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Question 1X - Relativity

(i) Derive the addition formulae for the z, y and z velocity components
according to Special Relativity.

In a static medium, the speed of light is reduced to ¢/n, where n > 1 is the
refractive index. Now consider a medium which is moving at speed u relative
to an observer. Show that the speed of a light beam propagating through the
medium measured by the observer is

c 1 U
ceﬁ%—+u(1——2), where — < 1.
n n c

How does this result differ from that obtained according to Newtonian
theory?

(ii) Consider a compact object in our Galaxy located at a large distance L
away from us. The object emits a blob of material at angle € to our line-of-sight
with an ejection speed v close to the speed of light as shown in the Figure.
Radiation from the blob is detected by an observer at time t; as measured in
our rest frame. At a later time, the blob has moved a distance vdt and emits
radiation which is detected by the observer at time t,. Show that the apparent
speed of the blob on the sky is

A vsinf
PP — (v/c) cosb]’

Find the angle that maximises v,p, and find the value of v,p, at this angle.

Explain why the apparent ‘superluminal’ speed of the blob is compatible
with Special Relativity.

distance L to observer



Question 2X - Astrophysical Fluid Dynamics

(i) Define streamlines, particle paths and streaklines. For which flows do
they coincide? Explain why.

A planetoid is moving through a uniform interstellar medium with a tem-
perature Tigyqy = 100K. The planetoid’s speed is 0.1kms™t. Sketch the
streamlines in the rest frame of the planetoid. Draw a similar sketch assuming
the planetoid’s speed is 100 km s~ and comment on the possible differences in
the streamlines.

(ii) Consider a small adiabatic perturbation of density p, pressure p’ and
velocity w4’ in a uniform stationary fluid characterized by a constant shear
viscosity 7. Derive the following wave-like equation for the perturbation

9% 4 1 _,0p

P — 272 / *
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where pg is the unperturbed density and ¢ is the sound speed of the fluid.

Hence derive the dispersion relation between the wave number k and the
angular frequency w.

Qualitatively discuss whether exponentially dampened solutions exist and,
if so, their physical meaning.

Using (*), or otherwise, derive an order of magnitude estimate for the
condition on the wavelength \ for viscous effects to be small.

The Navier — Stokes equation is :
pou/ot + (u.V)u = —Vp+n [Vu+iV(V.a)l,

where w is the fluid velocity, p the density and p the pressure.

TURN OVER...



Question 3Y - Introduction to Cosmology

(i) State the Cosmological Principle and discuss whether it is compatible
with observations.

Show that if the Cosmological Principle applies in an expanding Universe
the Hubble law v(r) = Hr holds, where v is the relative speed between points
separated by distance r and H is the Hubble parameter.

(ii) Assume Qy g, Qmo, and 2, o are the present-day contributions to the
critical density by curvature, matter, and the cosmological constant, respec-
tively. Starting from the Friedmann equations, show that in a spatially flat
Universe with Qg =0, Q0+ Qa0 = 1, and Qa ¢ # 0, the age of the Universe
can be written as

t(2)

B 2 I 1+ cosf
N 3]_]09}&/’(2) sin 6

where z is the cosmological redshift, Hy is the present-day value of the Hubble
parameter, and

Qo) V2
tanG—(Q&) (14 2)%2,

A0

Show that the present age of the Universe is then given by

. 2 1+ Q)
0= n
SHo/s | (1= Qag)'?

Explain why observations of supernovae help reconcile flat Universe models
with estimates of the ages of globular clusters?



Question 4Z - Structure and Evolution of Stars

(1) An optical spectrum of a supernova in the Milky Way, observed some
days after maximum brightness, shows the hydrogen Balmer Ha line (rest
wavelength 6562.8 A) with a P-Cygni profile. The emission peaks at 6565 A
and extends by several hundred Angstroms to longer wavelengths. An absorp-
tion feature is seen at shorter wavelengths with a maximum depth at 6303 A.
Estimate the speed of the expanding ejecta.

Where is the hydrogen responsible for the observed emission at ~6565 A and
~6800 A located?

The initial evolution of a supernova is well approximated by free expansion
at constant speed until the mass of material swept up from the interstellar
medium is equal to the mass of the supernova ejecta. Assume that the ejecta
mass is 5 M and that the number density of the hydrogen in the interstellar
medium is 1 atom per cm®. Estimate the radius and the age at the end of the
free expansion phase.

What type of star was the supernova precursor?

(ii) Describe the evolution of a star like the Sun from its arrival on the
main sequence through to the end of its life. Include estimates of relevant
time-scales, physical processes in the central regions and the location of the
star on a T.g-L diagram, where T.g is the effective temperature and L is the
luminosity. Include a sketch of the evolutionary track on the Hertzsprung-
Russell diagram with key events and phases indicated.

TURN OVER...



Question 5Z - Statistical Physics

(i) Explain what is meant by the microcanonical ensemble for a quantum
system.

Sketch the derivation of the probability distribution for the canonical en-
semble from the microcanonical ensemble.

Under what physical conditions should each type of ensemble be used?

(ii) A paramagnetic solid contains atoms with magnetic moment p = uoJ
where g is a positive constant and J is the intrinsic angular momentum of
the atom. In an applied magnetic field B, the energy of an atom is —u - B.
Each magnetic atom has total angular momentum quantum number J. The
possible values of J, are J, = m where m is an integer with —J < m < J.
A constant magnetic field B is applied in the z-direction. Write down the
partition function Z; (7', B) for a single atom.

Show that the average magnetic moment of the atom is given by

1 (0log Z,

where 8 = 1/(kgT).

Evaluate Z; and hence prove that

(1z) = poJBy(x),

where z = SugB and

By(z) —%{(JJF%) coth KJJF%) x] —%coth (g)}

Determine the behaviour of By(z) for z > 1 and # < 1 and sketch B;(z) for
a few different values of J on the same graph.

