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Question 1X - Relativity

(i) The four-velocity of a particle is defined as uµ = dxµ/dτ , where xµ are
the spacetime coordinates of the particle (µ = 0–3) and τ is the proper time.
Derive the components of the four-velocity in an inertial frame in which the
particle is moving with three-velocity u.

Two particles have three-velocities u1 and u2 in some inertial frame. Show
that their relative speed, βrelc, satisfies

(1− β2
rel)
−1/2 = γ(u1)γ(u2)

(
1− u1 · u2

c2

)
,

where γ(u) = (1− u2/c2)−1/2 is the Lorentz factor for a three-velocity u and
c is the speed of light.

(ii) High energy protons can interact with photons of the cosmic microwave
background to produce pions via the ∆+ resonance:

γCMB + p→ ∆+ → p + π0.

Show that for ultra-relativistic protons, the threshold energy Ep in the labo-
ratory frame for the production of pions is

Ep ≈
mpmπc

4

2Eγ

(
1 +

1

2

mπ

mp

)
,

where Eγ is the energy of the photon and mp and mπ are the proton and pion
rest masses, respectively.

Estimate Ep, taking the temperature of the cosmic microwave background
to be 2.73 K and the pion rest mass mπ = 135 MeV/c2.
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Question 2Y - Astrophysical Fluid Dynamics

(i) Write down the definition of a conservative force and show why this
means that such a force can be written as the gradient of a scalar potential.

Explain what is meant by the Gaussian surface method. Apply this method
to a sphere of radius Rout, which is hollow in the centre up to some radius
Rin < Rout, and has a mass M . Thus derive the magnitude and orientation of
the gravitational acceleration g, both inside Rin and outside Rout.

Using the relevant timescales derive an approximate expression for the
Jeans length and explain the physical reasoning behind the choice of these
timescales. List astrophysical examples where Jeans instability plays a funda-
mental role.

(ii) Consider a spherical homogeneous Giant Molecular Cloud (GMC) with
density ρ, radius λ and temperature T , comprised of gas with a mean molecular
weight µ and adiabatic index γ. Write down an expression for the thermal
energy K as a function of these parameters.

Under the assumption of virial equilibrium derive the Jeans length and
Jeans mass of this GMC and comment on the physical meaning of the depen-
dences on ρ, T and µ.

Small perturbations to the GMC result in a new mean density and tem-
perature, ρn and Tn, resulting in a new Jeans mass MJ,n. If the temperature
of the cloud depends on its density as T ∝ ργ−1, determine the values of γ for
which fragmentation ensues.

Discuss the possibility of fragmentation in the adiabatic and isothermal
limit and so discuss briefly how radiative gas cooling may promote star forma-
tion within GMCs.

TURN OVER...

3

2016 University of Cambridge. Not to be quoted or reproduced without permission



Question 3X - Physical Cosmology

(i) The distance modulus is defined by m−M = 5 log10(dL/10 pc), where
m is the apparent magnitude, M is the absolute magnitude, and dL is the
luminosity distance. Given that the galaxy Cam 300 has a distance modulus
of +30, what is its distance in parsecs?

Knowing that the Sun has an absolute magnitude in the B-band of MB '
+5, estimate the approximate apparent magnitude mB of the galaxy Cam 300
if its stellar mass is similar to that of the Milky Way, stating any assumptions
made.

Explain what is meant in astronomy by the terms ‘standard candle’ and
‘standard ruler’. Explain their application to cosmological distance determi-
nations.

(ii) Give two examples of standard candles of particular importance for
cosmology, highlighting their main advantages and limitations.

Derive expressions for the angular diameter distance and luminosity dis-
tance as a function of redshift z for a spatially-flat Friedmann–Robertson–
Walker universe filled with pressureless matter and with Λ = 0. You should
express your answers in terms of the present-day Hubble parameter H0.

The surface brightness Σ of an astronomical object is defined as its observed
flux f divided by its observed angular area (δθ)2, so that Σ = f/(δθ)2. For
a class of objects that are both standard candles and standard rulers, deduce
the functional dependence of Σ on redshift z.

Explain generally whether observing the surface brightness of such a class
of objects can be used to determine cosmological parameters such as Ωm,0,
Ωk,0, and ΩΛ,0 (where Ωm,0, Ωk,0, and ΩΛ,0 are the present-day contributions to
the critical density by, respectively, matter, curvature, and the cosmological
constant)?
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Question 4Z - Structure and Evolution of Stars

(i) Sketch the behaviour of the radius of the Sun as a function of age.
Set the origin as the time the Sun first appears on the Hertzsprung-Russell
diagram. Annotate the plot to indicate the evolutionary phase corresponding
to significant changes in the Solar radius.

(ii) A star on the red-giant branch possesses an isothermal core of radius
rc � Rstar and a density distribution as a function of distance from the centre,
r, given by

ρ(r) = ρ0(1− r/Rstar),

where ρ0 is a constant and Rstar is the stellar radius.

Show that the mass of the core is given by

Mc '
4πr3

c

3
ρ0.

Show that the pressure at the centre of the core is

P0 = Pc +
2π

3
Gρ2

0r
2
c ,

where G is the gravitational constant and Pc is the pressure at the core bound-
ary.

Assuming that P0 � Pc and that the equation of state is that for an ideal
gas, show that the temperature at the centre of the core is

T0 '
2πGµ

3R
r2

cρ0,

where µ is the mean molecular mass and R is the gas constant.

TURN OVER...
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Question 5Z - Statistical Physics

(i) Consider an ideal quantum gas with one-particle states |i〉 of energy

εi. Let p
(ni)
i denote the probability that state |i〉 is occupied by ni particles.

Here, ni can take the values 0, 1 for fermions and any non-negative integer for
bosons. The entropy of the gas is given by

S = −kB

∑
i

∑
ni

p
(ni)
i ln p

(ni)
i , (∗)

where kB is Boltzmann’s constant. Write down three constraints that must
be satisfied by the probabilities if the average energy 〈E〉 and average particle
number 〈N〉 are kept at fixed values.

Use variation of the entropy to show that a maximal S implies

p
(ni)
i =

1

Zi
e−(βεi+γ)ni , (∗∗)

where β and γ are Lagrange multipliers, and you should provide an expression
for Zi.

