PART II ASTROPHYSICS

Stellar Dynamics and Structure of Galaxies

Examples Sheet 2

2.1 Show that the potential within a homogeneous sphere of density ρ_{0} is of the form

$$
\Phi(r)=\frac{1}{2} \Omega^{2} r^{2}+\text { const. }
$$

where Ω is a constant which depends on ρ_{0}.
What can you say about the general nature of orbits in such a potential?
2.2 If $h(r)$ is the specific angular momentum of a circular orbit of radius r in a given spherically symmetric potential, show that the circular orbit at radius r is unstable if $\frac{d}{d r}\left(h^{2}(r)\right)<0$.
2.3 For what spherically symmetric potential is a possible trajectory $r=\operatorname{aexp}(\mathrm{b} \phi)$, where a and b are constants?
2.4 In a spherically symmetric system, write down the equation in terms of $u=1 / r$ whose roots are the inverses of the apocentre and pericentre distances. Consider the second derivative of $\Phi(u)$ with respect to u to show that if $E<0$, and the potential $\Phi(r)$ is generated by a non-negative density distribution, the equation has either two or zero roots.
2.5 [95306(ii)] A spherical galaxy has a distribution of stars which has roughly constant density near its centre, and which falls to zero at large distance. The corresponding gravitational potential is the 'isochrone potential'

$$
\Phi(r)=\frac{-G M}{b+\sqrt{b^{2}+r^{2}}}
$$

with b constant. By considering large radii, show that M is the total mass.
Show that the central density is

$$
\rho(0)=\frac{3 M}{16 \pi b^{3}}
$$

and that

$$
\rho(r \gg b) \approx \frac{b M}{2 \pi r^{4}} .
$$

Derive the dependence of the circular speed on r.
[For spherically symmetrical functions F, ∇^{2} in spherical coordinates is

$$
\left.\nabla^{2} F=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial F}{\partial r}\right) .\right]
$$

*2.6 Show that both for a Keplerian potential and for the isochrone potential, the radial period T_{r} is given by

$$
T_{r}=\frac{2 \pi G M}{(-2 E)^{\frac{3}{2}}}
$$

Hint: use the substitution

$$
s=1+\sqrt{\frac{r^{2}}{b^{2}}+1}, \text { and the fact that } \int_{s_{1}}^{s_{2}} \frac{(s-1) d s}{\sqrt{\left(s_{2}-s\right)\left(s-s_{1}\right)}}=\pi\left[\frac{1}{2}\left(s_{1}+s_{2}\right)-1\right]
$$

2.7 [97405(ii)] A cylindrically symmetric potential $\Phi(R, z)$ has the property that $\Phi(R, z)=$ $\Phi(R,-z)$. A particle is in a circular orbit $R=R_{0}, z=0$ with angular velocity Ω_{0}. The orbit is perturbed slightly in such a way that the angular momentum about the z-axis remains unchanged. Show that the particle undergoes oscillations in the R-direction with frequency κ such that

$$
\kappa^{2}=3 \Omega_{0}^{2}+\left.\frac{\partial^{2} \Phi}{\partial R^{2}}\right|_{R=R_{0}, z=0}
$$

Find the corresponding frequency ν with which it oscillates in the z-direction.
Show that if the matter giving rise to the potential Φ has zero density at $R=R_{0}$ and $z=0$, then

$$
\kappa^{2}+\nu^{2}=2 \Omega_{0}^{2}
$$

[In cylindrical polar coordinates

$$
\left.\nabla \Phi=\left(\frac{\partial \Phi}{\partial R}, \frac{1}{R} \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial z}\right), \quad \nabla^{2} \Phi=\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial \Phi}{\partial R}\right)+\frac{1}{R^{2}} \frac{\partial^{2} \Phi}{\partial \phi^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}\right]
$$

2.8 Show that

$$
\begin{gathered}
\frac{d J_{0}}{d x}=-J_{1} \\
\frac{d I_{0}}{d x}=I_{1}
\end{gathered}
$$

and

$$
\frac{d K_{0}}{d x}=-K_{1}
$$

where $J_{n}(x), I_{n}(x)$ and $K_{n}(x)$ are the standard Bessel functions.
2.9 The gravitational potential of an exponential disk is

$$
\Phi(R, z)=-2 \pi G \Sigma_{0} R_{d}^{2} \int_{0}^{\infty} \frac{J_{0}(k R) e^{k|z|} d k}{\left\{1+\left(k R_{d}\right)^{2}\right\}^{\frac{3}{2}}}
$$

Derive and sketch the circular velocity in the plane $\mathrm{z}=0$.
*2.10 A uniform thin ring of mass m, radius a, is centred at the origin and is in the $\theta=\pi / 2$ plane of a system of (r, θ, ϕ) coordinates.
For radii $r>a$ find an approximation to the gravitational potential of the form

$$
\Phi(r, \theta)=-\frac{G m}{r}\left\{1-J_{2}\left(\frac{a}{r}\right)^{2} P_{2}(\cos \theta)+\ldots\right\}
$$

where J_{2} is to be determined.
Write down the approximate form of the potential in (R, ϕ, z) coordinates close to the $z=0$ plane, keeping terms to second order in z.
Show that the nodal precession of a slightly tilted orbit is retrograde.
Why would you expect all slightly tilted orbits close to the plane of a spiral galaxy to precess in the retrograde direction?

