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Question 1X - Relativity

(i) Two particles, labelled A and B and with masses mA and mB, undergo a
collision. In some inertial reference frame the components of their 4-momenta
before the collision are pµA and pµB, respectively. Consider the quantity

s ≡ ηµν(p
µ
A + pµB)(pνA + pνB) ,

where ηµν is the Minkowski metric.

Explain why s is Lorentz invariant and, by considering its value in the
zero-momentum frame, give a physical interpretation of

√
s.

If the energy of A in the zero-momentum frame is EA,ZMF, show that

EA,ZMF =
sc2 +m2

Ac
4 −m2

Bc
4

2c
√
s

.

Hence, or otherwise, find the energy EA,ZMF if the collision is inelastic and
results in a single particle of mass M .

(ii) A particle moves along the x-axis of some inertial frame S with constant
proper acceleration α. At t = 0, the particle is at rest at x = c2/α. Show that
the worldline of the particle can be expressed as

ct(τ) =
c2

α
sinh

(ατ
c

)
, x(τ) =

c2

α
cosh

(ατ
c

)
,

where τ is the particle’s proper time synchronised such that τ = 0 when t = 0.

A second particle performs a similar motion with proper acceleration α2

with α2 < α. This particle is also at rest in S at t = τ2 = 0 and has x = c2/α2

at that time. We denote by S ′∗ the instantaneous rest frame of the first particle
at the time of some event C on its worldline corresponding to τ = τ∗. Find
the proper time τ2 of the event D on the worldline of the second particle that
is simultaneous in S ′∗ with event C.

Hence show that at event D the second particle is at rest in S ′∗ and is
displaced from event C along the x′-axis of this frame by a constant distance
that you should specify.
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Question 2X - Astrophysical Fluid Dynamics

(i) Consider a spherically symmetric galaxy cluster composed of dark mat-
ter and intracluster gas, whose density distribution may be assumed uniform.
The intracluster gas can be treated as fully ionized hydrogen. Assume that
the system is in virial equilibrium, with a virial mass Mvir = 1015 M� and
virial radius Rvir = 1 Mpc. Further assume that the mean free path is set by
Coulomb collisions so that it can be expressed as

λ = 20 kpc

(
T

108 K

)2(
n

10−3 cm−3

)−1
,

where T is the gas temperature and n is gas number density. Derive the
length-scale below which the gas is collisionless. Assume a baryon fraction of
fB = 0.17.

Justify why intracluster gas can be treated as a fluid.

(ii) Consider an adiabatic shock where the gas is moving along the x-axis.
At a given moment in time the shock discontinuity is located at x = 0 such
that for x < 0 we have pre-shock fluid. Assume that the pre-shock fluid is
threaded by a uniform B field and that the ideal MHD approximation applies.
Further assume that the energy flux is given by

[ρ(e+
1

2
u2) + p]u +

1

µ0

B× (u×B),

where ρ is the gas density, ρe is the internal energy per unit volume, u is the
gas velocity, p is the gas pressure and µ0 is the vacuum magnetic permeabil-
ity. Derive shock jump conditions analogous to the three Rankine-Hugoniot
relations if,

a) B = (B, 0, 0),

b) B = (0, B, 0).

Discuss the physical meaning of the jump condition related to the momen-
tum equation in these two cases.

Determine the jump in the magnitude of B across the shock front in each
case. Express your answer in terms of the pre- and post-shock fluid speeds.

TURN OVER...
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Question 3Y - Introduction to Cosmology

(i) Use the relativistic Doppler formula

ν0 = νe

√
1− v/c
1 + v/c

,

where νe and ν0 are the photon emission and reception frequencies respectively,
to derive the kinematic redshift of a light source moving with velocity v relative
to the observer in the limit v � c.

Explain the difference between kinematic and cosmological redshifts.

When observing a distant galaxy, we measure a combination of kinematic
and cosmological redshifts, as galaxies respond to the local gravitational field.
Show that the combined redshift is ztot = (1 + zcosm)(1 + zkin)− 1.

The typical rms velocity of galaxies relative to the uniform expansion is√
〈v2p〉 ≈ 600 km s−1. For a present-day Hubble parameterH0 = 70 km s−1 Mpc−1,

what is the minimum distance at which a galaxy must be for its redshift to
give an estimate of its true distance accurate to better than 5%?

(ii) State the Friedman equations for a universe with pressure-less matter
density ρmat and a cosmological constant Λ 6= 0.

Show that the Friedman equations for such a universe are equivalent to
those for a universe with Λ = 0, ρ = ρmat + ρvac and p = pvac = −ρvacc2, where
ρvac and pvac are the vacuum energy density and pressure.

Show that a positive Λ term can be interpreted as a repulsive force whose
strength is proportional to distance.

Show that in such universes with positive Λ and zero or negative curvature
the scale factor evolves as a(t) ∝ exp(α t) at late times and determine α.

Show that for such a universe with positive curvature there exists a static
solution with Λ = Λc and calculate Λc.

Sketch the evolution with time of the scale factor a(t) for a universe with
Λ = Λc ± ε, where ε� Λc.

Comment on the age of such a universe.
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Question 4X - Structure and Evolution of Stars

(i) At the radius of the Earth’s orbit, the Solar wind from the Sun produces
a particle flux of Fw ≈ 6 × 1012 m−2s−1. Derive an approximate formula for
the ratio of the mass lost due to nuclear reactions in the core to that lost in
the Solar wind in terms of the solar luminosity L�, the solar wind flux Fw, the
radius of the Earth’s orbit RAU and relevant physical constants. Clearly state
any additional assumptions necessary to derive this approximate formula.

Estimate the numerical value of the ratio of the mass lost due to nuclear
reactions in the core to that lost in the Solar wind.

(ii) A star in hydrostatic equilibrium has a polytropic equation of state
with the pressure P and density ρ related by P = Kρ(n+1)/n, where K and
n are constants. Show that the ratio of the change in P/ρ is related to the
change in P by

d

(
P

ρ

)
=

1

(n+ 1)

dP

ρ
.