(ii)

Use the results from Part (i), the expression (∗), and the first law of ther-
modynamics to interpret the meaning of the Lagrange multipliers in equation
(∗∗).

Use the probabilities p
(ni)
i from equation (∗∗) to calculate the average oc-

cupation number 〈ni〉 =
∑

ni
nip

(ni)
i for Fermi-Dirac and for Bose-Einstein

gases.
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Question 6Z - Principles of Quantum Mechanics

(i) A particle in one dimension has position and momentum operators x̂
and p̂ whose eigenstates obey

〈x|x′〉 = δ(x−x′) , 〈p|p′〉 = δ(p−p′) , 〈x|p〉 = (2π~)−1/2eixp/~ .

Given a state |ψ〉, define the momentum-space and position-space wavefunc-
tions ψ̃(p) and ψ(x), respectively, and show how each of these can be expressed
in terms of the other.

Write down the translation operator U(α) with the property that U(α)|x〉 =
|x+ α〉 and relate the momentum-space and position-space wavefunctions for
U(α)|ψ〉 to ψ̃(p) and ψ(x), respectively.

(ii) Consider a harmonic oscillator of mass m and frequency ω with nor-
malised energy eigenstates |n〉 and corresponding wavefunctions ψn(x) and
ψ̃n(p) with n = 0, 1, 2, . . . . Using results from Part (i) or otherwise, express
ψ0(x− α) and ψ1(x− α) in terms of the wavefunctions ψn(x).

Show also that if ψ̃n(p) = fn(p) ψ̃0(p) for polynomials fn, then

e−iαp/~ = e−mωα
2/(4~)

∞∑
n=0

(mω
2~

)n/2 αn√
n!
fn(p) .

[ You may quote standard results regarding the eigenstates of a harmonic
oscillator with annihilation and creation operators

a =
(mω

2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)
.

You may also use, without proof, the result

eA+B = eAeBe−
1
2

[A,B]

for any operators A and B which both commute with [A,B]. ]

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Starting with Newton’s Second Law, prove that energy is conserved for
an orbit in a steady state potential.

Consider a Keplerian orbit satisfying the following equation in polar coor-
dinates (r, φ)

1

r
=
GM

h2
[1 + e cos(φ− φ0)],

where G is the gravitational constant, M is the mass of the central body, h
is the specific angular momentum, e is the eccentricity of the orbit, and φ0 is
a constant. Show that the orbital energy is E = −GM/(2a), where a is the
semi-major axis size.

(ii) The gravitational potential

Φ = − GM

b+
√
b2 + r2

,

where G, M and b are constants and r is the distance from the origin, is called
the isochrone potential. Show that in the isochrone potential, the energy of a
circular orbit is given by E = −GM/(2a), where a =

√
b2 + r2.

Let the angular momentum of this orbit be Lc(E). Show that

Lc =
√
GMb(x−1/2 − x1/2),

where x ≡ −2Eb/(GM).

The isochrone potential is generated by matter with a density ρ(r). Deter-
mine ρ(r) in the limits r → 0 and r � b, and comment on how this compares
to observations of real globular clusters.
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Question 8Y - Physics of Astrophysics

(i) Two stars, A and B, are separated on the sky by 0.2 arcsec in the Orion
star forming region which is 450 pc from Earth. Ten years later the projected
separation of the pair is 0.21 arcsec and their separation vector has rotated
through an angle of 3◦ on the sky. If the masses of the two stars are 1M�
and 0.5M�, determine whether the pair is definitely gravitationally bound,
unbound or indeterminate on the basis of the information provided.

What other data is relevant to deciding whether the pair is unbound or
not?

(ii) The young star RW Auriga A is surrounded by a disc of dusty gas
of radius 60 au from which extends a tidal arm. This arm is believed to be
composed of marginally bound disc material that was stripped off during a
close encounter (at interstellar separation ∼ 60 au) between this star and a
low mass companion star, RW Auriga B. Provide a rough estimate of the
expansion velocity of the tidal arm material with respect to RW Auriga A.

Recently RW Auriga A became rapidly dimmer over a period of 20 days and
remained in this state for 6 months. It has been suggested that this dimming
event was due to a dense blob of gas in the tidal arm temporarily occulting
the star. Evaluate whether this is a plausible explanation and, if so, what size
of dense blob is required to explain these observations.

During the dim phase, observations of the 5897.5 Å NaI D1 line showed a
deep absorption feature at a wavelength of 5896.3 Å. Determine whether the
blob of gas mentioned above is likely to be responsible for this absorption.

Estimate the maximum relative velocity of the two stars at closest approach
if another close encounter is to be expected between them during the next 104

years.

The opacity of neutral sodium (NaI) at the centre of the D1 line is 4 ×
108 m2 kg−1. Given that the line is opaque at its centre, estimate the minimum
column density of hydrogen in the absorbing material. You may assume that
the relative atomic mass of sodium is 23 and that the ratio of Na to H in the
gas is 10−9 by number.

[ You may assume RW Auriga A has a mass 1M� and radius 1.6R�. ]

END OF PAPER
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Question 1X - Relativity

(i) The equation for the parallel transport of a vector Ai along a path xi(u)
is

dAi

du
= −ΓijkA

j dx
k

du
,

where Γijk are the Christoffel symbols. Now consider the parallel transport of
the vector Ai around a small closed contour C in the neighourhood of a point
P , with coordinates xiP , that lies on the contour. By expanding Ai and Γijk to
first order in the displacement xi(u)− xiP ,

Ai(u) = Ai(uP )− Γijk|PAj(uP )[xk(u)− xkP ],

Γijk[x(u)] = Γijk|P + ∂lΓ
i
jk|P [xl(u)− xlP ],

show that the change in the vector Ai when parallel transported from P around
the closed contour C is

∆Ai = −(∂lΓ
i
jk − ΓimkΓ

m
jl )|PAj(uP )

∮
xl dxk.

Hence show that

∆Ai = −1

2
Ri

jkl|PAj(uP )

∮
xk dxl,

where Ri
jkl|P is the curvature tensor at point P .

Give a geometrical interpretation of this result.

(ii) Consider a two-sphere of radius a with metric

ds2 = a2dθ2 + a2 sin2 θdφ2,

where θ and φ are spherical polar coordinates. Show that the only non-zero
Christoffel symbols are

Γθφφ = − sin θ cos θ,

Γφθφ = Γφφθ = cot θ.

