MOSDEF: Measurements of Balmer Decrements and the Dust Attenuation Curve at High Redshift
Naveen Reddy (Sloan Fellow, UC Riverside)

Collaborators:
Mariska Kriek (UCB)
Alice Shapley (UCLA)
William Freeman (UCR)
Brian Siana (UCR)
Alison Coil (UCSD)
Bahram Mobasher (UCR)
Sedona Price (UCB)
Ryan Sanders (UCLA)
Irene Shivaei (UCR)

Modeling Galaxies through Cosmic Time;
IoA, Cambridge, UK, 17 Sept 2015
Importance of the Dust “Curve” for High-z Galaxies

Calzetti (2011)

Important input to SED fitting

Needed to infer dust-corrected SFRs

Encodes info on the dust/stars geometry

...combining UV and optical diagnostics of HII regions
Proxies for Dust at High-z

• UV Slope: sensitive to age, metallicity, and star-formation history; measurement can be complicated by presence of 2175 Å absorption feature

• Far-IR Measurements: only available for more luminous and dusty galaxies at high redshift (small samples of lensed galaxies)

⇒ need tracers that are less sensitive to stellar population parameters (age and star-formation history), probe star formation on short timescales, and can be measured for individual typical star-forming galaxies at high redshift

BALMER DECREMENTS
(e.g., Calzetti et al. 1994, Kennicutt et al. 2009, Groves et al. 2012, etc…)
MOSFIRE Deep Evolution Field (MOSDEF) Survey
- Conducted using MOSFIRE on Keck (47 nights)
- MOS near-IR spectroscopy covering important nebular emission lines at 1.4<z<3.8
- H-band-selected

Transformative survey:
(1) large sample of objects (~1500) spanning full range of galaxy properties
(2) multiple redshifts to enable evolutionary studies

Kriek et al. (2015)
Sampling of "Typical" (L*) Star-Forming Galaxies at z~2

Shivaei et al. (2015)

Reddy & Steidel (2009)
MOSDEF Fields/Spectra
Balmer Decrement Measurements

\[\tau_b \equiv \ln \left(\frac{H\alpha/H\beta}{2.86} \right) \]

224 star-forming galaxies at \(z_{\text{spec}} = 1.36 - 2.59 \)
Calculating the Attenuation Curve...

Ratios of Composites
Calculating the Attenuation Curve…

Normalization (R_V)

Renormalized so that $f_{Q_{eff} (\lambda \rightarrow 2.85 \, \mu m)} = 0$

Systematic uncertainties of $\Delta R_V \approx 0.4$

Normalized so that $f [Q_{eff}(B) - Q_{eff}(B)] = 1$

$\log [sSFR/yr^{-1}] = -9.60$ to -8.84

$\log [sSFR/yr^{-1}] = -8.84$ to -8.00

Calzetti +94
Comparison to other common curves

Similar in shape (and normalization) to SMC at $\lambda>2500$ Å
Similar in shape (but lower normalization) than Calzetti at $\lambda<2500$ Å
Implications for SFR(SED) and M*

\[\Delta \log(M^*/M_\odot) = 0.16 \text{ dex} \]

\(\approx 20\% \) lower SFRs with new curve
Color Excesses of the Ionized Gas vs. Stellar Continuum

Higher attenuation towards lines-of-sight to massive stars

(e.g., Fanelli et al. 1988, Calzetti et al. 1994, Mas-Hesse & Kunth 1999, Kreckel et al. 2013)
Color Excesses of the Ionized Gas vs. Stellar Continuum

\[E(B - V)_{\text{gas}} = \frac{2.5}{k(H\beta) - k(H\alpha)} \log_{10} \left(\frac{H\alpha/H\beta}{2.86} \right) \]

Assumes Cardelli+89 (Galactic) extinction curve
A Possible Physical Interpretation

At high-z: stars of all masses are attenuated by the same amount, with larger contribution of dust-enshrouded SF at higher SFRs.

“Low” SFR

dominates the UV/optical continuum

“High” SFR

dominates the nebular line/bolometric luminosities
Implications for SFRs from the UV or SED-fitting

UV/SED-based SFRs *underpredict* total SFR above $\approx 20 \, M_\odot/yr$
Conclusions

• Large sample of Balmer decrements aids in calculating the attenuation curve *relevant for the stellar continuum*

• Attenuation curve found here is similar to SMC at longer wavelengths ($\lambda>2500$ Å), and similar in *shape*, but with different *normalization*, than Calzetti+00

• New curve implies SFR \approx20% lower, and log M* that are 0.16 dex lower, than those obtained with the Calzetti relation

• Difference in the color excess (and total attenuation) of the ionized gas and stellar continuum correlates strongly with sSFR and SFR, with higher SFR galaxies exhibiting the largest differences

• Data suggest a physical interpretation where galaxies consist of moderately reddened stellar population that dominated the UV through near-IR continuum, and a second, dustier population, that begins to dominate the line and bolometric luminosities at higher SFRs.

Extra Slides
Recent High-Z Constraints on the Dust Curve

- Noll+09
- Buat+11,12
- Kriek & Conroy 2013
- Scoville+15

Based on photometry, spectroscopy (in UV/optical), and/or comparison to stellar templates

Kriek & Conroy (2013)

Scoville+15
Implications for SFR(SED) and M*

\[\Delta \log(M^*/M_\odot) = 0.16 \text{ dex} \]

\(\approx 20\% \text{ lower SFRs with new curve} \)
A Possible Physical Interpretation

Locally...ionizing stars found in parent birth clouds
Similar “Saturation” seen with IR vs UV-based SFRs

Reddy et al. (2010)
Similar “Saturation” seen with IR vs UV-based SFRs

Reddy et al. (2010)

Saturation of UV luminosity around $L^*(UV)$

$z \sim 2$

Reddy+10
Future Work

• Incorporate mid- and far-IR data

• Larger sample will enable studies of stellar attenuation curve as a function of other galaxy properties (e.g., SFR)

• Relationship between attenuation curve shape/normalization and resolved color maps

• Multiple Balmer emission lines
MOSDEF Fields/Spectra

Flux Density (10^{-18} erg/s/cm^2/arcsec^2)
Balmer Decrement Measurements

224 star-forming galaxies at $z_{\text{spec}} = 1.36 - 2.59$

\[\tau_b \equiv \ln \left(\frac{\text{H}\alpha/\text{H}\beta}{2.86} \right) \]
Calculating the Attenuation Curve

Ratios of Composites

Limit to Galaxies of Similar Spectral Shapes

Spectral Shape

Dustiness
Effects of Star Formation History

- “sequence” of β vs. τ_b
- are A stars contributing to near-UV flux?
 unlikely…
Effects of Metallicity?

Range of metallicity implies $\Delta \beta_{\text{int}} \approx 0.2$
Slit Losses
Dependence of the Difference in \textit{Color Excess} on SFR

Dependence of the Difference in \textit{Total Attenuation} on SFR
Excess UV Absorption at 2175 Å?

Binned by E(B-V)

Marginal (3σ) significance
Implications

SFR(SED) and SFR(UV) may underpredict total SFR at even “modest” levels.

Appropriate attenuation curve to use for HII regions? Gray at low SFR, MW/SMC at high SFR?