The total magnetization is M, = N{u,) where N is the number of atoms.
The magnetic susceptibility is defined by

[OM.
=\oB ),

Show that the solid obeys Curie’s law x oc 77! when z < 1.

Comment briefly on the behaviour of M, for x > 1.



Question 6Z - Principles of Quantum Mechanics

(i) The position and momentum operators of a harmonic oscillator can be
written as

>

= () "tawan 5= (1) it )

where m is the mass, w is the frequency and the Hamiltonian is

1 1
H = %ﬁ2 + §mw2§:2.

Write down the commutation relations for ¢ and a' and the Hamiltonian in
terms of @ and af.

Determine the energy levels of the oscillator.

Assuming a unique ground state, explain how all other energy eigenstates
can be constructed from the ground state.

(ii) Consider a modified Hamiltonian
H = H 4 Mw(a®+a'?),

where ) is a dimensionless parameter and the remaining quantities are defined
in Part (i). Calculate the modified energy levels to second order in A, quoting
any standard formulae which you require.
Show that the modified Hamiltonian can be written as
1

1
H = %(1 —20\)p* + 5mw2(1 +2))2%

Calculate the modified energies exactly.

Assuming |\| < %, show that the results are compatible with those obtained
from perturbation theory.

TURN OVER...



Question 7X - Stellar Dynamics and the Structure of Galaxies

(i) By considering a particle’s angular momentum and energy, describe
qualitatively the general properties of bound orbits in spherical potentials.

Show that the equation governing the evolution of a small radial perturba-
tion € of the circular orbit with angular frequency €2 under spherical force F
in the epicyclic approximation is

£+ <3QQ—M)5:O.
dr

(ii) Consider a flattened potential

2
¢=¢<\/$2+92+Z—2>7
q

where 0 < g < 1 describes a constant flattening in the z-direction. A circular
orbit in the z = 0 plane at a distance Ry from the origin with the angular
frequency €2 is perturbed slightly in the z direction. Deduce the frequency of
the vertical motion.

Write down the L,, L, and L, components of the angular momentum of
this orbit and describe the orbital plane behaviour.

Find the frequency of the orbital plane precession of this orbit if ¢ ~ 1.



Question 8Y - Physics of Astrophysics

(i) The energy of a binary system is pumped by distant encounters with
field stars in the Galaxy at a rate that is independent of the binary’s semi-major
axis. Consider the case that binaries are created continuously at a constant
rate with semi-major axis ag and that all have equal mass components of mass
M. Show that in a steady state, the probability p(a) of a binary having semi-
major axis in the range a to a + da is p(a) < a ?da, where 3 is a constant
that you should determine.

Explain why one expects binaries to be disrupted at finite semi-major axis
due to a process that does not depend on encounters with individual field stars.

[You may assume that the energy of a binary with semi-major axis a and
components of mass M is E = —GM?/2a.]

(ii) A massive black hole in the nucleus of a galaxy is embedded in a stellar
cluster. A star in the outer regions of the cluster is orbited by a planet with
the mass and orbital radius of Jupiter. Assuming that the orbits of the stars
in the outer cluster are approximately isotropic, estimate the probability that
the planet is stripped by tidal interaction with the black hole within the time
it takes the star to cross the cluster.

Assume that the cluster is uniform in density. Assume further that a
destructive encounter occurs if the distance of closest approach of two stars is
less than the planet’s orbital radius. Estimate the probability that the star-
planet system undergoes such a destructive encounter with another star.

[Assume the following numerical values for your calculation: mass of black
hole = 10°M.; typical stellar mass = 1M; number of stars in cluster = 1000;
radius of cluster = 0.1 pc; orbital radius of Jupiter = 5 au; mass of Jupiter
= 0.001M .|

END OF PAPER



B UNIVERSITY OF

NST2AS NATURAL SCIENCES TRIPOS Part II

Tuesday 6 June 2017 13:30pm — 16:30pm

ASTROPHYSICS - PAPER 2
Before you begin read these instructions carefully.
Candidates may attempt not more than sixz questions.

Fach question is divided into Part (1) and Part (ii), which may or may not
be related. Candidates may attempt either or both Parts.

The number of marks for each question is the same, with Part (ii) of each
question carrying twice as many marks as Part (1). Additional credit will be
given for a substantially complete answer to either Part.

Write on one side of the paper only and begin each answer on a sep-
arate sheet.

Answers must be tied up in separate bundles, marked X, Y, Z, according
to the letter associated with each question, and a cover sheet must be completed
and attached to each bundle. (For example, 1X, 2X and 7X should be in one
bundle and 3Y and 8Y in another bundle.)

A master cover sheet listing all Parts of all questions attempted must also
be completed.

It is essential that every cover sheet bear the candidate’s exami-
nation number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Script Paper (lined on one side) Astrophysics Formulae Booklet
Blue Cover Sheets Approved Calculators Allowed

Yellow Master Cover Sheets

1 Rough Work Pad

Tags

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator.




Question 1X - Relativity

(i) A Lorentz transformation from a frame S with coordinate system z* to
another frame S’ with coordinates 2’ ¢,

It AT
't = A,

leaves the coordinate interval,
ds® = nijda'da’ = Adt* — (dz')? — (do?)? — (dx®)?,
invariant. Show that the transformation coefficients Aé- must satisfy
AiAimj = Nst-
Show that (*) is satistfied if

@ 045
N v N v
Ag=7 Aj=A=9— Aj=dus+—-(y=1), a=123

where v® is the velocity of the frame S relative to S’ and v = (1 —v?/c?)~1/2.

Comment on the form of Ag.