Consider the parallel transport of a vector V i along a curve defined by
θ = θ0 = const. on the two-sphere. Show that

V θ(φ) = A cosαφ+B sinαφ,

V φ(φ) = C cosαφ+D sinαφ,

where A, B, C and D are constants and α = cos θ0.

Discuss the solutions if (V θ, V φ) = (U, 0) at φ = 0, contrasting the be-
haviour of the solutions for θ0 = π/2 and θ0 ≈ 0.
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Question 2Y - Astrophysical Fluid Dynamics

(i) For a steady-state fluid with a barotropic equation of state, derive
Bernoulli’s constant and explain its physical meaning.

Consider an incompressible fluid filling an open cylindrical tank of radius
R1 up to a height h on the Earth’s surface. A small nozzle of radius R2 � R1 is
opened at the bottom of the tank. Assuming steady state find the velocity u at
which fluid passes through the nozzle as a function of h and the gravitational
acceleration g.

(ii) A spherical asteroid of radius r is embedded in the Solar wind which
hits the asteroid with speed u0. The wind is supersonic with a Mach number
� 1 and has an adiabatic index γ = 5/3. As a result a bow shock forms as
sketched below:

Consider the point on the bow shock A whose normal to the asteroid’s surface
forms an angle θ with respect to the incident direction of the wind. Determine
the Mach number in the post-shock flow, Mpost, as a function of θ.

For which values of θ is the flow behind the bow shock subsonic?

What is the sound speed in terms of u0 at the location where Mpost = 1?

Show by explicit substitution of the quantities derived above that the third
Rankine-Hugoniot condition is satisfied along each streamline both in the pre-
shocked and post-shocked gas.

[ You may assume the second Rankine-Hugoniot condition in the form:

M2
2 =

2+(γ−1)M2
1

2γM2
1−(γ−1)

. ]

TURN OVER...
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Question 3X - Physical Cosmology

(i) Show that for a pressureless matter-dominated universe with Λ = 0,

ρ0 =
3H2

0

4πG
q0,

and
kc2

a20
= (2q0 − 1)H2

0 ,

where q ≡ −aä/ȧ2 is the deceleration parameter, a is the scale factor, k is the
curvature, H is the Hubble parameter, ρ is the density, G is the gravitational
constant, and c is the speed of light. The subscript 0 indicates the present
time.

(ii) Show that in the model of Part (i), at a general time(
ȧ

a

)2

= H2
0

[
2q0

(a0
a

)3
+ (1− 2q0)

(a0
a

)2]
. (∗)

Consider the case of an open universe (0 ≤ q0 ≤ 1/2). By introducing
conformal time η, with dη = dt/a, or otherwise, derive the following parametric
solution of (∗),

a

a0
=

q0
1− 2q0

(coshw − 1) ,

H0t =
q0

(1− 2q0)3/2
(sinhw − w) ,

where the parameter w ≥ 0.

Calculate the current age of such a universe with q0 = 0.15 in units of
1/H0.

Find the asymptotic form of a(t) at late times and calculate the asymptotic
value of the deceleration parameter. Comment on your result.
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Question 4Z - Structure and Evolution of Stars

(i) Show that under suitable approximations (which you should state) the
mean molecular mass in a stellar interior is given by

µ =
4

(3 + 5X)
,

where X is the mass fraction of hydrogen.

Derive an approximate expression for the relation between the hydrogen
mass fraction and the number of free electrons per nucleon within a stellar
interior in which material is fully ionized.

Assuming that the Sun is halfway through its lifetime on the main sequence,
what is the approximate value of the hydrogen mass fraction within the nuclear
burning core?

(ii) For a star in hydrostatic equilibrium it can be shown that the central
pressure Pc, central density ρc and the mass of the star M are related by
Pc ' 0.5GM2/3ρ

4/3
c , where G is the gravitational constant. If the total pressure

is due to the contributions of gas pressure Pg and radiation pressure Pr, such
that Pg = βPc and Pr = (1 − β)Pc, where β is a dimensionless parameter,
derive an expression that shows how the contributions of Pg and Pr depend on
the stellar mass.

Adopting a value of β = 0.5 to indicate when radiation pressure limits the
mass of a star, estimate the maximum mass of a star.

For the most massive stars on the zero-age main sequence the luminosity
exceeds the Eddington luminosity and significant mass loss occurs. For such
stars it is found that their masses scale linearly with their radii. Assume
that the radiation pressure associated with a fraction f of the luminosity L
accelerates material in the photosphere to the escape velocity vesc, at which
point the material escapes from the star. Derive an expression that shows the
dependence of the mass-loss rate Ṁ on the luminosity, mass and radius of the
star.

TURN OVER...
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Question 5Z - Statistical Physics

(i) Briefly describe the canonical ensemble.

Consider a system in the canonical ensemble with temperature T that can
be in states |n〉 , n = 0, 1, 2, . . . with energies En. Write down the partition
function for this system and the probability p(n) that the system is in state
|n〉.

The average of a quantity A of the system is defined as

〈A〉 =
∑
n

p(n)An .

Derive expressions for the average energy 〈E〉, the specific heat ∂〈E〉/∂T , and
the entropy 〈S〉 = −kB

∑
n p(n) ln p(n), in terms of the partition function,

where kB is Boltzmann’s constant.

(ii) Consider an anharmonic oscillator with energy levels

En = ~ω

[(
n+

1

2

)
+ δ

(
n+

1

2

)2
]
, (n = 0, 1, 2, . . . ),

where ω is a constant and 0 < δ � 1 is a small constant. Let the oscillator be
in contact with a reservoir at temperature T . All following calculations are to
be performed to linear order in δ. Show that the partition function Z1 for a
single oscillator is given by

Z1 =
c1

sinh(x
2
)

[
1 + c2δx

(
1 +

2

sinh2(x
2
)

)]
,

where x = ~ω/(kBT ), and c1 and c2 are constants to be determined.

