Modelling the X-ray Spectra of AGNs with a Relativistic Reflection Model

Chia-Ying Chiang1, Andy Fabian1, Rubens Reis1,2, Dominic Walton1, Dirk Grupe3, and Sachiko Tsuruta4

1Institute of Astronomy, University of Cambridge
2Department of Astronomy, University of Michigan
3Department of Astronomy and Astrophysics, Pennsylvania State University
4Department of Physics, Montana State University

IoA seminar, 09 November 2011
Geometry & Spectrum

- Hot corona
- Soft disc photons
- Reflected photons
- Black hole

Log $v f(v)$ vs. Log v
Reflected Spectrum

(Reynolds, PhD thesis, 1996)
Relativistic Effects

(Fabian et al. 2000)
Broad Fe Kα Line

- Broad iron line first discovered in *ASCA* observation of Type I AGN MCG-6-30-15
- Confirmed by *BeppoSAX*, *XMM-Newton*, *Chandra*, and *Suzaku*
- Spin parameter $a \sim 0.989$ (Reynolds et al. 2005)

(Tanaka et al. 1995)
Unlike 1H0707-495, the spectrum of MCG-6-30-15 is seriously modified by warm absorbers.
Disconnection of Variability

(Fabian et al. 2002)
Reflection-Dominated Model

- Extremely **broad** iron line
- Variability from the **powerlaw** component
- Gravitational light-bending model
- using only full-covering absorbers

- Gravitational light-bending effects can explain the invariability of the iron line (Miniutti & Fabian 2004)
- 30s soft lag detection in MCG-6-30-15 (Emmanoulopoulos et al. 2011)
Absorption-Dominated Model

- **Narrow** iron line
- Partial covering clumpy absorbers
- Long-term variability from the *warm absorbers* due to changing covering factors

- Warm absorbers can mimic the broad line profile (Inoue & Matsumoto 2003)
- Hard excess is absorption-dominated (Miller et al. 2009)
- Difficult to explain variability < 1 ks
Simple Case - CBS 126

- Broad-Line Seyfert I Galaxy (H/β FWHM = 2980 ± 200 km s$^{-1}$)
- $z = 0.079$
- $N_H = 1.38 \times 10^{20}$ cm$^{-2}$
- Soft Excess
- Variability
- $M_{\text{BH}} \sim 7.6 \times 10^7$ M$_{\odot}$
CBS 126

Spectra

Suzaku Fl XIS
Suzaku Bl XIS
Suzaku PIN
Swift

Normalized Counts s^{-1} keV^{-1}

Ratio

Energy (keV)
Fitting

Galactic absorption\(^{*}\)(powerlaw + blurred reflection + distant reflection)
Fitting

Galactic absorption* (powerlaw + blurred reflection + distant reflection)

$A_{Fe} \sim 10$
Difference Spectra

XIS

count rate (ct s⁻¹)

Time (sec)

0 5.0×10^4 1.0×10^5 1.5×10^5

high flux

low flux

CBS 126 Difference Spectra

Ratio

Energy (keV)

1 2 5 10
Difference Spectra

![Graph showing high and low flux in XIS and CBS 126 Difference Spectra](image)
RMS Spectrum

![RMS Spectrum graph](image-url)
Galactic absorption*(powerlaw_{high} + reflection_{high}) -
Galactic absorption*(powerlaw_{low} + reflection_{low})
= Galactic absorption*Δpowerlaw

1 Multiplicative component
Ex: Edge, Warm absorbers...etc.
Results

Table: Model A: reflection model; Model B: reflection model with an absorption edge

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-averaged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>2.01 ± 0.01</td>
<td>2.16 ± 0.01</td>
</tr>
<tr>
<td>(E_{\text{edge}})</td>
<td>-</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>(A_{\text{Fe}} \rangle)</td>
<td>> 9.04</td>
<td>(1.0)</td>
</tr>
<tr>
<td>index</td>
<td>7.21 ± 0.80</td>
<td>> 6.37</td>
</tr>
<tr>
<td>(R_{\text{in}}(R_g))</td>
<td>2.98 ± 0.63</td>
<td>1.68 ± 0.33</td>
</tr>
<tr>
<td>(\phi)</td>
<td>27.1 ± 19.5°</td>
<td>50.5 ± 5.1°</td>
</tr>
<tr>
<td>(\chi^2/\nu)</td>
<td>1766.6/1577</td>
<td>1762.1/1576</td>
</tr>
</tbody>
</table>
Flux Evolution

\[\xi = \frac{L}{nR^2} \]
Complex Case - MCG-6-30-15

warm absorber

![Graph showing energy vs. normalized counts and ratio]
Papers Over Last Few Years

- **The absorption-dominated model for the X-ray spectra of type I active galaxies: MCG-6-30-15**, Miller et al., MNRAS, 2009
- **Spectral Variation of the Seyfert 1 Galaxy MCG-6-30-15 Observed with Suzaku**, Miyakawa et al., PASJ, 2009
- **Negative X-ray reverberation time delays from MCG-6-30-15 and Mrk 766**, Emmanoulopoulos et al., MNRAS, 2011
- **Modelling the broad-band spectra of MCG-6-30-15 with a relativistic reflection model**, Chiang et al., MNRAS, 2011
Datasets

Table: The table lists the summary of all datasets used in this work.

