Galaxy Cluster ICM and Stellar Mass Fraction Trends with Mass and Redshift within the SPT Sample

Joe Mohr and I-Non Chiu with Alex Saro, Veronika Strazzullo, and Mike McDonald
+SPT, +DES

KICC Workshop on Galaxy Clusters

Cluster Baryon Scaling Relations

- Existence of scaling relations constrains cluster formation
- Trends in ICM and stellar mass fraction with redshift and mass constrain the physical processes important in cluster evolution
- Measurements of $f_*(M,z)$ and $f_{icm}(M,z)$ can be compared directly to simulated clusters

Steep than Self-Similar Scaling Relations

Require: Simple selection, broad redshift and mass range, accurate masses

Mohr & Evrard, 1997

$L=1.5\times10^{-14}$ cgs

$P_{[h^{-2}\text{Mpc}^3]}$

$T_X [\text{keV}]$
Overview

- SPT Cluster Sample
- Virial Mass Estimates
- Stellar and ICM Masses and Fractions
- RS Width and Concentration
- Future SZE and X-ray Surveys

Sunyaev-Zel’dovich Effect Galaxy Cluster Selection

Cluster SZE Signature

- Measures total thermal energy in ICM
- Strongly correlated with mass (low scatter)
- Signature at fixed mass is ~independent of redshift!

\[\frac{\Delta T(R)}{T_{\text{e}}(R)} = -2 \frac{\mu}{\omega} \int dR n_e(l, R) k_B T_e(l, R) \]

Adapted from L. Van Speybroeck
SPT-SZ 2500 deg² Survey
Carlstrom+10

- Matched filter selection
- Painstaking optical followup

First SZE selected clusters pulled from first year SPT data (Staniszewiski+09)

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr

SPT-SZ Sample
Song+12, Bleem+15

- 2500 deg² sample
 - 516 at \(\xi > 4.5 \)
 - 387 at \(\xi > 5.0 \)
 - Bleem+15

- High z subsample
 - 36 at \(z > 1 \)
 - Max \(z_{\text{spec}} = 1.47 \)
 - Bayliss+13
 - Highest phot-z
 - Strazzullo+

- Clean sample with \(M_{500} > 3 \times 10^{14} M_\odot \) to \(z \sim 1.7 \)

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr
Highest Redshift: SPT-CLJ 0459
Strazzullo+ in prep

Cosmology with SPT Sample?
Bocquet+16; de Haan+16

- Sure:
 (see Haiman, Mohr & Holder 2001)
 - Observable distribution $d^2N/dzdz$ must be mapped to cosmology dependent hydro mass function $d^2N/dzdM$
 - Need observable-mass relation

The resulting masses also support studies of the stellar and ICM mass fractions
Overview

- SPT Cluster Sample
- Virial Mass Estimates
- Stellar and ICM Masses and Fractions
- RS Width and Concentration
- Future SZE and X-ray Surveys

Observable-Mass Relation

Bocquet+15

- Statistical relationship between observable and underlying halo mass
 - Clusters are young, merging objects
 - Crucial for selection observable (S/N, Y, L_y)
 - Include lower scatter mass proxies (Y, M_{ICM})

Characteristic SZE based mass scatter ~15-20%

- SZE Observable-Mass relation
 - Minimum of four free parameters: power law plus (log-normal) intrinsic scatter
 \[\xi = A_{sz} \left(\frac{M_{500}}{3 \times 10^{14} h^{-2} M_\odot} \right)^{B_{sz}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{sz}} \]
 4 params: A_{sz}, B_{sz}, C_{sz} and D_{sz}

 - Parametrization allows systematic uncertainties to be included
 - Mass information added through weak lensing, galaxy kinematics, external priors