Show that the gravitational potential energy of the star is

Ω = − 3

(5− n)

GM2

R
.

Describe the behaviour of the polytrope as n→ 5 from below.

TURN OVER...
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Question 5Z - Statistical Physics

(i) A macroscopic system has volume V and contains N particles. Let
Ω(E, V,N ; δE) denote the number of states of a system which have energy in
the range (E,E + δE), where δE � E. Define the entropy of the system and
explain why the dependence of S on δE is usually negligible.

Define the temperature and pressure of the system, and hence obtain the
fundamental thermodynamic relation.

(ii) A one-dimensional model of rubber consists of a chain of N links, each
of length a. The chain lies along the x-axis with one end fixed at x = 0 and
the other at x = L where L < Na. The chain can “fold back” on itself so x
may not increase monotonically along the chain. Let N→ and N← denote the
number of links along which x increases and decreases, respectively. All links
have the same energy.

Show that N→ and N← are uniquely determined by L and N .

Determine Ω(L,N), the number of different arrangements of the chain, as
a function of N→ and N←.

Hence, show that if N→ � 1 and N← � 1 then the entropy of the chain is

S(L,N) =

kBN

[
log 2− 1

2

(
1 +

L

Na

)
log

(
1 +

L

Na

)
− 1

2

(
1− L

Na

)
log

(
1− L

Na

)]
,

where kB is Boltzmann’s constant.

Let f denote the force required to hold the end of the chain fixed at x =
L. This force does work fdL on the chain if the length is increased by dL.
Write down the fundamental thermodynamic relation for this system and hence
calculate f as a function of L and the temperature T .

Assume that Na� L. Show that the chain satisfies Hooke’s law f ∝ L.

What happens if f is held constant and T is increased?

[You may use Stirling’s approximation: n! ≈
√

2πnn+1/2e−n for n� 1]
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Question 6Z - Principles of Quantum Mechanics

(i) A one dimensional harmonic oscillator has Hamiltonian

H = ~ω
(
A†A+

1

2

)
,

where [A,A†] = 1. Show that A|n〉 =
√
n|n− 1〉, where H|n〉 = (n+ 1

2
)~ω|n〉.

(ii) The oscillator in Part (i) is perturbed by adding a new term λX4 to
the Hamiltonian. Given that

A =
mωX − iP√

2m~ω
,

where X and P are the position and momentum operators respectively, show
that the ground state of the perturbed system is

|0λ〉 = |0〉 − ~λ
4m2ω3

(
3
√

2 |2〉+

√
3

2
|4〉

)
,

to first order in λ.

[You may use the fact that, in non–degenerate perturbation theory, a per-
turbation ∆ causes the first–order shift

|m(1)〉 =
∑
n 6=m

〈n|∆|m〉
Em − En

|n〉

in the mth energy level.]

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Show that in a spherical potential Φ(r), where r is the radial distance
from the centre, orbits can be described by

du2

dφ2
+ u = f(u),

for a suitable choice of coordinates (u, φ).

For which spherically symmetric potential Φ(r) is r = a exp (b φ) a possible
trajectory?

(ii) The density distribution of a spherical stellar system is given by

ρ(r) =

(
3M

4π b3

)(
1 +

r2

b2

)−5/2
,

where r is the distance to the centre and Mand b are constants. Calculate the
gravitational potential Φ(r).

Use the epicyclic approximation to calculate the rate ΩP(r) at radial dis-
tance r, at which nearly circular orbits in this potential are precessing in terms
of the parameters M and b.

Are such orbits stable in this potential?

8



Question 8Y - Physics of Astrophysics

(i) Explain the orbital geometry of the Earth-Sun system on December 21,
the winter solstice in the northern hemisphere.

Explain why the Earth’s ‘solar day’ (time interval between successive points
when the Sun is highest in the sky at a fixed point on the Earth’s surface) is
different from the Earth’s ‘stellar day’ (the period of the Earth’s spin on its
own axis).

What is the sign of this difference and what does this imply for the rotation
vectors in the Earth-Sun system?

The 24 hour day is based on the mean solar day averaged over the year.
Suggest a reason why the solar day might vary around the Earth’s orbit.

It is well known that, in the northern hemisphere, although the shortest
day of the year is 21st December, the time of sunrise continues to be later
each day for a few days afterwards. Suggest a reason for this and explain what
can be deduced from this observation about the geometry of the Earth’s orbit
around the Sun.

(ii) The asteroid Uomuamua is a striking needle shaped object (dimensions
∼ 100 m × 100 m × 1 km) which recently passed within 0.25 au of the Sun.
It is unique among asteroids in the solar system in that its orbit is highly
inclined with respect to the ecliptic and that its orbit is unbound with respect
to the Sun (e ∼ 1.2). These latter properties have encouraged the view that
Uomuamua is a interloper that originated outside the solar system.

On the assumption that this is the only extrasolar asteroid to have been
observed after around a century of observation, estimate the density of free-
floating asteroids in the interstellar medium that is required to explain the
incidence of such events.

The local stellar density is a few stars per cubic parsec. Estimate the mass
of asteroids (in Earth masses) that must be ejected into the interstellar medium
in order to supply this density.

Comment on whether you consider this mass to be reasonable.

END OF PAPER
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Question 1X - Relativity

(i) A particle of mass m and charge q moves in Minkowski spacetime under
the influence of an electromagnetic field. The equation of motion of the particle
is,

m
duµ

dτ
= qF µνuν , µ, ν = (0, 1, 2, 3) (†)

where the components of the field-strength tensor are related to the compo-
nents of the electric field E and the magnetic field B by

F µν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 .

Show that (†) reduces to the expected Lorentz force law.

(ii) Explain briefly the physical interpretation of the energy–momentum
tensor T µν .