- **XMM-Newton**
 - Epic PN: 2.2-10 keV;
 - XMM-Newton RGS: 0.4-1.7 keV;

- **BeppoSAX**
 - 13-200 keV;

- **Suzaku**
 - XIS: 0.5-12 keV;
 - PIN: 14-45 keV;

- **Chandra**
 - MEG: 0.5-5 keV;
 - HEG: 0.8-7.5 keV

<table>
<thead>
<tr>
<th>Observation</th>
<th>Date</th>
<th>ObsID</th>
<th>Exposure (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMM-Newton</td>
<td>31/07 - 01/08, 2001</td>
<td>0029740101</td>
<td>55.2</td>
</tr>
<tr>
<td></td>
<td>02/08 - 03/08, 2001</td>
<td>0029740701</td>
<td>85.5</td>
</tr>
<tr>
<td></td>
<td>04/08 - 05/08, 2001</td>
<td>0029740801</td>
<td>86.8</td>
</tr>
<tr>
<td>Beppo-SAX</td>
<td>31/07 - 05/08, 2001</td>
<td>51346001</td>
<td>49.6</td>
</tr>
<tr>
<td>Suzaku</td>
<td>09/01 - 14/01, 2006</td>
<td>700007010</td>
<td>143.3</td>
</tr>
<tr>
<td></td>
<td>23/01 - 26/01, 2006</td>
<td>700007020</td>
<td>98.5</td>
</tr>
<tr>
<td></td>
<td>27/01 - 30/01, 2006</td>
<td>700007030</td>
<td>96.7</td>
</tr>
<tr>
<td>Chandra</td>
<td>19/05 - 27/05, 2004</td>
<td>4759-4762</td>
<td>497.1</td>
</tr>
</tbody>
</table>
Light Curves

XMM-Newton

Suzaku

Chandra
Difference Spectra

Energy (keV) vs Ratio

- PN
- XIS0/XIS2/XIS3
- MEG/HEG

The graph shows the ratio of energy (in keV) for different detectors (PN, XIS0/XIS2/XIS3, MEG/HEG). The ratio values range from 0.5 to 1.5 on the y-axis, with energy from 0.5 to 10 keV on the x-axis.
Fast Component

- Highly ionized (log $\xi > 3.5$) fast component (Sako et al. 2003; Turner et al. 2004; Young et al. 2005; McKernan et al. 2007; Holczer et al. 2010)
- Fe XXV & Fe XXVI absorption lines
- $v \sim 2000$ km s$^{-1}$
Slow Component & Others

- Slow component with two different ionization states (Lee et al. 2001; Sako et al. 2003; Turner et al. 2004; McKernan et al. 2007; Holczer et al. 2010)
- Absorption features < 2 keV
- $\nu \sim 100 \text{ km s}^{-1}$

- Local component at $z = 0$ (Holczer et al. 2010)
XSTAR Grids

- XSTAR is a computing program for calculating the spectra of photoionised gas.
- \(L = 2 \times 10^{43} \text{ erg s}^{-1} \) (Young et al. 2005)
- Powerlaw spectrum shape
- Gas density = \(10^{12} \text{ cm}^{-3} \)
- \(C_v = 1.0 \)
- \(v_{\text{turb}} = 100, 500, 1000 \text{ km s}^{-1} \)
- \(T = 10^4, 3 \times 10^4, 10^5 \text{ K} \)
- Variable iron and oxygen abundances

Model: Galactic absorption*(4 xstar grids)*(powerlaw + blurred reflection + distant reflection)
Fitting Results

Chandra MEG + HEG

Normalized Counts s$^{-1}$ keV$^{-1}$ vs. Energy (keV)

Ratio
Fitting Results

![Suzaku plot](image-url)
Fitting Results

Model

keV^2 (Photons cm^{-2} s^{-1} keV^{-1})

<table>
<thead>
<tr>
<th>Reflection</th>
<th>Powerlaw</th>
<th>Warm Absorbers</th>
</tr>
</thead>
</table>

Energy (keV)
Fitting Parameters

Table: N_H is given in 10^{21} cm$^{-2}$, temperature in Kelvin, and ξ in erg cm s$^{-1}$.