(ii) The energy-momentum tensor of a perfect fluid at rest in reference
frame S is

T — pCZ’
T  — 70 — O,
Taﬂ = péaﬁy

where pc? is the proper energy density and p is the pressure of the fluid.
Suppose that the fluid is moving with velocity v in the ‘laboratory’ frame
S’

Using the results of Part (i) show that the components of the energy-
momentum tensor in the frame S’ are given by

M0 =5%(pe® + pv?/c?),
T! a0 — 72(p02 + p)Ua/C,
TP = 5%(pc® + p)vv’ [c® + plag,

where 7 = (1 — v?/c?)~1/2,

Briefly indicate how these equations, together with conservation of fluid

particle number, can be used to derive the equations of relativistic hydrody-
namics.



Question 2X - Astrophysical Fluid Dynamics

(i) Consider the flow of a fluid with pressure p, density p and speed v
along a pipe parallel to the z-direction. Write down the expression for the
stress tensor of this fluid and explain the reasoning behind each term.

A spiral galaxy of radius R experiences a face-on wind as it moves through
the intracluster medium with speed v. Determine how much mass in the
intracluster medium of density pren is swept up.

Hence calculate the ram pressure exerted on the galaxy.

Assume that the galaxy moves at a speed of 1000kms™! and that the
self-gravitational force per unit area of the disk is 107 gecm™'s72. Assume
further that the density picy at distance r from the centre of the cluster is

well described by

r+re\ r\ 2
0
prem(T) = premyo ( " ) (1 + r_) ,

3

where piomo = 10726 gem ™3, ry = 50kpe, 79 = Skpc and the intracluster gas
extends to 1 Mpc. Estimate whether the intracluster medium is able to unbind
the galactic material by ram pressure at » = 1 kpc and r = 1 Mpc.

(ii) Consider an oblique adiabatic shock propagating through the intraclus-
ter medium. In the rest frame of the shock the pre-shock gas velocity makes
an angle # with respect to the shock front, while the post-shock gas flows at
an angle § with respect to the direction of motion of pre-shock gas. From the
fluid equations derive the Rankine-Hugoniot conditions for this oblique shock.

Determine the minimum angle 6,,;, for which the gas is shock heated and
explain why it cannot be zero. How does 0,,;, compare to the angle which
defines the Mach cone?

Using the relation
2 2+ (v - DM?

LM - (y-1)
or otherwise, where M; and M, are the Mach numbers of the pre-shock and
post-shock gas, respectively, and « is the adiabatic index, express the ratio of
pre- and post-shock gas densities as a function of M; and 6 alone.

TURN OVER...



Question 3Y - Introduction to Cosmology

(i) Show that with a non-zero cosmological constant A and zero pressure,
the deceleration and density parameters are related by

1 Ac?
1= 9™ " 3
where €2, is the contribution of the matter density to the critical density and
H is the Hubble parameter.

Calculate ¢ for a universe with zero cosmological constant dominated by
radiation for which p = (1/3)pc?, where p is the pressure and p is the density.

(ii) Explain what astronomers mean by the term ‘Standard Candle’. Give
examples used in cosmology.

Discuss briefly the main difficulties in the measurement of the Hubble con-
stant in the nearby Universe.

Describe how the ‘Cosmic Distance Ladder’ method is used to measure
relative cosmological distances.

Discuss the methods used to establish an absolute distance scale.

Suppose that a series of four different standard candles are used to step
out along the cosmic distance ladder from our Galaxy to distances far enough
to accurately measure the true expansion rate. Each standard candle has
an uncertainty of AM = +0.2 magnitudes in the calibration of its absolute
magnitude. Calculate the resulting uncertainty in the measurement of the
Hubble constant.



Question 4Z - Structure and Evolution of Stars

(1) What is the dominant source of opacity for ultraviolet and optical pho-
tons in the photosphere of the Sun?

An optical image of the Sun shows a decrease in the brightness from the
centre of the Sun towards the edge, an effect termed “limb darkening”. Explain
the physical basis for this phenomenon.

Images of the Sun are obtained through two narrow filters, each 2 nm wide.
One is sensitive to radiation with wavelengths 655 nm to 657 nm, including the
hydrogen Balmer Ha transition. The second is centred at 654 nm, immediately
adjacent to the first. Assume that the change in flux from a blackbody due
to the small wavelength difference can be neglected. How will the two images
differ?

(ii) The evolution of a white dwarf can be modelled by considering an
isothermal, electron-degenerate, core with density p and temperature 7., con-
taining almost all the star’s mass M surrounded by a thin, non-degenerate,
outer layer. The pressure in the core is P = Ki(p/p.)*?, where 1/p, is the
average number of free electrons per nucleon and K; is a constant. Material
in the outer layer behaves as an ideal gas and is in radiative equilibrium. The
opacity s obeys Kramer’s law £ = kopT /2. Assume that there is a sharp
boundary at r, < r between the degenerate core and the outer layer, with the
mass m(r > r,) ~ M. Calculate the relation between the luminosity L, M
and T¢.

The energy source of the white dwarf results from the thermal motions of
ions in the degenerate core. By considering the rate of thermal energy depletion
of the core, calculate the rate of change of the luminosity as a function of core
temperature.

What do you conclude about the cooling rate of a white dwarf?

For a white dwarf with a degenerate core of carbon and oxygen and an
atmosphere composed primarily of hydrogen, describe the key features of the
optical spectrum once the star has cooled to the point where the surface tem-
perature is ~ 10000 K?

TURN OVER...



Question 5Z - Statistical Physics

(i) The entropy of a thermodynamic ensemble is defined by
S=—kg Y _p(n)logp(n),

where kg is Boltzmann’s constant. Explain what is meant by p(n). Write
down an expression for p(n) in the grand canonical ensemble and hence show
that the entropy S is related to the partition function Z(T, u, V') by

0
S =kg [a—T (T log Z)] MV,

where T' is the temperature, V is the volume, and p is the chemical potential.

(ii) Consider a gas of N non-interacting fermions with single-particle en-
ergy levels ¢;. Show that the grand canonical partition function Z is given
by

log Z = Z log (1 + e_(ei_“)/(kBT)) :

using the notation of Part (i).