Show that the average energy of a system of N uncoupled oscillators of this
type is given by

〈E〉 =
N~ω

2

{
c3coth

x

2
+ δ

[
c4 +

c5

sinh2(x
2
)

(
1− xcoth

x

2

)]}
,

where c3, c4, c5 are constants to be determined.
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Question 6Z - Principles of Quantum Mechanics

(i) Let | j m 〉 be standard angular momentum eigenstates with labels spec-
ifying eigenvalues for J2 and J3, where J is the total angular momentum and
J3 is the 3-component of the angular momentum. Taking units in which ~ = 1,
and quoting any angular momentum commutation relations that you require,
verify the formulae

J±| j m 〉 = [ (j∓m)(j±m+1) ]1/2| j m±1 〉 .

You need not derive restrictions on the values of j and m.

(ii) Two particles, each of spin s > 0, have combined spin states |J M 〉.
Find expressions for all such states with M = 2s−1 in terms of product states.

Suppose now that these particles move about their centre of mass with a
spatial wavefunction that is a spherically-symmetric function of relative po-
sition. If the particles are identical, what spin states |J 2s−1 〉 are allowed?
Justify your answer.

Now consider two particles of spin 1 that are not identical and are both
at rest. If the 3-component of the spin of each particle is zero, what is the
probability that their total combined spin is zero?

TURN OVER...
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) What is meant by the epicyclic approximation?

Starting with the equation of motion in an axi-symmetric potential Φ(R, z),
and assuming that circular orbits exist, derive the following expressions for
the radial and vertical frequencies, respectively, for orbits near the plane of
symmetry at z = 0:

κ2 =

(
R
dΩ2

dR
+ 4Ω2

)
Rg

,

γ2 =

(
∂2Φ

∂z2

)
(Rg,0)

,

where Ω(R) is the circular frequency and Rg is the guiding radius.

(ii) Let Φ(R, z) be the axi-symmetric Galactic potential. At the Solar
location, (R, z) = (R0, 0), prove that

∂2Φ

∂z2
= 4πGρ0 + 2(A2 −B2),

where G is the gravitational constant, ρ0 is the density in the Solar neighbor-
hood and A and B are Oort’s constants.

The Oort constants are A = 14.5 km s−1 kpc−1 and B = −12 km s−1 kpc−1.
Explain why these values imply that the density in the Galaxy falls off as
∼ R−2.

Consider one of the Jeans equations in cylindrical polar coordinates (R, φ,
z):

∂(νvz)

∂t
+
∂(νvRvz)

∂R
+
∂(νv2z)

∂z
+
νvRvz
R

+ ν
∂Φ

∂z
= 0,

where ν is the density of stellar tracers, vR and vz are, respectively, the radial
and vertical velocities, and Φ is the potential. Explaining your assumptions
carefully, describe how kinematic measurements of stars in the Solar neighbor-
hood can be used to determine the local total matter density ρ0.
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Question 8Y - Physics of Astrophysics

(i) A black hole of mass 108M� is ejected at 1000 km s−1 from a galactic nu-
cleus. One possible mechanism for its ejection is that of a three-body slingshot
involving three black holes of similar mass at a separation of 1 pc. Another
involves the coalescence of two black holes in a roughly equal mass binary
which spiral in from a separation of 10−3 pc as a result of gravitational wave
emission. It is believed that asymmetric gravitational wave emission can re-
sult in the merger product acquiring kinetic energy of up to 1% of the binary’s
initial binding energy. Determine whether either or both of these mechanisms
are viable in this system.

If the black hole’s host galaxy is located at the centre of a rich cluster of
galaxies containing 1000 galaxies of radius 20 kpc within a radius of 30 Mpc,
what is the probability that the ejected black hole passes through another
galaxy? You may assume that gravitational focussing can be ignored.

(ii) An ejected black hole with parameters as given in Part (i) passes
through the disc of a galaxy with stellar surface density 50 pc−2. On aver-
age how many stars will be directly swallowed during its passage through the
disc?

Estimate how much energy must be dissipated for a main sequence star in
the galactic disc to end up bound to the black hole. Is it plausible that this
could be achieved via the dissipation of tides raised in the star?

The change in velocity of a star of mass m∗ encountering a point mass
M � m∗ with impact parameter b and velocity at infinity v∞ is given by
∆v = 2GM/(bv∞), where G is the gravitational constant. Assuming that the
galaxy has parameters similar to the Milky Way, make a rough estimate of
the size of the patch of disc over which stars are torn out of the galaxy by the
passage of the black hole. Hence estimate the number of stars lost from the
galaxy per black hole encounter.

END OF PAPER
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Question 1X - Relativity

(i) A photon trajectory in the Schwarzschild geometry of a point mass M
satisfies

d2u

dφ2
+ u =

3GM

c2
u2,

where u ≡ 1/r, r is the radial coordinate, φ is the azimuthal angle, and G and
c are the gravitational constant and speed of light, respectively. By perturbing
about the straight-line path b = r sinφ, where b is the impact parameter, show
that light from a distant source is deflected by the mass M through an angle

∆φ =
4GM

c2b
. (∗)

How does this answer differ from the deflection predicted by Newtonian
gravity?

(ii) Gravitational lensing of a distant source by a point mass M is described
by the lensing equation

αDLS + θSDS = θDS, (∗∗)

where the distances and small angles are defined in the figure below. Specif-
ically, θ is the observed angle of the source away from the centre of the lens,
θS would be the angle of the source with no lensing, α is the deflection angle
for the impact parameter b of the deflected light ray, DL and DS are the dis-
tances to the lens and source, respectively, and DLS is the distance from lens
to source.

DS

D DL LS

b

α

θSθ
observer lens

source

image

For a point mass M , the deflection angle α is given by (∗) from Part (i). Show
that the lens equation (∗∗) can be written as

θ2
E/θ = θ − θS, (†)

2
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where

θE =

√
4GM

c2

DLS

DSDL

.

Writing x = θ/θE and y = θS/θE, show that if y 6= 0, the solution of (†)
predicts two images located at

x =
1

2

(
y ±

√
y2 + 4

)
.

Discuss the solution for y = 0.

For a circularly-symmetric extended lens that is thin compared to DL and
DLS, one can take the deflection angle at impact parameter ξ from the lens
centre to be

α(ξ) =
4GM(ξ)

c2ξ
,

where M(ξ) is the projected mass contained within radius ξ. If the lens is a
uniform mass sheet of surface density

Σcrit =
c2

4πG

DS

DLSDL

,

show that such a lens focuses rays from an on-axis source (θS = 0) to the
observer for any θ, i.e., it behaves as a perfect lens.

