Feedback stimulated by uplift in Galaxies

Brian McNamara
University of Waterloo, Canada

Collaborators: H.R. Russell (IOA), M. Hogan (Wat), A.C. Edge (Durham)
 P. Nulsen (CfA), F. Pulido (Wat), A. Vantyghem (Wat),
 A. C. Fabian (IoA), M. McDonald (MIT), I. Babik (Wat), R. Main (Wat) ..
 student, postdoc

Outline:
- the t_c/t_{ff} thermal instability indicator: does it work in modern galaxies?
- cooling time/entropy threshold – molecular gas
- cold & hot gas flows important element of feedback
- *Stimulated Feedback*, uplift & circulating gas flows

Cambridge, December, 2016
Cooling in central galaxies is apparently stabilized by AGN feedback
How is feedback, star formation fueled?

Perseus
Fabian + 00, 2008
Central Galaxies + short cooling times = molecular gas

- central cooling times < 1 Gyr
- single dish observations: molecular gas > $10^9 M_\odot$
- Forming stars at tens to hundreds of solar masses per yr
- molecular gas cooling from X-ray atmosphere (Edge 01, Salome & Combes 03)

Exciting ALMA results to follow in Helen Russell’s talk
ALMA: molecular gas flows, unsettled gas distribution

Phoenix

\[M_{\text{H}_2} = 2.7 \times 10^{10} \, M_\odot \]

Russell + 16

Abell 1835

\[M_{\text{H}_2} = 5 \times 10^{10} \, M_\odot \]

McNamara + 14

PKS 0745-191

\[M_{\text{H}_2} = 5 \times 10^{9} \, M_\odot \]

Russell + 16
Renewed interest in thermal instability inspired by several influential papers:

Cowie, Fabian Nulsen 80
Nulsen 86
Pizzolato & Soker 06

McCourt + 2012 – revival paper
Sharma + 2012
Li & Bryan 2014
Li+2015
Gaspari + 2011,12, 16
Voit + 2015
Voit & Donahue 2015
Prasad + 2015
Voit + 2016

What role, cooling time, free-fall time, entropy?

\[\frac{t_c}{t_{ff}} < 10 \quad \frac{t_c}{t_{ff}} < 1 \]

gravity
Gravity matters: Feedback scales with halo mass & *central cooling time* over two decades in mass, four decades in jet power.

Scaling is consistent with M-σ relation (Ferrarese & Merritt 00): $M \sim \sigma^5$
assuming $P_{jet} \sim L_{cool} \sim M^{1.75}$, *assuming jet power governed by feedback*

Trend vanishes in halos with central cooling times ≥ 1 Gyr

Why? -- *cooling time/entropy instability threshold—Cold Accretion*
Sharp threshold for onset of star formation (thermal instability)

Star formation

Nebular emission

Cool gas & Star formation linked to cooling, X-ray atmospheres
Gravity & cooling: key to thermally unstable cooling

free-fall speed:

dynamical timescale: $t_{\text{dyn}} = (2r/g)^{1/2}$

terminal speed:

buoyancy timescale: $t_B \sim r(2mg/\rho AC_d)^{-1/2}$

Significant new results:

Precipitation Model:

$t_c/t_{ff} \approx (\delta \rho/\rho)^{-1} \leq 10$ onset of non-linear cooling instabilities

a.k.a. “precipitation” ...
McCourt +12, Sharma + 12, Voit + 15, Li + 15

This idea can be tested
Hogan + 16
Is t_c/t_{ff} a better probe of molecular gas than t_c alone? Apparently not --- free fall time adds noise.

Low t_c/t_{ff} driven primarily by cooling time, not free-fall time. To do properly, *must* deproject and measure acceleration carefully. t_c/t_{ff} rarely falls below 10 -- difficult for precipitation models -- indicates stable atmospheres!

Hogan + in prep
Cooling time dominates the ratio
Molecular Gas likely cooled from Hot Atmosphere
data from Edge 01, ...