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr
SPT Cluster Masses

Bocquet+15

- External cosm priors (Planck, WMAP) tend to prefer higher cluster masses
- Direct constraints (WL, Dyn, Hydro) prefer lower values
- Constraints are still weak—everything statistically consistent

\[\xi = A_{SZ} \left(\frac{M_{500}}{3 \times 10^{14} h^{-1} M_\odot} \right) ^{\frac{\eta_{SZ}}{E(z)}} \]

Planck Cluster Mass Priors

Planck Collaboration XXIV (2015)

- External cosmology priors prefer higher masses than direct measurements
- CMB lensing and LoCUSS WL imply no hydrostatic mass bias (in conflict with simulations)
- Some tension among mass priors
 - WtG: \(1-b=0.69 +/- 0.07\)
 - CCCP: \(1-b=0.78 +/- 0.09\)
 - CMBLens: \(1-b=0.99 +/- 0.19\)
 - LoCUSS: \(1-b=0.95 +/- 0.04\)

Planck adopts hydrostatic masses as baseline
\[M_{\text{hydro}} = b M_{\text{true}} \]
SPT Mass Calibration Continues

- Direct mass calibration of clusters
 - Dynamical masses:
 - Bocquet+15 (with dispersions)
 - Capasso+ (Jeans analysis)
 - Magnification masses:
 - Chiu+16
 - Shear masses:
 - Dietrich+ (Magellan imaging)
 - Schrabback+ (HST+VLT imaging)
 - Stern+ (DES imaging)

Still wiggle room in mass scale of SPT clusters

Overview

- SPT Cluster Sample
- Virial Mass Estimates
- Stellar and ICM Masses and Fractions
- RS Width and Concentration
- Future SZE and X-ray Surveys
Trends in Stellar Mass
Chiu+15

- Massive clusters grow through accretion of low mass clusters and groups

- But on average groups have many times higher stellar mass fraction than clusters.

- How can this be?
 - Intracluster light? (Lin et al 2004)
 - M_{vir} errors? (Bocquet et al 2015)
 - M_* errors?
 - Redshift trends?

SED Fitting Provides M^* estimates
Chiu+15

- One must use consistent stellar IMF
- In Chiu+15 we use 6 bands (VLT+HST+IRAC) to estimate galaxy stellar masses
- Possible to robustly examine trends in M_{vir} and z under assumption IMF trends are small
Redshift Trends in Stellar Mass

Chiu+15,16

- None are seen in high mass sample (SPT&ACT + low-z)
 - Chiu+2015

- None are seen in recent study of X-ray sample of groups and low mass clusters extending to $z \sim 1$

- So what is going on?

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr

Dark Energy Survey

5000 deg2
griz imaging
525 nights
Blanco 4m
3 deg2 Camera
$\sim 0.9''$ FWHM riz
~ 2 mag deeper than SDSS

Goal: Use DES (+Spitzer, WISE) to study stellar mass fractions over full SPT sample
XVP Sample: Trends in Stellar Mass
Chiu thesis

- 61 XVP clusters with available DES data in black
- Evidence for redshift trend still weak
- Infall from field (low f_\ast) roughly offset by infalling subclusters (high f_\ast)

Preliminary Results

\[M_\ast \propto M_{500}^{0.75 \pm 0.14} (1 + z)^{0.23 \pm 0.34} \]

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr
19

XVP Sample: Trends in ICM Mass
Chiu thesis

- 91 XVP clusters in black
- Evidence for redshift trend is also weak
- Infall from field (high f_{icm}) roughly offset by merging subclusters (low f_{icm})

Preliminary Results

\[M_{\text{icm}} \propto M_{500}^{1.24 \pm 0.06} (1 + z)^{0.19 \pm 0.14} \]

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr
20
Overview

- SPT Cluster Sample
- Virial Mass Estimates
- Stellar and ICM Masses and Fractions
- RS Width and Concentration
- Future SZE and X-ray Surveys

