, i.e. orbits are closed and do not precess. Otherwise general
orbit is a rosette between r & r».

This allows us to visualize how we can build a galaxy out of stars on
different orbits.
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Example

T, for the Keplerian case ®(r) = —GTM

We have equation (1.59)

_ 2 dr
i z/n V2(E—o(r) -

Now ri & r> are determined from r =0, i.e.
h2

2(E — &(r)) — 7= 0 (1.64)

2
2E+@—h—2:o (1.65)

r r

» GM  h
S (r—n)(r—n)=0 (1.67)
h? GM

= nn=-5g r1+r2:f? (1.68)

(remember E < 0 for a bound orbit).
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Example
T, for the Keplerian case ®(r) = — <M
We have equation (1.59)

r
T, =2 / dr
Orbital periods nooy /2(E — ¢(I’)) — ’r’é

Example

Now r1 & r» are determined from r =0, i.e.

h2
2(E—d>(r))—r—2=0
2
e 2M R
r r
» GM  H
r°+ Er 2E70
S (r—n)(r—-nr)=0
ol P M
nr = S5E' n rn = E

(remember E < 0 for a bound orbit).

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)
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Orbital periods
Example

Example

Rewrite (1.59) as

T_2/ \/m \/2|7E/ (rp—r) rfrl)
(1.69)

ifn<r<nm.
This is another of those integrals. If
R=a+bx+cx®>=—-r>+ (n+ r)r—nrand A =4ac — b? which

becomes, using the variables here, A = —(r, — r2)? then
0 VR 10n (220)
vR ¢ 2c\/—c V—»A

for c < 0 and A < 0 (See G&R 2.261 and 2.264).
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Example

The first term is 0 at r; and r» (R = 0 there), so

T 2 n+nl|. _1(—2n+n+n
Orbital periods r |: 2 ] Sin _—

Example \/2|E‘ n—nr

.1 <—2r1—|—r1—0—r2>]
—sin - = <
n—nr

- 22|E‘ (222 ] fsin (1) — sin ™ (-1)]
_ 2 GM m s

~ \2[E|2(-E) [5 - (_E)]

_ 27GM

- (—2E)

(1.70)
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