- Cold & hot mass correlated; easily supplied by hot phase
- Molecular gas $>10^9 \text{ M}_\odot$ occurs suddenly when $t_c < 10^9 \text{ yr}$
- Radio power uncorrelated with total molecular gas mass
Simulations: swings in atmospheric density, jet power, molecular gas, correlate with t_c/t_{ff}.

Key simulations: **Uplift – Li & Bryan 14**

- large swings in gas density, cooling time, t_c/t_{ff} *not observed*
- uplift *is observed*
-- Central Cluster Galaxies Rich in Molecular Gas: $> 10^9 \, M_\odot$

-- No trend with jet power in total gas mass, but plenty of fuel
Radio Mode Feedback is Gentle: not large central density swings

- Density swings only factors of several
- Precipitation models predict 2 decades of variation - not observed

\[\approx 5 \times \delta n_e \text{ at } 10 \text{kpc} \]
less at 1 kpc much unrelated to AGN

\[10^{46} \text{ erg s}^{-1} \]

\[10^{43} \text{ erg s}^{-1} \]

rock-steady despite >4 dex energy injection

no trend between \(t_c / t_{ff} \) and molecular gas mass or star formation rate
we know only that when \(t_c < 10^9 \text{ yr} \), stuff happens... feedback is subtle
Entropy profiles of cool core clusters are power laws

- Voit, Kay, Bryan profile beyond ~50 kpc
- Consistent with Panagoulia, Fabian, Sanders < 50 kpc
Conjecture: “stimulated feedback”

McN + 16

Assumptions:

1) Cooling time threshold is the key observation to be understood

2) $t_c/t_{ff} \leq 1$ classical criterion for thermal instability to be satisfied

 infall time, not free-fall time, may satisfy criterion

 to achieve 2, low entropy gas must be lifted to higher altitude – stimulated feedback

ALMA + Chandra surprises:

Uplift (circulation) in essentially all gas phases, molecules to plasma
slow gas (infall) velocities indicate terminal speed governs thermal instability

McN+16, 14, Russell+16, Kirkpatrick + 15
Simionescu +08, ... others

see Li & Bryan 14: uplift important in feedback simulation
Stimulated Feedback: \(t_c/t_f < 1 \) requires AGN to lift gas

McN + 16

no nebulae no bubbles
e nebular emission/bubbles
e nebular emission/bubbles

cooling time

\[t_c/t_f \leq 1 \]

free-fall time

\[t_c/t_f \]

the spoiler

A2029 M87 MS0735

S*Simulated Feedback:

\[t_c/t_f \leq 1 \] requires AGN to li2 gas
Uplifted Hot Gas

$R_{Fe} \sim 300$ kpc

Powerful thrust:

$P_{jet} \sim 3 \times 10^{46}$ erg s$^{-1}$

$E_{jet} \sim 10^{62}$ erg

Lifted/displaced mass $\sim 10^{10}$ M$_{\odot}$ ~ 100 M$_{\odot}$ yr$^{-1}$

See also Simionescu + 08, Kirkpatrick 09,11,14, Gitti + 11
Hot outflow mass comparable to molecular gas mass

- Outflow rates several to a few hundred solar masses per year
- A few to a few tens of % of the cooling gas is re-circulated
- Outflow mass consistent with molecular gas masses

Kirkpatrick & McNamara 15
ALMA: uplifted molecular gas and hot gas cooling, circulating

Phoenix
$M_{H_2} = 2.7 \times 10^{10} \, M_\odot$

Russell + 16

Abell 1835
$M_{H_2} = 5 \times 10^{10} \, M_\odot$

McN + 14

PKS 0745-191
$M_{H_2} = 5 \times 10^9 \, M_\odot$

Russell + 16
Summary

Uplift ubiquitous, important

Precipitation models, $t_c/t_{ff} < 10$ inconsistent with observation

$t_c/t_{ff} < 1$ achieved by lifting low entropy gas to higher altitudes

stimulated feedback

Low molecular cloud velocities observed in many systems

pinned to hot gas? (c.f., Hitomi Perseus result)

TI criterion: $t_c/t_l \leq 1$,

infall time bounded by free-fall and terminal speeds

Stimulated feedback conjecture – must be tested

must recover cooling time thresholds