TURN OVER...
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Question 2Y - Astrophysical Fluid Dynamics

(i) Explain the physical meaning of shear viscosity and describe the con-
ditions for which it occurs.

Consider a very thin ring of matter orbiting a star of mass M at a distance
R0. Qualitatively explain what happens to this ring as a function of time for
an ideal incompressible fluid.

Assume now that the same ring has a kinematic viscosity ν. Sketch the
evolution of the surface density of the ring Σ versus distance to the star R.
What happens to the mass and angular momentum in the ring on very long
timescales?

Consider a short cylinder of radius rc filled with an incompressible fluid of
density ρf and kinematic viscosity νf . Assuming that the fluid is in solid body
rotation with the cylinder which spins at angular velocity Ωc, calculate how
pressure pf changes with radius r, if the pressure at the centre of the cylinder
is pf,0.

(ii) Consider an ideal fluid subject to a spherically symmetric radial body
force which for time t > 0 maintains the flow

u(r, t) =

{
−ωr(ωt+ 1)−2 r̂, for r < R,

−ωR3r−2(ωt+ 1)−2 r̂, for r > R,

where ω and R are constants, and r is the distance from the origin in the
direction of the unit vector r̂. Calculate how the density ρ changes as a
function of time within r < R, given that the density in this region always
remains uniform and is ρ = ρ0 at t = 0.

For r > R the density can be expressed as ρ(r, t) = exp(g(t) + k(r)), where
the functions g(t) and k(r) depend only on t and r, respectively. Find the
solution which ensures continuity across r = R. Is this continuity condition
physically necessary?

Compute and sketch the trajectory r(t) of a fluid element which crosses
r = R at some time t = τ .

[ You may assume that the divergence of a spherically symmetric vector
field u = urr̂ is ∇.u = 1

r2
∂
∂r

(r2ur). ]
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Question 3X - Physical Cosmology

(i) Define the comoving particle horizon in cosmology.

Show that in a spatially-flat universe composed of pressure-free matter and
a cosmological constant, the comoving particle horizon at redshift z is

rH(z) =

∞∫
z

c dz′

H0

[
Ωm,0 (1 + z′)3 + ΩΛ,0

]1/2 , (∗)

where Ωm,0 and ΩΛ,0 are the present-day contributions to the critical density
by, respectively, matter and the cosmological constant, H0 is the present-day
value of the Hubble parameter, and c is the speed of light. You should take
the present-day scale factor to be a0 = 1.

(ii) Evaluate the integral (∗) of Part (i) in the case of an Einstein-de Sitter
universe (Ωm,0 = 1 and ΩΛ,0 = 0).

If ΩΛ,0 ≥ 0, the universe will continue to expand so that the scale factor
a→∞ and the redshift z → −1. Sketch the comoving particle horizon rH(z)
in the interval −1 ≤ z ≤ 2 for the following two cosmological models:

(a) an Einstein-de Sitter universe; and

(b) our own Universe, with parameters Ωm,0 ' 0.3, and ΩΛ,0 ' 0.7. (You do
not need to evaluate the integral (∗) explicitly for this case.)

You should assume that the quantity H0

√
Ωm,0 takes the same value in the

two models.

For both models, discuss the main features of rH(z) that you have sketched.

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) The extinction due to the presence of dust in the interstellar medium
of the Galaxy is given by Aλ = 0.8λ−1 mag pc−1 where λ is the wavelength of
light in nm. Calculate the extinction in the U , B and V bands experienced
by light from a star at a distance of 5 kpc from an observer. The effective
wavelengths of the U , B and V bands may be taken as 365, 430 and 550 nm,
respectively.

The effect of interstellar extinction is to shift the positions of stars in a
U–B versus B–V two-colour diagram. Sketch the shift in the (U–B, B–V )
two-colour plane, specifying the slope and indicating the direction of increasing
extinction.

Discuss under what circumstances the position of a star in the (U–B, B–
V ) two-colour plane can be used to infer the intrinsic colour of the star in the
absence of extinction.

(ii) A double-lined spectroscopic binary system has a period P = 10 yr and
shows peak-to-peak wavelength shifts of 1.2 Å and 0.2 Å measured using the
Hα line which has a rest wavelength of 6563 Å. The stars are in circular orbits
and the system is observed edge-on. Calculate the orbital velocities and the
masses of the two stars.

The binary is observed to have a bolometric magnitude m = 15.00 out
of eclipse and shows a primary eclipse with minimum brightness m = 15.50
and a secondary eclipse with minimum brightness m = 15.01. Both eclipses
have a maximum duration of 5.0 days and both show a flat-bottomed central
minimum of duration 4.0 days. Calculate the radii of the two stars.

If the low-mass star has an effective temperature Teff = 104 K, calculate
the effective temperature of the high mass star. The effects of limb darkening
may be neglected.

6
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Question 5Z - Statistical Physics

(i) Consider an ideal gas consisting of N particles of mass m moving freely
with Hamiltonian H = p 2/(2m), where p is the momentum. Derive the par-
tition function

Zideal =
V N

λ3NN !
,

in the canonical ensemble, where V is the volume and the thermal de Broglie
wavelength λ = AT−1/2 is a function of the temperature T and A is a constant.
Determine the proportionality factor A. You may use that

∫∞
−∞ e

−ax2dx =√
π/a.

By using the free energy F = −kBT lnZideal, where kB is Boltzmann’s
constant, derive the ideal gas equation of state for the pressure p(N, T, V ).

(ii) A monatomic gas of interacting particles is described by a modification
of the ideal gas where any pair of two particles with separation r interact
through a potential energy term U(r). The partition function for this gas can
be written as

Z = Zideal

[
1 +

N

2V

∫
f(r)d3r

]N
,

where f(r) = e−βU(r) − 1 , β = 1/(kBT ), where kB is Boltzmann’s constant.
Use the free energy as in Part (i) to show that the coefficient B2(T ) in the
virial expansion for small densities (N/V ),

p

kBT
=
N

V
+B2(T )

N2

V 2
+O

(
N3

V 3

)
,

is given by

B2(T ) = −2π

∫ ∞
0

f(r)r2dr .