Assume that the energy levels are continuous with density of states g(e) =
AVe® where A and a are positive constants. Show that

log Z = VT*f(1/T),
and give expressions for the constant b and the function f.

The gas undergoes a reversible adiabatic change. By considering the en-
tropy per particle S/N, show that p/T remains constant.

Deduce that V7T and pV? remain constant in this process, where ¢ and d
are constants whose values you should determine.



Question 6Z - Principles of Quantum Mechanics

(i) A particle moving in one dimension has position and momentum oper-
ators o and p, respectively, whose eigenstates obey

et (xldy =6 —a),  (plp) =dp—p).

(alp) = ——

Given a state [1) determine the corresponding position and momentum space
wavefunctions ¢ (z) and ¥ (p) and show how each of these can be expressed in
terms of the other.

(ii) Using the Dirac formalism compute (z|p|z’) and (p|z|p’).

The Hamiltonian for the particle described in Part (i) is

ﬁQ
H=2yv
om (),
where m is the mass of the particle. Calculate (x|H|z') and express (z|p|i)

and (z|H|¢) in terms of the position space wavefunction ¢ (x).

Compute the momentum space Hamiltonian for the harmonic oscillator
with potential
V(%) = mw?i?®/2,

where the frequency w is constant.

TURN OVER...



Question 7X - Stellar Dynamics and the Structure of Galaxies

(i) Dynamical friction is the net deceleration experienced by a massive
body with mass M moving with speed v through a sea of less massive particles
with mass density p. The change in speed of the massive body is

dv  G?pMInA
T 2 (*)

where In A & byax/boo, bog is the impact parameter yielding a deflection of 90°,
bmax 1S the maximal impact parameter considered and the massive body is as-
sumed to be a point mass. Describe astrophysical phenomena where dynamical
friction plays a key role.

Consider a spherical object with the Plummer-law density profile

5
3M r2\ 2
oar(r) = (1+ ) ,

4ma3 a?

where M is the mass of the object and a is its scale radius. The object
moves with speed v through a sea of point mass particles of mass m and
number density n. Using the impulse approximation, calculate the velocity
kicks a particle with impact parameter b acquires in the directions parallel and
perpendicular to its motion as a result of the interaction with the Plummer
sphere.

Note that/ i 1 v / de = -
(14 22)5/2 3 (1 + 22)3/2’ (142232 /Tt 22

(ii) Using conservation of energy and momentum for an interaction with a
single particle at impact parameter b and integrating over all impact parame-
ters, deduce the deceleration that the Plummer sphere of Part (i) experiences
as a result of interaction with many particles, assuming that the Plummer
sphere remains stationary during an interaction with a particle.

How does the resulting deceleration formula compare to the dynamical
friction formula (*) for a point mass?

Assume that the particles interacting with the Plummer sphere represent
Cold Dark Matter. The Cold Dark Matter is predicted to be arranged in a
hierarchy of clumps with a mass function

dn -

—xm -
dm



Approximating the clumps as point masses, comment on which mass range
makes the largest contribution to dynamical friction.

3 1 1 )

TURN OVER...



Question 8Y - Physics of Astrophysics

(1) A group of alien explorers leaves their home planet X (located close to
the centre of a spherical dwarf galaxy) in a rocket travelling at 1000 km s~
On arrival at each star they explore its planetary system and then head off
in a randomly chosen direction until they encounter another star within 0.1
pc of their path, at which point they visit this star and repeat the procedure.
The first star that they visit beyond 100 pc from X has a planetary system
containing habitable planet Y. Estimate the expected time interval between
leaving planet X and arriving at planet Y on the assumption that the explorers
spend 10 years exploring each star they visit on the way.

If Y is the tenth habitable planet that the aliens have visited, estimate the
fraction of stars in this galaxy that have habitable planets.

[Assume that the galaxy has uniform stellar number density of 10 stars
pc~3 within 100 pc of its core.]

(ii) Two identical supernovae explode simultaneously at points z = £ Ry, y =
0,z = 0 in a uniform medium of density 10~2! kg m™ where Ry = 3 pc. Each
supernova produces a spherical blast wave comprising a thin shell of swept up
interstellar medium whose radius (for ¢ < t) is given by

R= Ro(i>2/5. (*)

Lo

Evaluate tg in the case that one third of the total energy deposited in the
surrounding medium by the supernova, Egy = 10*], is contained in the kinetic
energy of the expanding shell.

At t > ty the two shells start to collide in the x = 0 plane. You may
assume that every point on the expanding shell expands according to (*) until
it reaches the x = 0 plane, at which point the component of the velocity in the
x direction of the colliding material is set to zero. If all the energy dissipated
in the collision is radiated away, show that the luminosity of the collision can

be written in the form
E p\ 1/
Lcoll - A ﬂ e 5
to to

where A is a constant that you do not need to evaluate.

Each of the original supernovae had an apparent magnitude of 10 as mea-
sured on Earth and involved the radiation of 1% of Egy over a timescale tgy = 1
day. Estimate the required limiting magnitude of a telescope that would be
able to detect the signature of the shell-shell collision.

10



[You may assume where required that A ~ 1]

END OF PAPER

11



B UNIVERSITY OF

NST2AS NATURAL SCIENCES TRIPOS Part II

Thursday 8 June 2017 09:00am — 12:00pm

ASTROPHYSICS - PAPER 3
Before you begin read these instructions carefully.
Candidates may attempt not more than sixz questions.

Fach question is divided into Part (1) and Part (ii), which may or may not
be related. Candidates may attempt either or both Parts.

The number of marks for each question is the same, with Part (ii) of each
question carrying twice as many marks as Part (1). Additional credit will be
given for a substantially complete answer to either Part.

Write on one side of the paper only and begin each answer on a sep-
arate sheet.

Answers must be tied up in separate bundles, marked X, Y, Z, according
to the letter associated with each question, and a cover sheet must be completed
and attached to each bundle. (For example, 1X, 2X and 7X should be in one
bundle and 3Y and 8Y in another bundle.)