In a general spacetime, the energy–momentum tensor for the electromag-
netic field has components

T µνem = − 1

µ0

(
F µρF ν

ρ −
1

4
gµνF ρσFρσ

)
,

where µ0 is the permeability of free space. Working in local inertial coordinates,
show that

T 00
em =

1

2µ0

(
|B|2 +

|E|2

c2

)
and interpret this result physically.

Using Maxwell’s equations

∇µF
µν = µ0j

ν ,

∇µFνρ +∇νFρµ +∇ρFµν = 0 ,

where jν is the current 4-vector, show that

∇µT
µν
em = −F ν

ρj
ρ .

Explain the physical significance of the fact that ∇µT
µν
em 6= 0 in the presence

of a non-zero current 4-vector.
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Question 2X - Astrophysical Fluid Dynamics

(i) Explain what is meant by a viscous flow.

Starting from the Navier-Stokes equation and assuming that the shear vis-
cosity η and mass density ρ are constant, the bulk viscosity is negligible, and
the equation of state is barotropic, show that

∂w

∂t
= ∇× (u×w) +

η

ρ
∇2w ,

where w is the fluid vorticity and u is the velocity.

Provide the physical interpretation of this equation when a) η = 0, and b)
η > 0.

(ii) Consider a viscous flow in a horizontal pipe along the x-axis with
a constant elliptical cross-section. Assume a no-slip boundary condition at
the walls of the pipe, i.e. y2

a2
+ z2

b2
= 1, where a and b are the semi-axes

of the elliptical cross-section. Further, assume that the length of the pipe `
greatly exceeds either of these semi-axes. Using the incompressible Navier-
Stokes equation in Cartesian coordinates find a stationary solution for the
velocity v(x, y, z) of the fluid flow in terms of a, b, η, `, and the pressure
difference between the ends of the pipe ∆p.

By making the substitution y = ar cos θ and z = br sin θ, calculate the
total mass flow rate Q of a fluid of density ρ through this pipe.

For a given pressure gradient along the pipe, how does the maximum fluid
velocity and mass flow rate compare to an analogous pipe with a circular
cross-section with radius R = a?

TURN OVER...
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Question 3Y - Introduction to Cosmology

(i) The energy density of the Cosmic Microwave Background (CMB) is
described by the blackbody distribution,

ργ(ν, Tγ) c
2 dν =

8πh

c3
ν3 dν[

exp
(

hν
kBTγ

)
− 1
] ,

where ν is the photon frequency, Tγ is the photon temperature of the CMB
and kB is the Boltzmann constant.

Assume a CMB temperature of Tγ = 2.73 K. Calculate the present day
number density of CMB photons.

Use the Friedmann equations to calculate the energy density of a spatially
flat universe with zero cosmolocical constant in terms of the Hubble parameter.

Assume a present-day Hubble parameter H0 = 70 km s−1 Mpc−1. Show
that the critical density corresponds to approximately 5 hydrogen atoms per
cubic metre.

[ You may find the following relation useful:

1

(m− 1)!

∫ ∞
0

xm [ex − 1]−1
dx

x
=
∞∑
n=1

n−m ]

(ii) The energy density of the universe in radiation and relativistic particles
can be written as ρc2 = (g∗(T )/2) a T 4, where g∗(T ) is the effective statistical
weight at temperature T and a is the radiation density constant. Assume
that the universe is as described in Part (i). Assume further that the universe
also contains massless neutrinos that contribute with g∗,ν = Nν (7/8) (gν/2)
to the effective statistical weight, where Nν is the number of neutrino species
and gν is the statistical weight of the massless neutrinos. Using the fact that
neutrinos decouple before electron-positron annihilation, calculate the present-
day temperature Tν,0 of the neutrinos.

Assume that primordial black holes form when the universe has temper-
ature kBT = 200 GeV and g∗ ≈ 100. Calculate the redshift zpbh when this
happens.

Black holes lose mass by emitting Hawking radiation from the horizon
surface with radius rh = 2GM/c2. The Hawking radiation of a black hole with

4



mass M can be approximated as a black-body with temperature

TH =
~ c3

8π GM kB
,

where kB is Boltzmann’s constant and ~ = h/2π is the reduced Planck con-
stant. Estimate the minimum mass mmin of a primordial black hole formed in
the early universe, if it is to survive to the present day, t0 ' 13.7× 109 yr.

Use the Friedmann equations to calculate the age of the universe at redshift
zpbh and hence show that at zpbh the mass contained within the Hubble radius,
ct, is larger than mmin.

Calculate the fraction of the energy density of the universe that would have
to collapse into primordial black holes at this redshift for them to account for
the present-day matter density and comment on your result.

TURN OVER...
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Question 4X - Structure and Evolution of Stars

(i) A team of astronomers have access to some preliminary data from the
Gaia satellite and can measure the proper motions of stars with magnitude
mV = 20 to an accuracy of 4 × 10−5 arcseconds per year. The astronomers
have identified a sample of horizontal branch stars, with luminosities of 100 L�
and distances of 100 kpc in the direction of the Galaxy’s north pole. The stars
are moving independently within the gravitational field of the Galaxy and the
astronomers wish to test their model for the Galaxy in which the mass interior
to 100 kpc is 5× 1011M�. Demonstrate whether or not Gaia measurements of
the horizontal branch stars will allow the astronomers to verify their prediction
for the mass of the Galaxy, presenting the calculations needed to support your
conclusion.

(ii) A binary system consists of two stars with masses M1 and M2 in a
circular orbit with separation a. Suppose that one of the stars expands to fill
its Roche lobe, allowing mass transfer to occur. Further assume that the orbital
angular momentum is conserved and the total mass of the system is constant
during mass transfer. Determine the behaviour of the orbital separation on
the mass ratio M1/M2 as mass transfer proceeds.

Comment on the implications for the evolution of mass transfer binary
systems.