The Lennard-Jones potential is

U(r) = ε

(
r12

0

r12
− 2

r6
0

r6

)
,

where ε and r0 are constants. Find the root σ such that U(σ) = 0 and the
location rmin of the minimum of this potential in terms of r0 and sketch the
graph U(r).

Calculate B2(T ) for the Lennard-Jones potential using the approximations
that exp(−βU) ≈ 0 for r ≤ σ and βU � 1 for r > σ.

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) A three-dimensional oscillator of mass m and a characteristic frequency
ω has Hamiltonian

H =
1

2m
( p̂2

1 + p̂2
2 + p̂2

3 ) +
1

2
mω2(α2x̂2

1 + β2x̂2
2 + γ2x̂2

3 ),

where the dimensionless constants α, β, γ are real and positive. Assuming a
unique ground state, construct the general normalised eigenstate of H and give
a formula for its energy eigenvalue. Results for a one-dimensional oscillator
need not be proved if they are stated clearly, with precise definitions.

List all states in the four lowest energy levels in the cases:
(a) α < β < γ < 2α ; (b) α = β = 1 and γ = 1 + ε, where ε is small and
positive.

(ii) Consider the Hamiltonian defined in Part (i) with α = β = γ = 1
subject to a perturbation

δV = λmω2( x̂1x̂2 + x̂2x̂3 + x̂3x̂1 ),

where λ is small. Compute the changes in energies for the ground state and
the states at the first excited level of the original Hamiltonian, working to
the leading order at which non-zero corrections occur. General results from
perturbation theory may be used without proof.

Explain in outline how the energy levels of the perturbed Hamiltonian could
be found exactly by an appropriate change of axes.

8

2016 University of Cambridge. Not to be quoted or reproduced without permission



Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Starting with a Maxwellian distribution function f(E) with constant
velocity dispersion σ, i.e.,

f(E) =
ρ1

(2πσ2)3/2
exp

(
E
σ2

)
,

where E = −E, E is energy and ρ1 is a constant, derive the following differen-
tial equation for the radial dependence of density ρ(r) of a singular isothermal
sphere

d

dr

(
r2

ρ

dρ

dr

)
= −

(
4πG

σ2

)
r2ρ,

where G is the gravitational constant.

Show that

ρ(r) =
σ2

2πGr2

is a solution to this equation.

Which astrophysical objects appear to be well described as an isothermal
sphere?

(ii) A self-consistent isotropic stellar system has an ergodic distribution
function and a power-law density profile

ρ = ρ0

(r0

r

)α
,

where 1 < α < 3. Derive the radial velocity dispersion v2
r .

What does v2
r become in the case α = 2 of a singular isothermal sphere?

Consider a galaxy with a spherically symmetric distribution of mass, which
is dominated by its dark matter component and has a density ρ ∝ r−2.5.
The mass enclosed within rmax = 100 kpc is 1012M�, and the radial velocity
dispersion of stars in the halo of the galaxy at that radius is 100 km s−1. If the
density of stars in the halo follows ν ∝ r−γ, evaluate the power law index γ.

[ You might find the following integral useful
∫∞

0
x2e−

x2

2a2 dx =
√

π
2
a3. ]

TURN OVER...
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Question 8Y - Physics of Astrophysics

(i) Molecules of carbon monoxide (CO) are desorbed from the surface of a
grain of CO ice of temperature T at a rate in s−1 per molecule of

Rdes = 1.6× 1011

√
ECO

µCO

exp

(
−ECO

kBT

)
,

where µCO is the relative molecular weight of CO, and kB is Boltzmann’s
constant. Suggest a physical interpretation of ECO.

Show that if the ice grain has radius s and is closely packed with density
ρs, the timescale for the grain to be destroyed by progressive desorption from
its surface is given by

tdes = f
s

Rdes

(
ρs

µCOmp

)1/3

,

where mp is the mass of a proton and f is a factor of order unity that you
need not evaluate.

Show that for T = 20 K, tdes is a few Myr for a grain of size 1 cm, given
that ECO/kB = 850 K, ρs = 2000 kg m−3, and the atomic masses of carbon and
oxygen are 12 and 16 respectively.

(ii) Gas of density ρ orbiting in a disc at radius R from the central star
is in a state of radial force balance between gravity, the centrifugal force and
the effect of the radial pressure gradient dP/dR. Show that if the tangential
velocity of the gas vg is nearly Keplerian, it can be approximated by

vg ≈ vK +
1

2

R

ρvK

dP

dR
,

where vK is the Keplerian velocity.

An ice grain of density ρs and radius s in a nearly Keplerian orbit in a
circumstellar gas disc experiences a tangential acceleration due to gas drag
given by (vg−vK)/ts, where ts is the drag timescale. Write down an expression
for the torque about the central star acting on the grain.

Assuming that the grain remains in a nearly Keplerian orbit and that the
effect of drag on the radial motion of the grain can be ignored, show that the
timescale of in-spiral of the grain as a consequence of gas drag is

tsp =
ρtsv

2
K

R|dP/dR|
.

10
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An ice grain is orbiting a star of mass 1M� at a radius of 100 au where
the temperature is 20 K and where the drag time ts is 300 years. Estimate tsp
asssuming that the disc is isothermal and that the density in the disc varies
as ρ ∝ R−1.

Use the data given in Part (i) to discuss the extent to which the grain is
able to spiral inwards before it is desorbed.

END OF PAPER
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Question 1X - Relativity

(i) The Roberston–Walker metric for a spatially-flat cosmology in spherical
polar coordinates is

ds2 = c2dt2 − a2(t)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (∗)

where a(t) is the scale factor and c is the speed of light. Show that (∗) satisfies
the Einstein field equations in the absence of matter, but with a cosmological
constant Λ,

Rµν −
1

2
gµνR + Λgµν = 0,

if

a ∝ eHt with H =

√
Λc2

3
.

You may assume that the non-zero components of the Ricci tensor of the metric
(∗) are Rtt = 3ä/a, Rrr = Rθθ/r

2 = Rφφ/(r
2 sin2 θ) = −(aä + 2ȧ2)/c2, where

overdots denote differentiation with respect to t.

Radiation is emitted from a point P at time t. Show that this will never
be received by a comoving observer whose proper spatial distance from P at
time t exceeds c/H.