A master cover sheet listing all Parts of all questions attempted must also
be completed.

It is essential that every cover sheet bear the candidate’s exami-
nation number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Script Paper (lined on one side) Astrophysics Formulae Booklet
Blue Cover Sheets Approved Calculators Allowed

Yellow Master Cover Sheets

1 Rough Work Pad

Tags

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator.




Question 1X - Relativity

(i) Consider the spherical static metric
ds* = A(r)dt* — B(r)dr? — r*(df* + sin*0d¢?). (%)
Write down the non-zero components of the affine connection T'%,.

Show that the component Ry, of the Ricci tensor is given by

Al/ A/ A/ Bl A/
ROOZ‘@*E(Z*E) B

where primes denote derivatives with respect to the radial coordinate r.
| You may assume that R;; = 0I5, /07 — 0L, /0x" + 5, —TLT5,. |

(ii) For the metric (*) of Part (i), the remaining components of the Ricci tensor
are

Fn=sa-ma\a+t5) B

1 r (A B
- 14— (==
fn =174 +QB(A B)’

— 102
R33 = R22 Sin 9,

where primes denote derivatives with respect to the radial coordinate r. Con-
sider a perfect fluid with energy-momentum tensor

A// A/ (A/ Bl) B 2/

T;; = (p+ p/*)uuj — pyij,

where p(r) and p(r) are the proper mass density and pressure of the fluid,
respectively. Show that the Einstein equations

1 G
Rij = —k (Tij — iTgij> ; K=

require

U; = C\/Z(S?,

1

Ry = —éff(PCQ‘i‘?)p)Aa
1

Ry = —§H(PC2—Z?)B>
1

Ryy = —éﬁ(PCQ—p)TQa

R33 = R22Sin29.



By eliminating the pressure p from these equations show that

zem(r)] ! |

c2r

B(r) = {1 -

where

m(r) = 4n /0 " p(s)sds.

Give a physical interpretation of this solution.

TURN OVER...



Question 2X - Astrophysical Fluid Dynamics

(i) The mass M and radius r of a polytrope of index n are related by
M o ri=n. For stars similar to the Sun it is observed that M oc r. Explain
which of the assumptions adopted to derive M o ri= do not generally hold
in such stars and why.

Consider a binary stellar system where a more massive companion fills its
Roche lobe and delivers a substantial fraction of its outer envelope material to
a smaller Sun-like star. Sketch the time sequence of the radius and mass of the
smaller star on the log r-log M plane for the case where the Roche lobe overflow
takes 1 Myr and 100 Myrs, respectively, and briefly explain your sketch.

(ii) Consider a star in hydrostatic equilibrium with mass M and radius R.
The total pressure is the sum of thermal and radiation pressure. The star’s
mean pressure is

_ 1 [B
P = V/o 4rr? P(r)dr

where V' is its volume. Show that P = E,/3V, where E, is the gravitational
binding energy of the star.

Assume that thermal and radiation pressure are equal. Hence find an
expression for the total pressure as a function of density alone.

Calculate the corresponding stellar mass My, in Solar masses. You may
assume that F, ~ Gquu /R and that the star is composed of fully ionized
hydrogen.

Using the virial theorem, roughly estimate the typical sound speed of a star
with mass equal to Meqy.

Assume that the stellar radius is Requ = 30 Rg. Determine whether the
changes in the radiation pressure occurring on a timescale of months can be
effectively communicated with the rest of the star.



Question 3Y - Introduction to Cosmology

(i) Discuss the physical processes leading to the production of light ele-
ments during Big Bang Nucleosynthesis.

(ii) Sketch a diagram of the relative abundances of the elements produced
in Big Bang Nucleosynthesis (BBN) as a function of n = ny,/n,, where n;, and
n, are the number densities of baryons and photons, respectively.

Explain the main reason for the behaviour of each element abundance as a
function of 7.

During BBN, an energy of 28.2MeV is released for every “He nucleus
formed. Estimate the increase in radiation temperature AT at the end of
BBN, assuming that all of the “He was formed when the radiation tempera-
ture was T' = 10° K. Is the temperature increase significant?

How does the *He abundance change if neutrino-like particles exist in ad-
dition to the three neutrino species of the Standard Model of particle physics.

TURN OVER...



Question 4Z - Structure and Evolution of Stars

(i) The dominant source of energy in the cores of stars with masses less
than 2 Mg, is the fusion of hydrogen to helium via the proton-proton chain (p-
p chain). The process can occur via three sequences of reactions, designated
p-p I, p-p II and p-p III, although the p-p I reaction is the primary route. The
p-p I chain proceeds via three reactions as follows.

H+H-H+e +v,

‘H+ H—He+7,
SHe + He — tHe + 'H+ 1H .

In the p-p II and p-p III chains, following the creation of SHe through the
second reaction above, the fusion proceeds via the creation of ZBe as

sHe +;He — [Be + 7 .

Subsequent interactions involve no further creation or destruction of 5He. Con-
sider two species X and Y with atomic masses ¢ and j, respectively, and their
abundances denoted by ‘X and Y, respectively. The reaction rate for a re-
action between the two species is given by r;; = A;; "X 7Y, where Aij is the
reaction cross-section. Show that the equilibrium abundance of 3He when all
three of the p-p chains are operating is given by

1
yHe = — [\/A§4(§He)2 + 2 1 A33(GH)? — A34 3He|.
2X33

You may assume that the lifetime of a deuterium nucleus in a stellar core is
extremely short and that deuterium thus rapidly achieves equilibrium abun-
dance.

(ii) A star of one solar mass and solar composition spends 10'° years on
the main sequence, with an average luminosity of 1L.. How much energy is
produced during the main-sequence phase?

What is the mass of the helium core at the end of the main-sequence
lifetime?