How does your answer relate to the properties of the bright eclipsing binary
star Algol? Algol is a binary system with a period of 69 hours consisting of a
3.7 M� primary star on the main sequence and a 0.8 M� secondary star at the
bottom of the red-giant branch.
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Question 5Z - Statistical Physics

(i) Starting from the canonical ensemble, derive the Maxwell-Boltzmann
distribution for the velocities of particles in a classical gas of atoms of mass m.

Derive the distribution of speeds v of the particles.

Calculate the most probable speed.

(ii) A certain atom emits photons with frequency ω0. A gas of these atoms
is contained in a box. A small hole is cut in a wall of the box so that photons
can escape in the +x direction where they are received by a detector. The
frequency of the photons received is Doppler shifted according to the formula

ω = ω0

(
1 +

vx
c

)
,

where vx is the x-component of the velocity of the atom that emits the photon
and c is the speed of light. Let T be the temperature of the gas.

Calculate the mean value 〈ω〉 of ω.

Calculate the standard deviation
√
〈(ω − 〈ω〉)2〉.

Show that the relative number of photons received with frequency between
ω and ω + dω is I(ω)dω with

I(ω) ∝ exp(−a(ω − ω0)
2),

where a is a constant.

Calculate the coefficient a.

Hence explain how observations of the radiation emitted by the gas can be
used to measure its temperature.

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) Explain what is meant by parity and what is the condition under which
parity is a symmetry of a quantum system.

Explain what is meant by the intrinsic parity of a particle.

How is the total parity of a system of particles related to the intrinsic
parities of the particles.

(ii) In each of the decay processes below, parity is conserved. A deuteron
(d+) has intrinsic parity ηd = +1 and spin s = 1. The ground state of a
hydrogenic ‘atom’ formed from a deuteron and a negatively charged pion (π−)
of spin s = 0 decays to two identical neutrons (n), each of spin s = 1

2
and

parity ηn = 1. Deduce the intrinsic parity of the pion.

The ∆− particle has spin s = 3
2

and decays as

∆− → π− + n .

What are the allowed values of the orbital angular momentum?

In the centre of mass frame, the vector rπ − rn joining the pion to the
neutron makes an angle θ to the ẑ-axis. The final state is an eigenstate of Jz
and the spatial probability distribution is proportional to cos2 θ. Deduce the
intrinsic parity of the ∆−.

[The first three Legendre polynomials are given by

P0(x) = 1 , P1(x) = x , P2(x) =
1

2
(3x2 − 1) . ]

8



Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) A sun-like star is moving on an orbit with tangential velocity vt and
radial velocity vr at distance r0 relative to a black hole with mass M = 106M�.

Calculate the minimum tangential velocity vt,0 = vt(r = r0) for which the
star can avoid tidal disruption by the black hole.

Estimate the value of vmin
t,0 if r0 = 1pc and the radial velocity of the star

away from the black hole is vr,0 = 50 km/s.

Assume that the black hole is located at the centre of a galaxy. Is the star
likely to be disrupted?

(ii) A black hole of mass M is embedded in the centre of an infinite,
homogeneous, three-dimensional sea of test particles. Far from the black hole
the test particles have a Maxwellian velocity distribution,

f0(v) =
n0

(2π σ2)3/2
exp

[
−1

2
v2/σ2

]
.

Show that the fraction of test particles that are not bound to the black
hole is

n(r)/n0 = 2
√
rh/(πr) + exp [rh/r] [1− erf (

√
rh/r)],

where rh ≡ GM/σ2.

Discuss the asymptotic behaviour of n(r) close to the black hole.

TURN OVER...
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Question 8Y - Physics of Astrophysics

(i) A binary star system with a circular orbit and separation d consists of
equal mass stars, each of mass m∗. The binary passes on a parabolic trajectory
close to a black hole of mass Mbh >> m∗. The minimum distance r to the
black hole is just small enough for the binary star to be tidally disrupted.

Show that r ∼ (Mbh/m∗)
1/3 d and that one of the stars ends up in a bound

orbit around the black hole with semi-major axis a ∼ (Mbh/m∗)
1/3 r.

Show that the ratio of the period of the bound star in its orbit around the
black hole to the original orbital period of the binary is ∼ (Mbh/M∗)

1/2.

[You may set factors of order unity to one.]

(ii) Massive stars drive strong stellar winds whose line emission has a
characteristic P-Cygni profile with strong emission in the red wing of the line
and absorption in the blue wing. Explain why this is the case.

The Galactic Centre contains a population of massive stars known as S stars
which are believed to have become bound to the central supermassive black
hole of mass ∼ 106M� by the process outlined in Part (i) above. Assume
that one of these S stars was originally in a circular binary containing two
stars of mass 10M� separated by 1 au. Assume further that both stars drive
a spherical wind with terminal velocity 700 km s−1.

Sketch the variation of the profile of the line emission from this binary in
the CIV 1550 A line for different orbital phases of the binary orbit, providing
an indication of the wavelength scale.

Estimate the radial velocity of the component of the binary captured by the
black hole and determine whether the star’s orbital motion should be readily
detectable given the width of the P-Cygni feature.

Given that the Galactic Centre is 8.5 kpc from the Earth, what is the
required accuracy for locating the position of the star on the sky in order to
detect its orbital motion about the black hole on a reasonable timescale?

When the S star ultimately explodes as a supernova, asymmetry in the
explosion provides a kick of ∼ 500 km s−1 to the remnant neutron star. Discuss
whether you would expect pulsars to be detected in the region occupied by the
S stars.

[You may use any of the formulae stated in Part i) without proof.]
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END OF PAPER
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Question 1X - Relativity

(i) The Schwarzschild line element for the vacuum spacetime outside a
spherical body of mass M centred on r = 0 is

ds2 =

(
1− 2µ

r

)
c2dt2 −

(
1− 2µ

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
,

where µ = GM/c2. Show that the geodesic equations for a massless particle
moving with non-zero orbital angular momentum in the plane θ = π/2 can be
written in the form (

1− 2µ

r

)
ṫ =

1

bc
,

r2φ̇ = 1 ,

ṙ2 +
1

r2

(
1− 2µ

r

)
=

1

b2
,

where b is a constant and overdots denote differentiation with respect to a
suitably-chosen affine parameter.