(ii) Consider a hyperboloid

x2 + y2 − z2 = 1/H2, (∗∗)

where H is a positive constant, embedded in (2+1)-dimensional Minkowski
space with metric

ds2 = dz2 − dx2 − dy2.

Show that by introducing coordinates t and ξ, such that

z =
1

H
sinh(Ht) +

H

2
ξ2eHt,

x =
1

H
cosh(Ht)− H

2
ξ2eHt,

y = eHtξ,

the constraint (∗∗) is satisfied.

Show that the metric of the hyperboloid in the (t, ξ) coordinates is

ds2 = dt2 − e2Htdξ2,

2
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i.e., the two-dimensional analogue of the spatially-flat cosmology considered in
Part (i).

By considering x+z, or otherwise, determine what part of the hyperboloid
is covered by the (t, ξ) coordinates. Illustrate your answer with a sketch.

By appropriate choice of the time coordinate t, the spatial sections of the
hyperboloid can be spatially flat (as here) or have positive or negative curva-
ture, irrespective of the value of the constant H. Why is this possible?

TURN OVER...
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a supernova explosion producing a strong spherically symmet-
ric and thin blastwave which propagates into a uniform medium of density ρ0

and pressure p0. Assuming that the pressure within the blastwave cavity is
half that of the shocked material p1, and that p1 � p0, calculate the rate of
expansion of the blastwave radius R with time t. You may seek solutions of
the form R ∝ tb, where b is a constant.

By considering the time dependence of p1, discuss qualitatively what hap-
pens on very long timescales.

How would the solution derived above be affected had the blastwave prop-
agated into a medium with a patchy density distribution?

(ii) Consider a dark matter halo with an isothermal density profile ρDM =
σ2/(2πGr2), where G is the gravitational constant, σ is a constant and r is
the radial distance. This halo is filled with gas with a density profile ρ(r) =
fgρDM(r), where fg is the universal baryon fraction. At the centre of this halo
a supermassive black hole of mass M is emitting at its Eddington luminosity
LEdd = 4πGMc/κ, where κ is the gas opacity and c is the speed of light.
The radiation pressure exerted by these photons sweeps up the gas and drives
a forward propagating shell whose thermal pressure is negligible due to the
radiative gas cooling. Assuming that all photons are absorbed by the shell,
that the mass of the black hole stays constant, and considering the gravitational
force exerted on the shell, derive the rate of change of momentum of this shell.

Thus show that there is a critical black hole mass of Mσ = κfgσ
4/(πG2)

such that the radial expansion of the shell always decelerates if M < Mσ.

In the limit that the shell launching speed is much larger than the escape
velocity from the black hole, derive that the maximum shell radius for M < Mσ

is

Rmax = R0

√
1 +

Ṙ2
0

2σ2(1−M/Mσ)
,

where R0 and Ṙ0 are the initial radius and expansion velocity of the shell,
respectively.

Discuss qualitatively whether you would expect the shell to expand faster
or slower had its thermal pressure not been negligible.
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Question 3X - Physical Cosmology

(i) Show that the primordial abundance of helium by mass is

YP ≈ 2

(
1 +

np

nn

)−1

,

where np/nn is the ratio (by number) of protons to neutrons, if all the baryons
are in H and 4He.

Consider an alternative universe, described by the same cosmological pa-
rameters as our own, but with the one difference that a force of unknown
origin further decelerated the universal expansion between times t1 = 1 s and
t2 = 300 s. Discuss whether the mass fraction of helium in this alternative
universe would be larger or smaller than in our own Universe.

(ii) The Lyα absorption cross-section for radiation of (angular) frequency
ω is approximately

σLyα(ω) =
3

4
Λλ2

αδ(ω − ωα),

where Λ = 6.25 × 108 s−1 is the 2p → 1s decay rate, λα = 1.22 × 10−7 m
is the wavelength of Lyα radiation, ωα = 2πc/λα, c is the speed of light,
and δ(ω) is the Dirac delta function. Consider Lyα absorption by a uniform
intergalactic medium with (proper) number density of hydrogen atoms nH I(z)
at redshift z. Show that the optical depth for absorption of radiation with
observed frequency ωα/(1 + z) is

τLyα(z) =
3Λλ3

αnH I(z)

8πH(z)
, (∗)

where H(z) is the Hubble parameter at redshift z.

Explain, with the aid of a sketch, the effect that an intergalactic medium
with uniform nH I would have on the spectrum of a distant quasar. How does
this prediction compare with observed quasar spectra? Give a physical inter-
pretation of any difference.

At redshift z = 3, the average Lyα optical depth is 〈τLyα〉 ' 0.5. Assuming
that H(z) = 300 km s−1 Mpc−1 at z = 3, use (∗) to estimate the average nH I

in the intergalactic medium at that redshift.

Given that the critical density for a Hubble constantH0 = 100 km s−1 Mpc−1

corresponds to a density of hydrogen atoms of 10 m−3, estimate the fraction of
hydrogen atoms in the intergalactic medium that are not ionized at z = 3.

TURN OVER...
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Question 4Z - Structure and Evolution of Stars

(i) Five stars have effective temperatures Teff , luminosities L and masses
M as given in the table below.

Star Teff(K) L(L�) M(M�)
Spica A 25400 13400 10.9
Vega 10000 51 2.6
Sun 5680 1 1
Aldebaran 4000 150 2.5
Sirius B 24800 0.024 0.98

Assume that the radiation produced by the stars can be approximated by a
blackbody. Use Wien’s Law to estimate the wavelengths of the peak emission
for each of the stars and state in which wavelength range (e.g., X-ray, optical)
they occur.

Determine the radii, R, for each of the stars and sketch where they lie in a
Hertzsprung-Russell diagram.

State the corresponding phase of stellar evolution for each star.

(ii) Stars on the zero-age main sequence formed in a cluster are all homoge-
neous and have the same chemical composition. If the stars are fully radiative,
using homology arguments calculate the form of the luminosity-mass relation
for intermediate mass stars. You may assume that the opacity dependence on
temperature T is of the form κ ∝ ρnT−α, and is given by Thomson opacity,
n = 0 and α = 0, for the higher mass stars and by Kramers opacity, n = 1
and α = 3.5, for the lower mass stars.