Following the main-sequence phase the star becomes a red giant with en-
ergy derived from a hydrogen-burning shell surrounding the core. The initial
luminosity at the bottom of the red giant branch is Ly ~ 1 L. The luminosity
on the red giant branch is a strong function of the helium core mass, with

L = KM? _ where K is a constant. The star remains a red giant until the



core mass reaches 0.45 M, when helium burning in the core begins. Calculate
the lifetime of the star on the red giant branch.

Following further short-lived evolutionary phases the star will end its life
as a white dwarf with a degenerate carbon core of mass M = 0.57 M. What
fraction of the star’s energy over its lifetime is produced while on the main
sequence?

[The energy per nucleon produced from fusing helium to carbon is approxi-
mately 9 per cent of the amount produced by fusing hydrogen to helium.]

TURN OVER...



Question 5Z - Statistical Physics

(i) Describe the Carnot cycle using plots in the pressure-volume (p-V') and
temperature-entropy (7-S) planes.

In which steps of the cycle is heat absorbed or emitted by the gas?
In which steps is work done on or by the gas?

(ii) An ideal monatomic gas undergoes a reversible cycle described by a
triangle in the pressure-volume (p-V') plane with vertices at the points A, B, C
with coordinates (po, Vo), (2po, Vo) and (pg, 2Vj), respectively. The cycle is tra-
versed in the order ABC A. Write down the equation of state and an expression
for the internal energy of the gas.

Derive an expression relating T'dS to dp and dV. Use your expression to
calculate the heat supplied to, or emitted by, the gas along AB and C' A.

Show that heat is supplied to the gas along part of the line BC' and heat
is emitted by the gas along the other part of this line.

Calculate the efficiency n = W/Q where W is the total work done by the
cycle and @ is the total heat supplied.



Question 6Z - Principles of Quantum Mechanics

(i) A quantum mechanical system consists of two identical non-interacting
particles with wavefunctions v;(z) and energies E;, i = 1,2,..., where E; <
FE5 < ... Show how the two lowest energy levels of the two-particle system are
constructed and discuss their degeneracy when the particles have (a) spin 0,
and (b) spin 1/2.

(ii) The Pauli matrices are

(01 (0 —i (1 0
=11 0) 27\i o) 7 \o -1/

Show how the Pauli matrices can be used to describe the spin operator S for
a particle of spin 1/2.

An electron is at rest in the presence of a magnetic field B = (B, 0,0) and
experiences an interaction of —uo - B. At time ¢t = 0 the state of the electron
is the eigenstate of the 3-component of S, s3, with eigenvalue h/2. Calculate
the probability that at a later time ¢ the electron will be measured to be in
the eigenstate of s3 with eigenvalue %/2.

TURN OVER...



Question 7X - Stellar Dynamics and the Structure of Galaxies

(i) For a tracer population with a number density v(r) and a radial velocity
dispersion ¢%(r) moving in a spherical gravitational potential ¢(r) the Jeans
equation is

20 do

2 2

a (VO_T) + TVO_T = —VE, (*)
0'2 0'2 .

where f = 1 — 02;"’ is the anisotropy parameter. Assume that the tracer

population shows no rotation and its density and the radial velocity dispersion
are power-laws, v o« r~7 and o, x r* Deduce the link between velocity
dispersion in the r and 6 directions, 02 and o3, and the circular velocity V2.

At large distances from the Sun, the Galactic stellar halo is measured to
have isotropic velocity dispersion, a density profile described by an index v = 4
and a constant radial velocity dispersion of 110 kms~!. What can you deduce
about the behaviour of the density of the dark matter halo between the Solar
radius and the Galactic outskirts?

At a certain radius in the outer halo of the Galaxy the radial velocity
dispersion starts to decrease from a constant value. What inference can you
make about the change in behaviour of the Milky Way’s stellar and dark matter
halos?

(ii) Re-write the Jeans equation (*) of Part (i) using the integrating factor

Q(r) satisfying
dIn@(r) _ 25(r)

dr r

Prove that the local three-dimensional velocity dispersion is

dIn(r3Q1)
2 _ 2
T

Show that the average three-dimensional velocity dispersion of tracer par-
ticles within a sphere with radius 7.y is

47T Tout
Ntot 0

(0%) Quad(r’Q™"),

where N is the total number of tracer particles.

Hence show that the spherical Jeans equation is consistent with the scalar
virial theorem.
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Question 8Y - Physics of Astrophysics

(i) A gravitational wave was detected at location A 7 ms after it was
detected at location B, where A and B are two points on the Earth’s surface
separated by 3000 km. Assuming that gravitational waves travel at the speed
of light, describe the constraints that can be placed on the location of the
source of gravitational wave emission.

It is proposed to add a further detector at position C on the Earth’s surface.
Explain how this could be used to further constrain the location of future
gravitational wave events.

Explain whether you would choose a site for C which lies along the line
AB.

(ii) A cloud of gas, of radius 0.1 pc and located 10 pc from a starburst
region is ionised by radiation from the starburst and produces a luminosity in
the Ha line of 2 x 10%® W. Assume that the cloud density is 107 kg m— and
use the data given below to discuss whether you expect the main de-excitation
mechanism from the n = 3 to n = 2 state to be radiative or collisional.

Estimate the total number of ionising photons per second produced by the
starburst if on average it takes around 10 ionisations before an Ha photon is
generated.

A simplified prescription for the rate of ionising photons produced by a star

of mass m, is given by
m L5
(I)ion = 1049 — _17
(1OOM@) °

for m, > 17M and zero otherwise. Assume that the stars in the starburst are
distributed according to a Salpeter IMF (i.e. the number of stars per linear
mass interval scales as m; 2% for m, in the range 0.1M, to 100M). Assume
further that the average stellar lifetime for stars more massive than 17Mg is
3 Myr. Estimate the total star formation rate in the starburst.