By considering the motion as r → ∞, or otherwise, give a physical inter-
pretation of the constant b.

(ii) A photon is emitted outwards at coordinate radius 2µ < rem < 3µ in
the Schwarzschild spacetime of Part (i). By considering the effective potential
for the radial motion, or otherwise, show that the photon will escape to infinity
if b <

√
27µ.

If a stationary observer at constant radius rem measures the photon to be
emitted at an angle α (with 0 < α < π/2) to the outward radial direction,
show that

sinα = b [U(rem)]1/2 ,

where U(r) = r−2(1− 2µ/r).

Hence show that the photon will escape to infinity if

sinα <
√

27µ [U(rem)]1/2 .

Comment on the limiting values of α as rem → 2µ and rem → 3µ.
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Question 2X - Astrophysical Fluid Dynamics

(i) An incompressible fluid is uniformly rotating as a whole. Starting from
the standard equation of motion in a rotating frame, show that in the rotating
frame the momentum equation becomes,

∂v

∂t
+ (v · ∇)v = −1

ρ
∇peff + 2v ×Ω , (∗)

where peff = p− 1
2
ρ(Ω× r)2, v is the fluid velocity, ρ is the fluid density, p the

pressure, and Ω is the angular velocity which you can assume to be along the
z-axis.

Consider now a steady motion in this rotating fluid where l and u are the
characteristic length and velocity of the problem, respectively. In the limit of
rapidly rotating fluid derive the equation of steady motion and show that

∂vx

∂x
+
∂vy

∂y
= 0 and

∂vz

∂z
= 0.

Provide a physical description of this dynamics.

(ii) Consider an incompressible fluid uniformly rotating as a whole with
angular velocity Ω with the direction along the z-axis. Using (*) from Part
(i), or otherwise, show that for a small pressure perturbation in this fluid,

∂∇× v

∂t
= 2Ω

∂v

∂z
,

∂2

∂t2
∇2p′ + 4Ω2∂

2p′

∂z2
= 0 ,

where p′ is the pressure perturbation and v is the velocity perturbation.

Derive the dispersion relation for this system.

Show that the resulting waves are transverse and circularly polarised.

TURN OVER...
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Question 3Y - Introduction to Cosmology

(i) Before recombination at z ' 1100, the main reaction responsible for
maintaining hydrogen and radiation in equilibrium is p+e− 
 H+γ. Assume
that the particle densities are given by the non-relativistic Maxwell-Boltzmann
formula

ni = Agim
3/2
i T 3/2 exp

[
(µi −mic

2)/(kBT )
]
,

where A is a constant, kB is Boltzmann’s constant, T is the temperature and
gi, µi and mi are the number of spin states, the chemical potential and the
mass of particle species i, respectively.

Show that

nenp/nH ≈ Am3/2
e T 3/2 exp [−BH/(kBT )] ,

where BH/kB = 158 000K is the binding energy of the hydrogen atom.

Show that for the ionization fraction X = ne/(ne + nH),

X2/(1−X) ≈ [(1− Y ) ρbar/mp]−1 Am3/2
e T 3/2 exp [−BH/(kBT )] ,

where Y is the helium mass fraction and ρbar is the mean baryon mass density.

Why does hydrogen recombination in the early universe occur at signifi-
cantly lower temperature than BH/kB?

(ii) The optical depth to Thomson scattering along a line of sight to redshift
z is

τ(z) =

t0∫
t(z)

σT ne c dt ,

where t0 is the time at the present-day, ne is the mean density of free elec-
trons, and σT is the Thomson scattering cross-section. Assume the universe
to be Einstein-de Sitter with matter density Ωmat = 1 and zero cosmological
constant. Show that if the intergalactic medium is fully reionised at redshift
z and remains fully ionised to the present-day,

τ(z) ≈ H0σT c

4πGmp

(
1− Y

2

)
Ωbar,0

[
(1 + z)3/2 − 1

]
,

where Ωbar,0 is the present-day baryon density parameter, H0 is the present-day
value of the Hubble parameter, and Y is the helium mass fraction.

Estimate the redshift of reionisation required to produce an optical depth
τ = 0.1. Discuss the likely sources of the ionising photons if reionisation
occurred at this redshift? Explain the reasoning behind your answer.
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Briefly describe the observational evidence that the universe is almost com-
pletely ionised by z = 6 and has remained so to the present day.

TURN OVER...
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Question 4X - Structure and Evolution of Stars

(i) An analysis of the spectrum and light curve of an eclipsing spectro-
scopic binary reveals a period of 8.6 years. The maximum Doppler shift of the
Hydrogen Balmer Hα line (6562.8 Å) is 0.35 Å for star A and 0.068 Å for star
B. Estimate the mass ratio of the two stars.

Assume that the orbital axis is perpendicular to the line of sight to the stars.
Estimate the orbital velocity for star A, its orbital radius in astronomical units
and the masses of the stars in units of Solar mass.

(ii) Write an essay describing the evolution of stars, starting at the end of
the main sequence through to the creation of white dwarfs, neutron stars and
black holes. Include estimates of the mass of stars on the main sequence that
eventually produce each type of remnant.

What observational evidence is there for the existence of each type of rem-
nant?
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Question 5Z - Statistical Physics

(i) A system of non-interacting bosons has single particle states |i〉 with
energies εi ≥ 0. Show that the grand canonical partition function is

logZ = −
∑
i

log
(
1− e−β(εi−µ)

)
,

where β = 1/(kBT ), kB is Boltzmann’s constant, and µ is the chemical poten-
tial.

What is the maximum possible value for µ?

(ii) A system of N � 1 bosons has one energy level with zero energy and
M � 1 energy levels with energy ε > 0. The number of particles with energy
0 is N0 and with energy ε is Nε.