<table>
<thead>
<tr>
<th>Absorber</th>
<th>fast</th>
<th>slow (1)</th>
<th>slow (2)</th>
<th>local</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (K)</td>
<td>3×10^4</td>
<td>10^4</td>
<td>3×10^4</td>
<td>10^4</td>
</tr>
</tbody>
</table>

Chandra

- N_H: $209.4^{+36.9}_{-33.8}$
- $\log \xi$: (3.82)
- T: 3×10^4
- N_H: $3.43^{+0.31}_{-0.42}$
- $\log \xi$: 1.71 ± 0.03
- T: 10^4
- N_H: $0.27^{+0.20}_{-0.13}$
- $\log \xi$: $2.47^{+0.03}_{-0.16}$
- T: 10^4

XMM + BeppoSAX

- N_H: $27.4^{+9.5}_{-14.0}$
- $\log \xi$: (3.82)
- T: 3×10^4
- N_H: $2.72^{+0.63}_{-0.28}$
- $\log \xi$: $1.68^{+0.05}_{-0.03}$
- T: 10^4
- N_H: $0.99^{+0.46}_{-5.30}$
- $\log \xi$: $2.49^{+0.01}_{-0.10}$
- T: 10^4

Suzaku

- N_H: $38.9^{+10.4}_{-8.1}$
- $\log \xi$: (3.82)
- T: 3×10^4
- N_H: $8.99^{+0.87}_{-0.91}$
- $\log \xi$: $1.61^{+0.03}_{-0.04}$
- T: 10^4
- N_H: $0.14^{+0.12}_{-0.14}$
- $\log \xi$: $1.73^{+0.11}_{-0.13}$
- T: 10^4

(0.406)
Fitting Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>Chandra HETGS</th>
<th>XMM + BeppoSAX</th>
<th>Suzaku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>1.97 ± 0.00</td>
<td>$2.00^{+0.00}_{-0.01}$</td>
<td>1.98 ± 0.01</td>
</tr>
<tr>
<td>index</td>
<td>$8.00^{+0.00}_{-0.16}$</td>
<td>$3.78^{+0.05}_{-0.08}$</td>
<td>3.09</td>
</tr>
<tr>
<td>$R_{\text{in}}(R_g)$</td>
<td>$1.31^{+0.08}_{-0.00}$</td>
<td>$1.57^{+0.13}_{-1.57}$</td>
<td>2.50</td>
</tr>
<tr>
<td>A_{Fe}</td>
<td>$1.79^{+0.10}_{-0.29}$</td>
<td>$1.73^{+0.19}_{-0.12}$</td>
<td>$4.00^{+0.00}_{-0.10}$</td>
</tr>
<tr>
<td>E_{Fe}</td>
<td>$6.53^{+0.06}_{-0.09}$</td>
<td>6.52 ± 0.03</td>
<td>$6.38^{+0.01}_{-0.02}$</td>
</tr>
<tr>
<td>ϕ</td>
<td>$35.0^{+0.6}_{-35.0}$°</td>
<td>$37.7^{+3.4}_{-2.2}$°</td>
<td>44.0°</td>
</tr>
<tr>
<td>$\chi^2/d.o.f.$</td>
<td>2417.7/2139</td>
<td>5059.3/3809</td>
<td>1684.7/1576</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>work</th>
<th>Holczer et al.</th>
<th>Miller et al.</th>
<th>present work</th>
</tr>
</thead>
<tbody>
<tr>
<td>full covering zones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>N_H</td>
<td>81 ± 7</td>
<td>(80.0)</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>3.82 ± 0.03</td>
<td>(3.95)</td>
</tr>
<tr>
<td>slow(1)</td>
<td>N_H</td>
<td>2.3 ± 0.3</td>
<td>0.27 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>-1.5-0.5</td>
<td>0.88 ± 0.16</td>
</tr>
<tr>
<td>slow(2)</td>
<td>N_H</td>
<td>3.0 ± 0.4</td>
<td>11.8 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>1.5-3.5</td>
<td>2.39 ± 0.01</td>
</tr>
<tr>
<td>local</td>
<td>N_H</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>partial covering zones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zone 1</td>
<td>N_H</td>
<td>-</td>
<td>1910 ± 300</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>zone 2</td>
<td>N_H</td>
<td>-</td>
<td>29 ± 1</td>
</tr>
<tr>
<td></td>
<td>log ξ</td>
<td>-</td>
<td>1.38 ± 0.03</td>
</tr>
</tbody>
</table>
The relativistic reflection model has no trouble modelling both the hard excess and the soft excess.

The reflection model can robustly explain the broadband X-ray spectra of AGNs without any partial-covering absorbers.

Most energy is generated within a few gravitational radii; signatures from inner radius are expected.