[The Ha line of hydrogen corresponds to the n = 3 to n = 2 transition,
where the electronic energy levels are given by E,, = —13.6eV/n?. The rate of
radiative de-excitation from n = 3 to n = 2 is 4 x 10" s~! and the cross-section
for collisional de-excitation of the n = 3 state is 107!®* m?. You may assume
where required that the gas temperature is 10* K.

END OF PAPER
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Question 1X - Relativity

(i) Consider a five-dimensional ‘warped’ spacetime with metric,
ds* = gryda’de’ = e AW datde? — dw?®,  ny = (1, —1,—1,-1). ()
Show that the non-zero components of the five-dimensional affine connections,

e — L pr <39NR 4 Ogrum 89MN)’

MN- §g oxM oxN  OzR

are
Ly =—Ae™n,, Ty =-Aby,

where primes denote derivatives with respect to the coordinate z* = w, lower

case latin indices run from 0-3 and upper case latin indices run from 0-4.

If A = |w|/L, where L is a constant, show by integrating over the fifth

dimension w, that
L
/\/ lg| d*x dw = 5 /d4x.

(ii) Adopting the same notation as in Part (i), show that for the metric (*)
the non-zero components of the Ricci tensor are

Rij = (A” — 4A'2)e_2Amj, R44 = 4(14/2 — A//).
Show that the five-dimensional Einstein equations

Gun = Run — §QMNR = —KTun,

where k is a constant, require
Gy = —6A% = A,
if Ty = Agun /K, where A is a constant.

Show that if we require a solution that is invariant under the transformation
w — —w, the cosmological constant A must be negative and that the metric
(*) takes the form
ds? = e_2|“’|/Lmjdxidxj — duw?,

where L = (—A/6)~1/2.
Give a physical interpretation of this solution.

[ You may assume that Ry y = 0T%, /02N — 00%, /02" + T p0hy — T NThp.



Question 2X - Astrophysical Fluid Dynamics

(1) Demonstrate explicitly that the Helmholtz equation for inviscid barotropic
flows implies that the vorticity flux moves with the fluid.

In the case of a non-barotropic flow, derive a generalized Helmholtz equa-
tion and describe the physical meaning of all terms contributing to the time
evolution of vorticity.

(ii) From the momentum equation derive the Bernoulli equation for a
steady, self-gravitating, barotropic flow. Explain the physical meaning of the
different terms in the equation.

Show that the Bernoulli equation still holds in the case of ideal magnetohy-
drodynamics (MHD) when the magnetic field B is parallel to the streamlines.

Consider now an ideal MHD flow where the fluid velocity w is perpendicular
to the magnetic field B = (0,0, B,) and the flow is independent of the z-
coordinate. Show that the time evolution of the magnetic field is given by

0B,
ot

-V - (B,u).

Show that for this flow the magnetic field contribution in the momentum
equation can be viewed as a pressure term and discuss qualitatively how this
affects the physical interpretation of the Bernoulli equation.

TURN OVER...



Question 3Y - Introduction to Cosmology

(i) Discuss briefly the evidence for the existence of dark matter in spiral
galaxies and galaxy clusters.

How does the typical mass-to-light ratio in the B-band in these two classes
of objects compare with the average for the Solar neighbourhood?

The discs of spiral galaxies typically show an exponential light distribution,
with surface density X(r) given by

(r) = Xoe ", (%)

where r, is the exponential scale length and X is the central surface density.
Assume a constant mass-to-light ratio M /L independent of radius, and hence
calculate the total stellar mass of the stellar disk.

(ii) Starting from the Robertson-Walker metric show that proper distance
[ and redshift z are related by

dl c

dz ~ H()(1+2)
where H(z) is the Hubble parameter.

Assume a population of disc galaxies with comoving number density ng =
1072 Mpc 3 exists at z = 3 that have gaseous discs with an exponential surface
mass density profile as in (*) of Part (i). Assume further that the hydrogen in
the disc is neutral and that the neutral hydrogen causes Lya absorption in a
background quasar at z > 3. Calculate the incidence rate dN'/dz of absorbers
with neutral hydrogen column density Ny > 2 x 10*cm~2. You may neglect
the variation of column density with viewing angle.

[Assume that the present-day contributions to the critical density by cur-
vature, matter and the cosmological constant are 2o =0, Q0 = 0.3 and
Qa0 = 0.7. Assume further that r, = 4 kpc and g = 4.5gcm™2. |



Question 4Z - Structure and Evolution of Stars

(1) The energy source of a cloud of mass M collapsing to form a protostar
with radius R is gravitational potential energy. The initial cloud radius is
> R, and the gas is composed of hydrogen and helium with mass fractions
X and Y respectively. Any small fraction of metals may be ignored. The
hydrogen is initially in molecular form. Assume that half the gravitational
potential energy released ionizes the gas with no significant energy loss due to
radiation. Show that the protostar radius is related to the cloud mass and the
mass fraction of hydrogen by the relation

R, K M
Ry 1-02X My’

where K is a constant to be determined.

[The energy required to disassociate a hydrogen molecule is 4.5eV and the
energy required to ionize a hydrogen and helium atom is 13.6eV and 79.0eV,
respectively]

(ii) Once a protostar of luminosity L and mass M between 0.5 and 10 Mg
has reached the bottom of the Hayashi track on the Hertzsprung-Russell dia-
gram, the internal temperature rises and the opacity decreases. Energy trans-
port is no longer due to convection and the star achieves radiative equilibrium.
As the star continues to shrink in size, the effective temperature T, increases.
The star follows a so-called “Henyey track”, migrating across the Hertzsprung-
Russell diagram towards a location on the zero-age main sequence determined
by its mass. Assume that the opacity per unit mass is given by Kramer’s
opacity law with x oc pT 3%, where p is the density. The rate of change in the
structure of the star is sufficiently slow that it can be assumed that the virial
theorem applies. Calculate the logarithmic slope of the Henyey track in the
Tog — L plane.

