Hydrodynamical simulation of tidal disruption events from SMBH binaries

Giuseppe Lodato - University of Milano
Quentin Vigneron - Ecole Normale Superieur, Lyon
Alessio Guidarelli - University of Milano
Introduction

- Tidal disruption flares from SMBH binaries may be a useful tool to detect “hidden” binaries at sub-pc distances
 - Relevant to the detection of precursors of mergers
- Liu et al (2009) and Ricarte et al (2016) have explored the issue with test particle simulations —> Interruptions of fallback of debris
- Coughlin et al (2016) performed SPH simulations by analysing statistically a large ensemble of configurations
- Our approach is complementary to Coughlin et al (2016): explore a few number of cases to identify the dependence on system parameters and geometry
Relevant separation range

• Interesting regime is when binary separation is ~ mpc (e.g. Liu et al 2009, Ricarte et al 2016)

• We identify the range of separations for which a flare initially looks like a TDE, but then deviates from $t^{-5/3}$. **Need to identify binaries from shape of TDE lightcurve**

• We assume that a debris is perturbed by the secondary if its apocenter is comparable to the Roche lobe of the primary (Coughlin et al 2016)

 • For very close orbits, even the most tightly bound debris are perturbed —> Fallback never follows a TDE like curve

 • For wide orbits, there will always be some debris which is perturbed. We assume that a TDE will be considered a “normal” TDE if flare follows $t^{-5/3}$ down to luminosities equal to 1% of the peak, corresponding to ~2 years after disruption for a $10^6 M_{\text{sun}}$ BH.
Relevant separation

- We thus define two critical binary separations

\[a_{BH,min} = \frac{0.6q^{2/3} + \ln(1 + q^{1/3})}{0.49q^{2/3}} R_\ast \left(\frac{M_1}{M_\ast}\right)^{2/3} \]

\[a_{BH,max} = e^{-2/5} a_{BH,min} \]

We ran a number of simulations with different geometries for 9 combinations of mass ratio and separation.
Encounter geometry

- We only consider disruptions from the primary (more frequent, Coughlin et al 2016)
- Parabolic orbit, with penetration factor $\eta=1$
- Still, have three angles to specify
 - Inclination of stellar orbit to binary orbit, θ
 - Angular position of the line of the nodes, Ω.
 - Apsidal position of the pericenter, ω.
Numerical simulations

• We use the SPH code PHANTOM (Lodato & Price 2009, Price et al. 2016, Coughlin et al 2016)

• We adopt the Cullen & Dehnen (2010) switch to reduce artificial viscosity

• We model the SMBH as an external potential (but with an accretion radius, equal to $0.8R_p$ for the primary and to the ISCO for the secondary)

• We use $N=10^5$ particles (we have run a convergence test for a couple of simulations with 10^6 particles and did not notice any difference)
In-plane encounters, $\theta=0$

- Movie shows projected density
- Here, we show the case with
 - $q=0.1$
 - $a=0.5$ mpc
In-plane encounters, $\theta=0$

- Movie shows projected density
- Here, we show the case with
 - $q=0.1$
 - $a=0.5$ mpc

1 mpc
Fallback rates

- Theoretical predictions very well reproduced
- See periodicity, roughly corresponding to the binary period
- Exact time of first disturbance depends on Ω
Perpendicular encounters, $\theta=\pi/2$, $q=0.1$, $a=0.5$ mpc
Perpendicular encounters, $\theta=\pi/2$, $q=0.1$, $a=0.5$ mpc
Fallback rates

- Very different behaviour:
 - Much less affected by binary
 - Smooth decrease in fallback rather than abrupt interruptions
 - Time of first interaction roughly consistent with theory (except for small q)
 - No dependence on Ω
Intermediate cases

• Transition from one extreme case to the other

• Quasi periodic interruptions appear for inclinations smaller than ~ 60 degrees
Caveat: calculation of fallback rate

- In most other studies, fallback computed from sinks (e.g. Coughlin et al 2016)
- Here, we use the energy distribution of debris (a la Rees 1988)
- Sink method **con**: strongly depends on numerics (accretion radii, resolution)
- Energy method **con**: energy is not a conserved quantity in a binary system
- Our method essentially tracks how much the presence of the binary modifies the energy distribution of debris at the time at which they would be expected to return to pericentre
Caveat: calculation of fallback rate

- In most other studies, fallback computed from sinks (e.g. Coughlin et al 2016)

- Here, we use the energy distribution of debris (a la Rees 1988)

- Sink method **con**: strongly depends on numerics (accretion radii, resolution)

- Energy method **con**: energy is not a conserved quantity in a binary system

- Our method essentially tracks how much the presence of the binary modifies the energy distribution of debris at the time at which they would be expected to return to pericentre
The Papaloizou-Pringle instability in TDEs

Bonnerot et al 2016

$\beta = 5$
The Papaloizou-Pringle instability in TDEs

Bonnerot et al 2016

$\beta = 5$
Significant accretion due to the PPI with equivalent $\alpha \sim 0.04$

May be the dominant transport mechanism before the MRI takes over
Conclusions

• TDEs from SMBH binaries

• Geometry of the encounter changes the type of interaction

 • In-plane: direct interaction between the stream and the binary causes interruptions and periodic (on the binary period) variability

 • Perpendicular: the overall modification of the potential modifies fallback in a less pronounced way, with smoother reduction of the fallback rate

• Tori formed in TDE are unstable to the PPI: might lead to significant transport before the MRI takes over