Write down expressions for 〈N0〉 and 〈Nε〉 in terms of µ.

At temperature T what is the maximum possible number Nmax
ε of bosons

in the state with energy ε?

What happens for N > Nmax
ε ?

Calculate the temperature TB at which Bose condensation occurs.

For T > TB, show that µ = ε (TB − T )/TB.

For T < TB show that

µ ≈ −kBT

N

eε/(kBT ) − 1

eε/(kBT ) − eε/(kBTB)
.

Calculate the mean energy 〈E〉 for T > TB and for T < TB.

Hence show that the heat capacity of the system is

C =

{
1

kBT 2
Mε2

(eβε−1)2
T < TB

0 T > TB

.

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) A quantum system is prepared in the ground state |0〉 at t = 0. It is
subjected to a time–varying Hamiltonian H = H0 + ∆(t). Show that, to first
order in ∆(t), the system evolves as

|ψ(t)〉 =
∑
k

ak(t) e−iEkt/~|k〉 ,

where H0|k〉 = Ek|k〉 and

ak(t) =
1

i~

∫ t

0

〈k|∆(t′)|0〉 ei(Ek−E0)t′/~ dt′ .

(ii) A large number of hydrogen atoms, each in the ground state, are
subjected to an electric field

E(t) =

{
0 for t < 0

ẑ E0 exp(−t/τ) for t > 0 ,

where E0 is a constant. Using results from Part (i) or otherwise, show that the
fraction of atoms found in the state |n, `,m〉 = |2, 1, 0〉 is, after a long time
and to lowest non-trivial order in E0,

215

310

a2
0e

2E2
0

~2(ω2 + 1/τ 2)
,

where ~ω is the energy difference between the |2, 1, 0〉 and |1, 0, 0〉 states.

What fraction of atoms lie in the |2, 0, 0〉 state?

[Hint: You may assume the hydrogenic wavefunctions

〈r|100〉 =
2√
4π

1

a
3/2
0

exp

(
− r

a0

)
and 〈r|210〉 =

1√
4π

1

(2a0)3/2

r

a0

cos θ exp

(
− r

2a0

)
.

and the integral ∫ ∞
0

rme−αr dr =
m!

αm+1

for m a positive integer.]

8



Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Let f be the distribution function of a colisionless stellar system with
density ρ moving in a gravitational potential φ. Let us use angled brackets to
define averages over the distribution function in velocity space, for example

〈vi〉 =
1

ρ

∫
vi fd v3.

Derive the Jeans equation in the form

ρ
∂〈vj〉
∂t

+ ρ 〈vi〉
∂〈vj〉
∂xi

= −ρ ∂φ
∂xj
−
∂(ρ σ2

ij)

∂xi
,

where the velocity dispersion tensor σ2
ij = 〈〈vi − 〈vi〉〉〈vj − 〈vj)〉〉.

Give a physical interpretation of σij.

(ii) The Hohmann interplanetary travel orbit is the ellipse which is in
contact with the circular orbit of the Earth at pericentre and the planet at
apocentre. Show that the time of flight of a satellite on a Hohmann orbit from
the Earth to a planet with semi-major a is

T =
1

4
√

2

[
1 +

a

a⊕

]3/2

yr,

where a⊕ is the Earth’s semi-major axis.

Show using Kepler’s second law or otherwise that

h2 = GM� a (1− e2),

where h is the angular momentum and e is the ellipticity of the orbit.

If V⊕ is the circular velocity of the Earth, then the additional velocity
required to place a satellite on a Hohmann orbit is Vadd = VHoh − V⊕, where
VHoh is the velocity of the Hohmann orbit at pericentre.

Show that

Vadd = V⊕

[√
2

(
a

a+ a⊕

)1/2

−1

]
.

Mars has semi-major axis a = 1.524 au. Calculate the eccentricity of the
Hohmann orbit, the time of flight and the additional velocity.

[Hint: The period P of a test particle in an elliptic orbit of semi-major axis
a around a point mass M is P = 2π a3/2/(GM)1/2.]

TURN OVER...
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Question 8Y - Physics of Astrophysics

(i) Sources which all have the same intrinsic luminosity are distributed
with uniform number density around the Sun. Show that n(m), the number of
sources per unit interval of apparent magnitude m, is proportional to 103m/5.
Sketch n(m) as a function of m.

Now consider the case where the sources are embedded in a dusty medium
with uniform density and uniform optical properties. Sketch on the same plot,
without detailed calculation, the form of n(m) with and without reddening.

Explain qualitatively the difference between the two cases.

(ii) Assume a point mass of mass M passes through a medium of test
particles with velocity v. Estimate the impact parameter bcrit, where test
particles undergo a change of velocity of order v.

Assume that the dynamical effect on the point mass is dominated by ma-
terial with impact parameter close to bcrit. Give an approximate expression
for the drag force acting on the point mass when it passes through a medium
with mass density ρ made of particles with mass << M .

Consider the case where the point mass is a star passing perpendicularly
through a gas disc with mass per unit area Σ, rotating about the z axis.
Show that the passage through the disc causes the star to acquire an angular
momentum in the z direction of ∼ (GM/v2)2 Σ r vφ, where r is the distance
from the disc’s rotation axis and vφ is the local tangential velocity of the disc.

Now assume that the disc is embedded in a cluster of such stars passing
perpendicularly through the disc with number density n and total number N .
Show that the timescale on which the disc loses angular momentum is of order
N crossing times. You may assume that both the gas in the disc and the
stars in the cluster are subject to a gravitational field mainly produced by the
cluster stars.

A disc in the core of a galaxy contains a gas mass of 103M� within a radius
of 1 pc of the centre of the galaxy. Estimate the number of stars in the star
cluster at the centre of the galaxy if the angular momentum transfer from disc
to cluster is sufficiently fast for the disc to form a central black hole of mass
∼ 103M� over a Hubble time. Assume that the mean mass of the stars is 1M�.