Assuming that the stellar masses are constant, how will the shape of the
luminosity-mass relation change as the cluster ages?

The nuclear energy generation rate per unit mass is ε ∝ ρT β, with β = 4
for the p-p chain and β = 18 for the CNO cycle. Determine the radius-mass
relation for the stars and hence quantify how the density of the stars changes
with mass.

6
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Question 5Z - Statistical Physics

(i) Derive the Maxwell relation(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

,

where S is entropy, V is volume, p is pressure, and T is temperature.

Consider a thermodynamic system whose energy E at constant temperature
T is volume independent, i.e., (

∂E

∂V

)
T

= 0 .

Show that this implies that the pressure is of the form p(T, V ) = T f(V ) for
some function f .

(ii) For a photon gas inside a cavity of volume V , the energy E and pressure
p are given in terms of the energy density U , which only depends on the
temperature T by

E(T, V )

V
= U(T ) , p(T, V ) =

1

3
U(T ) .

Show that this implies U(T ) = aT 4 where a = const.

Show that the entropy is given by

S =
4

3
aV T 3 ,

and calculate the thermodynamic potentials, namely, the internal energy E(S, V ),
the Helmholtz free energy F (T, V ), the Gibbs free energy G(T, p), and the En-
thalpy H(S, p), each in terms of its respective fundamental variables.

TURN OVER...
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Question 6Z - Principles of Quantum Mechanics

(i) Consider a quantum system with Hamiltonian H = H0 + V , where H0

is independent of time and the potential V may be time-dependent. Define the
interaction picture corresponding to this Hamiltonian and derive an expression
for the time derivative of an operator in the interaction picture, assuming it is
independent of time in the Schrödinger picture.

The Pauli matrices σ = (σ1, σ2, σ3) satisfy

σiσj = δij + iεijk σk .

Explain briefly how these properties allow σ to be used to describe a quantum
system with spin 1/2.

(ii) A particle of spin 1/2 has position and momentum operators x̂ =
(x̂1, x̂2, x̂3) and p̂ = (p̂1, p̂2, p̂3). What is the unitary operator corresponding
to a rotation through an angle θ about an axis n? Check your answer by
considering the effect of an infinitesimal rotation on x̂, p̂ and σ.

Suppose now that this particle has Hamiltonian H = H0 + V with

H0 =
1

2m
p̂2 + αL · σ and V = B σ3,

where L is the orbital angular momentum and α, B are constants. Using
results from Part (i) or otherwise, show that all components of the total angular
momentum J are independent of time in the interaction picture. Is this true
in the Heisenberg picture? You may quote commutation relations of L with x̂
and p̂.
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Non-gravitating gas can naturally exist at constant density and temper-
ature. Explaining your reasoning, discuss whether a stellar system can survive
in an equilibrium, isothermal, homogeneous state.

Describe the situations in which it might be useful to employ Eddington’s
formula for spherically symmetric density distributions

f(E) =
1√
8π2

d

dE

∫ E
0

dΨ√
E −Ψ

dν

dΨ
,

where Ψ = −Φ + Φ0 is the relative potential, E = −E + Φ0 is the relative
energy and ν is density.

Eddington’s inversion relies on monotonicity of the gravitational potential
in spherical systems. Prove that the potential Φ(r) is indeed a non-decreasing
function of r in any spherical system.

(ii) Consider a particle whose offset from the origin is defined in the spher-
ical polar coordinate system (r, θ, φ). The particle’s velocity in this coordinate
system has components vr, vθ and vφ. Show that these components can be
written as

vr = v cosα,

vθ = v sinα cos δ,

vφ = v sinα sin δ,

where v is the magnitude of the particle’s velocity, and the geometrical signif-
icance of the angles α and δ should be described with the aid of a sketch or
otherwise.

The distribution function of a spherical system is proportional to Lγf(E),
where L is the angular momentum, E is the energy, and γ is a constant. Derive
expressions for the components of the velocity dispersion tensor v2

r , v
2
θ and v2

φ.

The anisotropy parameter is defined as

β = 1−
v2
θ + v2

φ

2v2
r

.

Show that at all radii β = −γ/2.

[ You might find the following reduction equation useful:
∫

sinn xdx =
− 1
n

cosx sinn−1 x+ n−1
n

∫
sinn−2 xdx. ]

TURN OVER...
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Question 8Y - Physics of Astrophysics

(i) The age of a white dwarf is related to its luminosity L by

ln(t) = C − (5/7)ln(L),

where t is measured from the point of white dwarf formation and C is a constant
that is independent of the mass of the progenitor star. An observer measures
that within a fixed volume the number of white dwarfs with luminosity in the
range L to L + dL is given by n(L)dL where n(L) ∝ L−β and β = 12/7.
Show that this is consistent with a steady state population with constant star
formation rate.

Explain without detailed calculation what could be inferred if the observer
had measured β < 12/7, and comment on how this inference would have been
affected had the sample been magnitude-limited.

(ii) Write down an expression for the rate of pdV work done per unit mass
in an isothermal spherical wind of sound speed cs at a radius r where the local
gas velocity u is independent of radius. Hence or otherwise show that if the
wind is in a steady state with mass loss rate Ṁ , the total rate of pdV work
done by the gas between radii rin and rout is

Ẇ = 2Ṁc2
s ln

(
rout

rin

)
.

An isothermal spherical wind surrounding an O star has temperature T =
104 K and is observed to extend between radii r1 = 100 au and r2 = 1000 au.
At a radius of 1000 au the density and expansion velocity are estimated to
be 10−22 kg m−3 and 20 km s−1, respectively. Estimate a lower bound to the
luminosity of the O star if it produces 1049 ionizing photons per second, and
determine if the stellar luminosity is sufficient to offset pdV energy losses in
the wind.

If the wind has roughly constant velocity between r1 and r2, write down an
expression for the total recombination rate between r1 and r2, stating whether
this quantity is dominated by conditions at large or small radii. Is the stellar
luminosity sufficient to keep the wind ionized out to infinite radius?

[ You may assume that the rate of recombination per unit volume in
a fully ionized plasma of number density n is given by αBn

2 where αB =
2.6× 10−7 m3 s−1 and n is in m−3. ]

END OF PAPER
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