For very massive stars, material becomes completely ionised and the dom-
inant opacity is due to electron scattering, i.e., kK = constant. How does the
logarithmic slope in the T,g — L plane change?

What is the relevant timescale for the evolution of stars on the Hayashi
and Henyey tracks?

Where does a star spend the majority of time in the T, — L plane prior to
arriving on the zero-age main sequence?

TURN OVER...



Question 5Z - Statistical Physics

(i) The van der Waals equation of state is

o kZBT a

v—>b 0?2’

p

where p is the pressure, v = V/N is the volume divided by the number of
particles, T" is the temperature, kg is Boltzmann’s constant, and a, b are posi-
tive constants. Explain what is meant by the critical point and determine the
values p., v., T, corresponding to this point.

(ii) Prove that the Gibbs free energy G = E + pV — T'S satisfies G = uN,
where E' is the internal energy, S is the entropy, u is the chemical potential,
and the remaining quantities are as defined in Part (i).

Derive an expression for (Ou/0p)rn and use it to explain the Maxwell
construction for determining the pressure at which the gas and liquid phases
can coexist at a given temperature.

By defining p = p/p., ¥ = v/v. and T = T/T,, derive the law of corre-
sponding states -
8T 3
3v—1 %
To investigate the behaviour near the critical point, let 7 = 14+t and 0 = 1+ ¢,
where ¢t and ¢ are small. Expand p to cubic order in ¢ and hence show that

]5:

(%) N ‘§¢2 +0(¢°) +t[-6+ O(¢)].

At fixed small ¢, let ¢;(t) and ¢4(t) be the values of ¢ corresponding to the
liquid and gas phases on the co-existence curve. By changing the integration
variable from p to ¢, use the Maxwell construction to show that ¢;(t) = —¢,(t).

Deduce that as the critical point is approached along the co-existence curve

— = 1/2
Vgas — Vliquid ™~ (Tc - T) / .



Question 6Z - Principles of Quantum Mechanics

(i) The Hamiltonian for a quantum system in the Schrodinger picture is
Ho+ AV (1),

where Hj is independent of time and the parameter \ is small. Define the inter-
action picture corresponding to this Hamiltonian and derive a time evolution
equation for eigenstates in the interaction picture.

(ii) Let |n) and |m) be eigenstates of Hy in Part (i) with distinct eigenvalues
E, and E,,, respectively. Show that if the system is initially in state |n) then
the probability of measuring it to be in state |m) after a time ¢ is

2

2| ft
A /dt'(m|V(t’)|n)ei(Em_E")t//h + O(N) .
0

h2

Deduce that if V(t) = e /", where W is a time-independent operator
and p is a positive constant, then the probability for such a transition to have
occurred after a very long time is approximately

)\2
p? + (Em - En)

S [(m[Wn)[* .

TURN OVER...



Question 7X - Stellar Dynamics and the Structure of Galaxies

(1) A polytrope is a form of the distribution function f which is a power-law

of relative energy & = —F + &) = ¥ — %v2 such that

;e FE™3, £>0,
0 . E£<0,

where F'is a constant and ¥ = —® + P, is the relative potential. Using the
substitution v? = 2W cos? ), show that the density p of the polytrope varies as

poc U,

Assuming that p(r) = CU", where C'is a constant, derive the Lane-Emden

equation

1 d de _ _wn7 Q/} > 07

e (75) =17 vz "
where s = /b, b= (47rGWI~'C) "2 and ¢ = U/ ¥, with ¥y = ¥(0).

(ii) Show that the solution of the Lane-Emden equation (*) of Part (i) for
the case n =1 is

T/s—1, s>m.

b= { (sins)/s, s<m,

Find the total mass of the polytrope using the definitions of the variables
s and 1 of Part (i).

For a polytrope with an arbitrary index n, how does the velocity dispersion
depend on the relative potential 1?



Question 8Y - Physics of Astrophysics

(i) A young solar mass star is observed to undergo sinusoidal variations in
its radial velocity with amplitude 1.2 km s ~! and a period of 9 days. The star
is surrounded by a large scale protoplanetary disc whose major and minor axes
on the sky are 2.1 and 1.7 arcseconds, respectively. Assume that the radial
velocity variations are caused by a planet whose orbit is co-planar with the
large-scale disc. Determine the mass and orbital radius of the planet.

What can you deduce about the eccentricity of the planet from the infor-
mation given in the question?

(ii) A rocky planetesimal falls inwards on a radial orbit through a gaseous
protoplanet. The planetesimal is accelerated by the local gravitational attrac-
tion of the planet ¢g(r) and decelerated by hydrodynamical drag aqrag (), where
r is the distance of the planetesimal from the centre of the planet. Show that
if the local value of the planetesimal’s terminal velocity v;(r) is much less than
the local free-fall velocity vg(r) then the planetesimal will move a distance that
is a small fraction of r before it attains terminal velocity.

Derive an expression for v,(r) in the case that

3ppl(7“)7;2
8prockb ’

Qdrag =

where ppi(r) is the local density of the planet, 7 is the planetesimal’s veloc-
ity, prock 1S the mass density of the planetesimal and b is the radius of the
planetesimal.

Explain what conditions need to be met in order that 7 is close to v(r) at
all radii.

Now assume that the drag also causes the planetesimal to lose mass, and
hence change its radius at a rate given by

6 = Appl(r)fﬁ?
where A is a constant that depends on the property of the planetesimal rock.

Show that if the planet can be approximated as a uniform sphere of radius
R, the radius of a planetesimal of initial size by is given by

b= byexp(B(r* — R))

TURN OVER...



where B = 167 G prock A pp1/9.

By what factor does a planetesimal of initial size 100 m reduce in size when
falling to the centre of a uniform density planet of mass 10?” kg and radius
6 x 108 m?

[You may assume that pra = 5000 kg m™3 and A =5 x 10713 m3 J 71

END OF PAPER
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