State what evolutionary effects would occur within the star cluster within
a Hubble time.
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Question 1X - Relativity

(i) The line element for a homogeneous and isotropic cosmological model
with positive spatial curvature takes the form

ds2 = c2dt2 − a2(t)
[
dχ2 + S2

K(χ)
(
dθ2 + sin2 θdφ2

)]
, (∗)

where SK(χ) = sin(χ
√
K)/
√
K. Using the Friedmann equations, show that in

the absence of matter but in the presence of a positive cosmological constant
Λ, the scale factor a(t) takes the form

a(t) = A cosh(ct/α),

for a suitable choice of the origin of time, where A is a constant.

Specify the constant α in terms of Λ.

Express K in terms of A and Λ and hence show that the line element (∗)
can be written as

ds2 = α2
{

du2 − cosh2 u
[
dχ̃2 + sin2 χ̃

(
dθ2 + sin2 θdφ2

)]}
, (†)

where the relation of the coordinates u and χ̃ to t and χ should be given.

(ii) In one spatial dimension, the analogue of the line element (†) from
Part (i) is

ds2 = α2
(
du2 − cosh2 u dψ2

)
, (‡)

where 0 ≤ ψ < 2π and −∞ < u < ∞. Show that this is the induced line
element on the hyperboloid (x1)2 + (x2)2 − (x0)2 = α2 embedded in the 3D
Minkowski space with line element

ds2 = (dx0)2 − (dx1)2 − (dx2)2 .

Given that the Riemann tensor Rabcd in 2D has only one independent com-
ponent, verify by direct calculation that for the space with line element (‡)

Rabcd = −α−2 (gacgbd − gadgbc) ,

where gab is the metric tensor.
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Question 2X - Astrophysical Fluid Dynamics

(i) A spherically symmetric star in hydrostatic equilibrium is well described
by a barotropic equation of state, p0 = Kργ0 , where p0 is the gas pressure, ρ0
is the gas density, K is a constant and γ is the adiabatic index. Consider a
uniform and infinitesimally small expansion of the star such that the position
of a fluid element at r0 becomes r0(1 + δ), where δ is a constant such that
0 < δ � 1. Show that the density and pressure of the perturbed state satisfy
ρ = ρ0(1− 3δ) and p = p0(1− 3γδ) to first order accuracy.

Using these results find a condition on γ such that the star is stable to
radial oscillations.

(ii) In the centre of our Galaxy, the luminous source SgrA* is powered
by a supermassive black hole with mass M = 4 × 106 M�. Assume that the
black hole is embedded in a hot isothermal medium of fully ionized hydrogen
with temperature T∞ = 107 K and proton number density n∞ = 1 cm−3 at
large distances from the black hole. Assume that this medium is undergoing
spherically-symmetric Bondi accretion into the black hole. Starting from the
fluid equations derive the steady-state mass accretion rate Ṁ as a function of
T∞ and n∞.

How long does it take for the black hole to double its mass?

How does the mass-doubling timescale compare with the age of the Uni-
verse (approximately 13.7 Gyr)? Comment on the physical significance of this
comparison.

Assume that the black hole emits at a luminosity L = εrṀc2, with εr = 0.1
being the radiative efficiency and c the speed of light. Calculate the luminosity
of SgrA* assuming Bondi accretion and compare this with the luminosity of
the Galaxy.

TURN OVER...
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Question 3Y - Introduction to Cosmology

(i) Give a short account of what is meant by

(a) strong gravitational lensing,

(b) weak gravitational lensing,

(c) and microlensing,

giving examples of the observational signatures of each.

Discuss the main applications of each in astrophysics.

(ii) Consider the diagram below, where S, L and O denote, respectively,
a source, a gravitational lens and an observer. Explain the meaning of the
remaining quantities in the diagram and derive the basic gravitational lens
equation, β = θ − α(θ). State the necessary assumptions in your discussion

.

The light from a source at impact parameter b gravitationally lensed by a
point mass M is deflected by an angle 4GM/(b c2). Give the definition of the
Einstein radius and explain its significance in gravitational lensing.
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Show that the gravitational lens equation can be written in terms of the
Einstein radius θE as,

β = θ − θ2E
θ
.

Show that lensing by a point mass produces a magnification,

µ ≡ θ

β

dθ

dβ
=

[
1−

(
θE
θ

)4
]−1

.

Give a physical explanation for the case when θ < θE.

The pair of quasars 1146+111B,C are separated by 157 arcseconds on the
sky. Both quasars have magnitude mV = 18.5, and their spectra exhibit broad
Mg iiλ2798 emission lines at the same redshift z = 1.012± 0.001 and with the
same Full Width at Half Maximum, FWHM = 64± 4 Å.

Discuss the alternative possibilities that this pair is,
(a) the same quasar gravitationally lensed into two images, or
(b) two separate quasars.

Propose a set of observations that could distinguish between the two pos-
sibilities.

[The angular diameter distance at z=1.012 is approximately 1650 Mpc.]

TURN OVER...
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Question 4X - Structure and Evolution of Stars

(i) Draw a sketch of the Hertzsprung-Russell diagram, labelling the axes
carefully. Include in your sketch the approximate positions of: the Sun, the
main sequence, white dwarfs, the horizontal branch, red giants and the Hayashi
track.

(ii) A group of homogeneous radiative stars all have the same chemical
composition, with electron scattering as the main opacity source (so κ = const)
and energy production via the CNO cycle (ε = ε0ρT

18). Neglecting radiation
pressure, show using homology arguments that

L ∼M3,

and
R ∼M17/21.

Determine how the effective temperature T∗ of the stars scales with the lumi-
nosity L.

For a second group of homogeneous radiative stars with the same chemical
composition, the opacity source is of the Kramers type with κ = κ0ρT

−7/2,
while the energy source is via the proton-proton chain, with ε ≈ ε0ρT

4. As-
suming homology, show that for these stars we would expect

R ∼M1/13.