Galaxies in DES-SV Subsample

Hennig+16

- DES imaged a region of ~150 deg2 of SPT-SZ to “full depth” as part of science verification
 - Image quality ~1.1"
 - Mean 50% completeness depths for SPT candidates: griz=24.3,24.0,23.1,22.8
- SPT-SZ subsample
 - 85 candidates/77 confirmed
 - RS z’s: $\delta z/(1+z) \sim 0.016$
 - z<1.2 and $M_{200}>3\times10^{14}M_\odot$
Galaxy Colors, Red Sequence
Hennig+16

- By stacking and projecting in color space, we define red and blue components as f(z)
 - 8 bins with ~10 clusters each
 - 0.06-0.3-0.4-0.425-0.56-0.70-0.8 8-1.0-1.2

- RS present at all redshifts, lower contrast at higher z, blue pop also present

- No clear width evolution to z~1.
 - Simple z=3 burst (τ~0.5Gyr) describes RS color evolution

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr

Transition from Field to Cluster
Hennig+16

- Cluster galaxies are predominantly ellipticals, while field galaxies are predominantly spiral

- Radial profile insights
 - RS galaxies c=5.37
 - Blue non-RS c=1.38
 - No clear redshift trend
 - Variation from cluster to cluster (38% RS and 55% full)
Overview

- SPT Cluster Sample
- Virial Mass Estimates
- Stellar and ICM Masses and Fractions
- RS Width and Concentration
- Future SZE and X-ray Surveys

Future SZE Surveys
Carlstrom, Delabrouille, Staggs, ++

- SPTpol + SPT-3G + AdvACT underway
- CORE space mission proposed for ESA M5
- CMB-S4 ground based (US coordinated, seeking European participation)
- Large cluster samples: z>1.5: 500, 5000, 20,000 clusters
- Exquisite mass constraints

Melin+16 forecasts for CORE
e-ROSITA All Sky X-ray Survey
Predehl+10, Merloni+12

- Good angular resolution –
 - ~16" HEW on axis, 28" HEW averaged over field (survey mode)
- Characteristic flux limit is ~2x10^{-14} erg/s/cm^2
 (~30X deeper than ROSAT All Sky Survey w/ CCD spectroscopy)

~10^5 X-ray selected galaxy clusters
~3x10^6 X-ray selected AGN

Cosmological Studies
Structure Formation Studies
Launch scheduled end of 2017

Summary

SPT Cluster Sample Spans Broad Range
- Simple selection, extends to z~1.75
- Low scatter mass proxy provides 15-25% virial mass scatter
- Systematic mass uncertainties included with mass-obs relation
 - Calibration w/ Weak Lensing and Galaxy Dynamics ongoing

DES Enables Cluster Galaxy Studies to z~1
- Depth is good match to probe SPT clusters to m^*+2 out to z~1
- Homogeneous, contiguous imaging enables infall region studies

Galaxies, Stellar Masses and ICM Masses
- Width of RS ~constant to z=1; RS fraction falls moderately to z~1
- Strong mass trends in stellar and ICM mass fractions persist to z~1
- At fixed cluster mass, redshift trends in ICM and stellar mass are modest
LMU Cosmology and Structure Formation Group

- **Focus:**
 Observational cosmology and structure formation studies

- **Survey Projects**
 South Pole Telescope
 Dark Energy Survey
 eROSITA
 Euclid and LSST
 D-MeerKAT and CORE

- **Group Members:**
 Research Scientists
 Joerg Dietrich
 Alex Saro
 Veronica Strazzullo

 Euclid subgroup
 Martin Kümmel
 Moham. Mirkazemi
 Holger Israel
 Thomas Vassallo

 Postdoc Fellows
 Matthias Klein
 Maurillio Panella

 PhD Students
 Nikhel Gupta
 Corvin Gangkofner
 Raffaella Capasso
 Sebastian Grandis

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr

DES Gallery of SPT Clusters

5. Dec 2016
KICC Workshop on Galaxy Clusters - Mohr