In fact, the observed relationship for such stars is R ∼ M0.7. Give possible
reasons why the homology arguments may fail.
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Question 5Z - Statistical Physics

(i) The one-dimensional Ising model consists of a set of N spins si with
Hamiltonian

H = −J
N∑
i=1

sisi+1 −
B

2

N∑
i=1

(si + si+1),

where periodic boundary conditions are imposed so sN+1 = s1. J is a positive
coupling constant and B is an external magnetic field. Define a 2 × 2 matrix
M with elements

Mst = exp

[
βJst+

βB

2
(s+ t)

]
,

where indices s, t take values ±1 and β = (kBT )−1, where kB is Boltzmann’s
constant and T is temperature.

Prove that the partition function of the Ising model can be written as
Z = Tr(MN). Calculate the eigenvalues of M and hence determine the free
energy in the thermodynamic limit N → ∞. Explain why the Ising model
does not exhibit a phase transition in one dimension.

(ii) Consider the case of zero magnetic field B = 0. The correlation func-
tion 〈sisj〉 is defined by

〈sisj〉 =
1

Z

∑
{sk}

sisje
−βH ,

where Z, H, si, β are as defined in Part (i). Show that, for i > 1,

〈s1si〉 =
1

Z

∑
s,t

st(M i−1)st(M
N−i+1)ts.

By diagonalizing M , or otherwise, calculate Mp for any positive integer p.
Hence show that

〈s1si〉 =
tanhi−1(βJ) + tanhN−i+1(βJ)

1 + tanhN(βJ)
.

In the thermodynamic limit, the correlation length ξ is defined by 〈sisj〉 ∼
e−|i−j|/ξ. Use the above result to determine ξ, and discuss how it behaves for
high and low temperatures.

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) The spin operators obey the commutation relations [Si, Sj] = i~εijkSk.
Let |s, σ〉 be an eigenstate of the spin operators Sz and S2, with Sz|s, σ〉 =
σ~ |s, σ〉 and S2|s, σ〉 = s(s+ 1)~2 |s, σ〉. Show that

S±|s, σ〉 =
√
s(s+ 1)− σ(σ ± 1) ~ |s, σ ± 1〉 ,

where S± = Sx ± iSy.

(ii) Using results from Part (i) when s = 1, derive the explicit matrix
representation

Sx =
~√
2

 0 1 0
1 0 1
0 1 0

 ,

in a basis in which Sz is diagonal.

A beam of atoms, each with spin 1, is polarised to have spin +~ along
the direction n = (sin θ, 0, cos θ). This beam enters a Stern–Gerlach filter
that splits the atoms according to their spin along the ẑ-axis. Show that
N+/N− = cot4(θ/2), where N± is the number of atoms emerging from the
filter with spins parallel / anti-parallel to ẑ.
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) A homogeneous sphere has density ρ0 for radius r ≤ r0, and density
zero elsewhere. Determine the equation of motion for a collisionless particle
with r < r0.

Compare the orbits qualitatively to those in the potential of a point mass.

Derive an integral equation linking the particle’s polar coordinates r and
φ.

(ii) A spherical galaxy with finite total mass has the potential

Φ(r) = −GM
r + a

,

where a is a length scale and r is the distance to the centre. The galaxy can
be assumed to be in steady state.

Find the rotation curve of the galaxy.

Using Poisson’s equation, find the mass density ρ(r) of the galaxy.

Verify that the galaxy has a distribution function

f(E,L) =
C E2

L
,

where E is the energy and L is the angular momentum.

Determine the constant C in terms of a and M .

What is the ratio of the radial velocity dispersion to the tangential velocity
dispersion in the model?

TURN OVER...
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Question 8Y - Physics of Astrophysics

(i) Meteorites in the solar system are found to contain a range of chemical
species that are daughter products of short-lived radio-isotopes which are best
explained as contaminants from the supernova ejecta of a neighbouring star of
mass m & 25M�. Assume that the distribution of stellar masses of the birth
cluster of the Sun can be calculated by randomly drawing N stellar masses
from the Salpeter mass function. For what value of N is the probability of a
cluster containing a star as massive as 25M� equal to 50%?

The fraction of birth clusters with a number of stars in the range N to
N+dN has been estimated to be proportional to N−2dN for N > 50 and zero
for N < 50. What fraction of stellar birth clusters have a chance of containing
a star as massive as 25M� of at least 50%?

[For a Salpeter initial mass function the mass contained in stars in the mass
range m to m+ dm scales as m−1.35dm for stellar masses > 0.1M�.]

(ii) Gas accretes radially onto an OB star of radius 0.1 au which ionises
the inflowing gas out to a radius rI = 100 au. The radius and velocity of the
ionised gas are given by,

n = nI

(
r

rI

)−3/2
, v = vI

(
r

rI

)−1/2
,

where nI = 3× 1013 m−3 and vI = 20 km s−1.

Estimate the mass of the OB star assuming that the velocity is roughly the
free-fall velocity and explain why this is a reasonable assumption.

Calculate the ionising luminosity of the OB star assuming all ionising pho-
tons have an energy of 13.6 eV and compare it to the luminosity due to the
accretion of the gas. Comment on whether it is plausible that the ionising
radiation is due to the accretion.

Assume that the bubble of ionised gas is optically thick to its thermal
bremstrahlung emission at a wavelength of 2 cm. Estimate the luminosity of
the ionised bubble at this wavelength in W Hz−1.

Assess whether this would be detectable by a radio telescope with a sensi-
tivity of 1mJy, if the OB star is at a distance of 450 pc from Earth.

[ For hydrogen the coefficient for recombinations to excited electronic states
is α = 3 × 10−19 m3 s−1. The black body power per unit emitting area per
unit frequency (W m−2 Hz −1) is dFν/dν = 2πh/((λ2exp(hν/kT )−1)). 1 mJy
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corresponds to the radio flux at the detector of a source of luminosity 2× 105

W Hz−1 at a distance of 1 pc.]

END OF PAPER
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